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This article is based on the second overview lecture given at the Workshop. The prin-

cipal aim of these survey lectures was to provide a bird’s eye view of the theory of motives

vis-a-vis some of the longer courses and special lectures that were to follow. Needless

to say, such a sweeping overview involves compressing a vast area, thereby necessitat-

ing omission of many details. In this article, we have largely retained the flavour of the

lecture, introducing various concepts, themes and conjectures from the theory of motives.

Apart from the references in the bibliography, the interested reader is also referred to

the various articles on this subject in the homepages of B. Kahn, M. Levine and J. Milne.

1 Introduction

Classical Galois theory relates finite groups to the study of polynomial equations over

fields. The theory of Motivic Galois groups is a vast higher dimensional analogue, wherein

‘motives’ are related to finite dimensional representations of some groups, called the ‘Mo-

tivic Galois groups’. The study of motives encompasses deep questions coming from such

diverse areas as Hodge theory, algebraic cycles, arithmetic geometry and Galois represen-

tations.

The essential idea is the following. If G is any group, and F a field, then the category

RepF (G) of finite dimensional F -representations of G has a rich structure, namely that

of a ‘Tannakian category’. Consider the association

Groups −→ Tannakian categories

G 7→ RepF (G).
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If G is compact, then the classical theorem of Tannaka and Krein shows how the group

G may be recovered from its category of representations via the obvious forgetful functor

RepF (G) −→ VecF

into the category VecF of finite dimensional F -vector spaces.

An analogous theorem for algebraic groups or group schemes will be discussed below.

The idea is to first attach group schemes to various suitable Tannakian (sub)categories

arising from the theory of motives, using realizations (Betti, Hodge, l-adic....). The group

schemes associated to these categories have the property that their corresponding cate-

gories of representations are in fact equivalent to the original categories that we started

with. Schematically,

Category M coming from motives
≀

↓

G′ pro− algebraic group schemes
≀

↓

Rep G′ ←→M,

where the first vertical arrow denotes the association mentioned above and the last two

sided arrow denotes equivalence. This is made more precise in the language of Tannakian

categories.

2 Tannakian Categories

The main references for this section are [28], [5] and the article by L. Breen in [23], Part

1.

Definition 2.1. Let R be a commutative ring. An R-linear category is a category C such

that for every pair of objects M, N in C, the set of morphisms C(M,N) is an R-module,

and the composition law is R-bilinear. In addition, we shall also need that finite sums

exist inC. An R-functor between two such categories is an R-linear functor.

We impose additional conditions on such an R-linear category in the definition below,

referring the reader to any of the references mentioned above, for more details.

Definition 2.2. A tensor category over R is an R-linear category C with an R-bilinear

tensor functor ⊗,

⊗ : C × C −→ C
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which satisfies the commutativity and associativity constraints, and such that there exists

a unit object I in C.

In particular, given objects L, M and N there are the following functorial isomor-

phisms in a tensor category:

αLMN : L⊗ (M ⊗N) ≃ (L⊗M)⊗N

cMN : M ⊗N ≃ N ⊗M, with cMN ◦ cNM = 1M⊗N

uM : M ⊗ I ≃M, u′M : I⊗M ≃M,

such that various compatibilities are expressed by the natural commutative diagrams.

We remark that other equivalent terminology for a tensor category is ⊗-category ACU

(Saavedra-Rivano) or symmetric monoidal category.

Definition 2.3. The category C has an internal hom functor

hom : C × C → C

(X,Y ) 7→ hom(X,Y )

if hom(X,Y ) is the representing object for the functor

Cop → Sets

M 7→ C(M ⊗X,Y ).

Suppose that the internal hom functor exists in C. Then the dual object M∨ for every

object M of C is defined by M∨ = hom(M, I).

We thus have a duality functor

∨ : C −→ Cop

M 7→ M∨

{M
f
7→ N} 7→ {N∨

tf
→M∨}

and evaluation maps for every M ∈ C,

(evaluation) ε : M ⊗M∨ → I.

The category is said to be rigid if there are also coevaluation maps η for every object

M ∈ C,

(coevaluation) η : I → M∨ ⊗M

with the property that the composites below

M
u−1

M

≃ M ⊗ I
1M⊗η
−→ M ⊗M∨ ⊗M

ε⊗1M−→ I⊗M ≃M,
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M∨
(u′

M∨
)−1

≃ I⊗M∨ η⊗1M−→ M∨ ⊗M ⊗M∨ 1M⊗ε
−→ M∨ ⊗ I

u
M∨

≃ M∨,

are respectively 1M and 1M∨ . Further, there are functorial isomorphisms

hom(Z, hom(X,Y )) ≃ hom(Z ⊗X,Y ), X∨ ⊗ Y ≃ hom(X,Y ).

Definition 2.4. Given an R-rigid tensor category C, every endomorphism f ∈ End(M)

has a trace, denoted by tr(f), which is an element of the commutative R-algebra End(I).

It is defined as the composite

I
η
−→M∨ ⊗M

1
M∨⊗f
−→ M∨ ⊗M

c
M∨M−→ M ⊗M∨ ε

−→ I.

We thus get a map

tr : End(M)→ End(I)

for every object M of C. The dimension or rank of an object M in C is then defined as

dim M := tr(IM)

Examples. (1) The prototype is C = RepF (G) where F is a field and G any group.

The usual tensor product of representations gives the tensor functor while I is the trivial

representation and ∨ denotes the contragredient representation functor. The notions of

trace and dimension are the usual ones. More generally, if R is a commutative ring, the

category of R-modules is a rigid tensor category.

(2) Let F be a field, and C := VecGrF be the category of Z-graded F -vector spaces (Vn)

such that ⊕
n
Vn has finite dimension. We shall mainly consider this category, but with the

Koszul rule for the commutativity constraint. In other words, consider the isomorphisms

⋆

φ : V ⊗W ≃ W ⊗ V,

with
⋆

φ = ⊕
r,s

(−1)rsφr,s, where

φr,s : V r ⊗W s → W s ⊗ V r

is the usual isomorphism in C. With this latter definintion, if V = (Vn) is an object

of C, then the rank of V is the ‘super-dimension’ dimV + − dimV −, where V + = ⊕V 2k

and V − = ⊕V 2k+1. With the usual tensor functor ⊗F , the category C is a rigid tensor

category.
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(3) The category of vector bundles over a variety X/F is a F -rigid tensor category.

A tensor functor Φ : C → C′ between tensor categories is a functor preserving the

tensor structure, i.e. there exist functorial isomorphisms

κM,N : Φ(M)⊗ Φ(N) ≃ Φ(M ⊗N)

which are compatible with the associativity and commutativity constraints and such that

the identity object of C is mapped to that of C′. If further, C and C′ are rigid, then there

are functorial isomorphisms

Φ(M∨) ≃ Φ(M)∨.

There is an obvious notion of tensor equivalence between tensor categories. Further, we

have tr(Φ(f)) = Φ(tr(f)) and dim(Φ(M)) = Φ(dim(M)).

If Φ and Φ′ are tensor functors, then hom⊗(Φ,Φ′) is the set of morphisms (i.e. natural

transformations) of tensor functors. Further, if the categories C and C′ are rigid, then any

morphism of tensor functors is an isomorphism.

We now outline how the set hom⊗ is given an additional structure. For any field F and

an F -algebra R, there is a canonical ⊗-functor,

ΦR : VecF → ModR

V 7→ V ⊗F R.

If Ψ and Λ are tensor functors from C → VecF , then we define hom⊗(Ψ,Λ) to be the

functor from the category of F -algebras to the category of sets such that

hom⊗(Ψ,Λ)(R) = hom⊗(ΦR ◦Ψ,ΦR ◦ Λ).

Definition 2.5. An additive (resp. abelian) tensor category is a tensor category C over R

such that C is additive (resp. abelian) and the tensor functor is biadditive. If in addition,

we have R = End(I), then such a category is said to be an additive (resp. abelian) tensorial

category.

There is the notion of tensor subcategories generated by subsets of objects; briefly this is

the smallest tensor subcategory containing the generating set of objects.

We now come to the important notion of fibre functors which is crucial to define

Tannakian categories.
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Definition 2.6. Let R = F be a field and C a rigid abelian tensorial category so that

End(I) = F. A fibre functor on C is a faithful, exact, tensor functor

ω : C → VecF ′

into the rigid category of F ′-vector spaces of finite dimension over F ′, where F ′ is an

unspecified algebraic field extension of F .

We say that C is Tannakian if C has a fibre functor; C is neutral if C has a fibre functor

into VecF and C is neutralized if a fibre functor into VecF has been specified.

Given a fibre functor ω : C → VecF , one can define the affine group scheme G(ω) over

F by

G(ω) = Aut⊗ ω

where the latter is viewed as a scheme via its ‘functor of points’ on F -algebras.

The following deep theorem is the centrepiece of Tannakian formalism.

Theorem 2.7. Let (C, ω) be a neutralized Tannakian category over a field F , and let

G(ω) = Aut⊗ ω be the associated group scheme over F . Then G(ω) is an affine, flat

F -group scheme and the functor

ρ : C → RepF (G(ω))

is an equivalence of categories.

In the simplest case of C = RepF (G) for an algebraic group G, the group can thus be

recovered as the automorphism group of the canonical fibre functor, given by the forgetful

functor on representations.

Examples. (i) Let C = VecGrK as before. An object is thus a collection V = (Vn)n∈Z

such that ⊕Vn is finite dimensional over the field K. Consider the fibre functor

ω : C → VecK

V 7→ ⊕Vn.

Then G(w) = Gm.

(ii) Hodge structures: Let C = HodR, the catgory of real Hodge structures. If V is an

object of C, then recall that V is a real vector space of finite dimension such that there

exists an isomorphism

VC := V ⊗ C ≃ ⊕V p,q, with V p,q = V q,p,

6



where − denotes complex conjugation. Then C is a Tannakian category and we have the

natural fibre functor
ω : C → VecR

V 7→ V.

In this case, the group G(ω) = S which is the torus defined by ResC/R(Gm,C), where

ResC/R denotes Weil restriction of scalars.

Now define the weight cocharacter ω : Gm → S given on points by the natural inclusion

R∗ = Gm,R(R)→ S(R) = C∗. An arbitrary Q-Hodge structure is a mixed Hodge structure

(see [6, 2.3.1, 2.3.8], [7]), which is described by a vector space V/Q of finite dimension

along with a homomorphism h : S→ GL(V )R such that

h ◦ ω : Gm,R → S

is defined over Q. In other words, the weight decomposition of VC comes from a decom-

position over Q.

We now turn to some properties of the affine group scheme.

Properties: Let G = G(ω) be obtained by the above formalism on some Tannakian

category C. Then:

• G is finite if and only if there is an object M of RepF (G) ≃ C such that every object

of RepF G is isomorphic to a subquotient of Mn, n ≥ 0.

• G is algebraic if and only if there exists an object M of RepF G which is a tensor

generator of RepF G.

• Assume that the field F has characteristic zero. Then G is connected if and only if

for any nontrivial representation M of G, the strictly full subcategory of RepF G whose

objects are isomorphic to subquotients of Mn, n ≥ 0, is not stable under the tensor

product.

• Assume that F has characteristic zero and that G is connected. Then G is pro-reductive

(i.e. projective limit of reductive groups) if and only if RepF G is semisimple.

3 Category of motives

The references for this section are [11], [19], [20] and the articles by S. Kleiman and A.

Scholl in [23].

In this section, k will denote a fixed base field. We consider the category Vk of

smooth projective varieties over k and an adequate equivalence relation ∼ on the groups
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Zi(X), (see any of the references above for definition of adequate equivalence) where

Zi(X) denotes the group of algebraic cycles of codimension i on X, such that given a

morphism f : X → Y in Vk, the pushforward f∗, pull-back f ∗ and intersection of cycles

are well-defined modulo the equivalence relation ∼. Examples of adequate relations are:

∼rat : rational equivalence ∼alg : algebraic equivalence

∼num : numerical equivalence ∼hom : homological equivalence

We set

Ai
∼(X) := Zi(X)/ ∼ .

The idea is to construct a (Tannakian) category of pure motives whose most basic

constituents come from smooth projective varieties. This category is obtained in three

steps, starting from Vk:

Linearization pseudoabelianization Inversion.

Step 1 : Linearization

A different set of morphisms on Vk using algebraic cycles is defined which enables one

to give an additive structure on the set of morphisms. More precisely, we define a category

Corr∼(k), the category of correspondences over k, whose objects are the same as those

of Vk, but denoted by h(X) for X in Vk. The morphims are given by

Corr∼(k)(X,Y ) = ⊕
i
Adim Xi

∼ (Xi × Y ),

where Xi are the irreducible components of X, and A∗∼ denotes the group of cycles

modulo the adequate equivalence relation ∼. The composition of two morphisms α in

Corr∼(k)(X,Y ) and β in Corr∼(k)(Y, Z) (which we assume to be simple, in the sense

that there is a single element in the sum) is given by pXZ∗(p
∗
XY (α) · p∗Y Z(β)). Here ·

denotes the intersection product in X×Y ×Z, and pXY , pY Z and pXZ are the projections

onto the corresponding products of the factors. Given any morphism f : X → Y of

smooth projective varieties, the associated graph Γf is a correspondence and we therefore

obtain a contravariant functor

h : Vk → Corr∼(k).

Note that here we are following the classical convention of Grothendieck. The other

convention is to define the morphisms using correspondences with codimension Yj, as Yj
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varies over the irreducible components of Y , so as to make the functor covariant, as is

followed in Fulton’s book or by Voevodsky (see the article [19] for more on the philosophy

behind these conventions).

The category Corr∼(k) has a tensor structure given by h(X) ⊗ h(Y ) = h(X × Y ),

and also an identity object given by Ik = h(Spec k). Further, if A is any commutative

ring, then Corr∼(k,A) defined by tensoring morphisms with A makes it into an A-linear,

additive tensor category.

Step 2: Pseudoabelianization

This is a fairly general construction on categories, and a partial step towards obtain-

ing abelian categories from additive ones. It consists of formally adjoining the kernels

to idempotent endomorphisms or projectors in the given additive category (recall that

idempotent endomorphisms p in the category are those satisfying the property p2 = p).

Let Moteff
∼ (k,A) denote the pseudoabelianization (also called idempotent completion, or

the Karoubi envelope) of Corr∼(k,A). The objects here are now pairs (h(X), p) with

p2 = p in End(h(X)) and morphisms are given by

Moteff
∼ (k,A)((h(X), p), (h(Y ), q)) = qCorr∼(h(X), h(Y ))p.

The tensor structure is given by

(h(X), p)⊗ (h(Y ), q) = (h(X × Y ), p× q),

and we thus get a pseudoabelian A-linear additive tensor category, Moteff
∼ (k,A) called the

category of effective pure motives. An effective pure motive is essentially a direct factor

of the motive of a smooth projective variety and we have a natural tensor functor

Corr∼(k,A) → Moteff
∼ (k,A)

h(X) 7→ (h(X), 1X).

In Moteff
∼ (k,A), the motive of P1

k decomposes as

h(P1
k) = Ik ⊕ L,

where L is the Lefschetz motive. This splitting arises from a choice of a k-point which

gives the factor Ik.

Step 3: Inversion
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This is again a general construction with tensor categories and consists of formally

inverting an object in the given tensor category, thereby forming a new category. Applying

this construction to Moteff
∼ (k,A) and formally inverting the Lefschetz motive, we get a

category which is denoted by Mot∼(k,A). In this specific case, this step brings us closer

to obtaining a rigid category. The objects of Mot∼(k,A) consists of pairs (M, i) where

M is an object of Moteff
∼ (k,A) and i ∈ Z. The morphisms are given by

Mot∼(k,A)((M, i), (N, j)) = lim
→n

Moteff
∼ (M ⊗ Ln−i, N ⊗ Ln−j)⊗Z A,

where Lm := L⊗m.

The category Mot∼(k,A) is a rigid pseudoabelian tensor category in which the Lef-

schetz motive L is invertible. We remark in passing that though not at all evident, it is

not difficult to prove that the tensor structure on Moteff
∼ (k,A) passes over to Mot∼(k,A).

There is a natural fully faithful functor of tensor categories

Moteff
∼ (k,A) → Mot∼(k,A)

M 7→ (M, 0)

and Mot∼(k,A) satisfies the universal property of the Lefschetz motive being invertible.

In the category Moteff
∼ , the objects are given by triples (h(X), p, n), where X is a smooth

projective variety, p an indempotent in End(h(X)) and n an integer. Summarizing, we

have the diagram

Vk
h
 Corr∼(k,A)

♯
 Moteff

∼ (k,A)
L−1

 Mot∼(k,A),

where ♯ denotes pseudoabelianization. The object (I, 1,−1) in Mot∼(k,A) is also denoted

by L−1 or T and is called the Tate motive. For any object M of Mot∼(k,A), we set

M(1) := M ⊗ L−1. For simplicity, we shall use the notation h(X) to denote the image

of a smooth, irreducible, projective variety X in Mot∼(k,A). Further, the category

Mot∼(k,A) is rigid, the dual h(X)∨ being given by h(X)(d), where d is the dimension of

X.

The category Motrat(k,A) is the category of pure Chow motives, which was originally

considered by Grothendieck.

4 Motives and Tannakian categories

The references for this section are [1], [2], [5] and [17].

From now on, the coefficient ring A is assumed to be a field F of characteristic zero.

We next study the question of how and when one obtains Tannakian categories from the

category Mot∼(k, F ). The following result is due to Deligne:
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Theorem 4.1. (Deligne) Let C be an abelian F -linear, rigid tensorial category. Then C

is Tannakian if and only if the dimension of any object of C is a natural number.

Recall that an object in an abelian category C is simple if it does not possess any

proper non-zero subobject. The abelian category C is semisimple if every object of C is

a direct sum of simple objects. The following striking result of Jannsen gives sufficient

conditions for the category Mot∼(k, F ) to be abelian semisimple.

Theorem 4.2. (Jannsen) The following assertions are equivalent:

(a) Mot∼(k, F ) is a semisimple abelian category.

(b) The group of algebraic cycles Zdim X(X×X)⊗F on X×X of dimension equal to that

of X is a finite dimensional semisimple F -algebra for every object X of Mot∼(k, F ).

(c) The relation ∼ is numerical equivalence.

Corollary 4.3. The category Motnum(k, F ) is a semisimple F -linear, rigid tensorial cat-

egory.

Given this result, a natural question is the following: When is Motnum(k, F ) Tan-

nakian. Note that all that is needed for Motnum(k, F ) to be Tannakian is that there

exist a fibre functor with values in VecF ′ for some finite extension F ′ of F = End(I).

In this case, it is easily seen that the dimension of h(X) is a certain Euler characteristic

(cf. Example (2) in §2) and hence need not always be a positive integer. However, if

a fibre functor exists, its dimension in the category of vector spaces will be a natural

number. To reconcile this dilemma, Deligne considers the category MotAHS(k,Q) of mo-

tives with respect to Absolute Hodge Cycles, which in fact has a structure of a graded

category (i.e. objects are Z-graded). The commutativity constraint is then modified by

using the grading. This modification though subtle, is fundamental. While it leaves the

objects, morphisms and the tensor structure unchanged, the commutativity constraint is

modified. Under certain strong conditions, which are always conjectured to be true, this

construction can also be imitated in the category Motnum(k,A), and we denote the new

modified category thus obtained by
•

Motnum(k, F ). This is stated formally in the following

theorem due to Jannsen. The hypotheses of the theorem is elaborated upon in the two

interludes that follow the statement.

Theorem 4.4. (Jannsen) The F -linear tensorial category Motnum(k, F ) is semisimple.

If the Künneth components of the diagonal (with respect to some fixed Weil cohomology

theory) are algebraic for every X in Vk, then the modified category
•

Motnum(k, F ) is a

semisimple Tannakian category.
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Interlude on Weil cohomology

A Weil cohomology theory with coefficients in a field F is a functor

H∗ : Vop
k → VecGrF

such that the following hold:

• dim H2(P1) = 1

• Künneth fomula: H∗(X × Y ) ≃ H∗(X)⊗H∗(Y ).

Observing that H2(P1) is invertible in VecGrF , since dimFH
2(P1) = 1, we note that for

any integer r, the Tate twist

V → V ⊗H2(P1)⊗(−r) =: V (r),

is an operation in VecGrF .

• Multiplicative trace map: There is a trace map

tr : H2d(X)(d)→ F

where d = dim X which induces a ‘Poincaré duality’.

• Given a homomorphism A→ F , there are multiplicative, contravariant and normalized

cycle class maps

cln : Zn(X)⊗ A→ H2n(X)(n).

We shall need the following compatibility condition, as was pointed out by the referee.

For n = 1 and X = P1, the above cycle map cl1 gives a map from Z (on identifying the

Chow group of zero cycles on the projective line with Z, via the degree map) to F . We

shall require that this map takes the identity element to the identity element. With this

assumption, the datum of a Weil cohomology is almost equivalent to that of a ⊗-functor

from the category of Chow motives to the category of graded vector spaces.

Recall that a cycle is homologically equivalent to zero with respect to H if and only

if it maps to zero under the cycle class maps. The classical cohomology theories given

by Betti cohomology, étale cohomology (with Ql-coefficients for l 6= char k) and de Rham

cohomology are all Weil cohomology theories. If char k = p, and F is the quotient

field of the ring of Witt vectors W (k) of k, then crystalline cohomology Hcris(X) is a

Weil cohomology theory. Any algebraic correspondence in Corrk(X,Y ) induces a map

between H∗(X) → H∗(Y ). More generally, the axioms of the Weil cohomology theory

yield canonical isomorphisms (we warn the reader that we are neglecting Tate twists in

this paragraph and the next),

H∗(X × Y ) ≃ H∗(X)⊗H∗(Y ) ≃ Hom(H∗(X), H∗(Y )).
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Thus an element u of H∗(X × Y ) may be viewed as an operator from H∗(X) to H∗(Y ),

and is referred to as a cohomological correspondence. If u lies in the Q-vector subspace

of H∗(X ×X) generated by the images of the cycle map on X ×X, then u is said to be

algebraic.

We now explain the hypothesis that the diagonal components are algebraic, remarking

that it is conjectured to be true. Let ∆X ⊂ X × X denote the diagonal and consider

its image in H2d(X × X) under the cycle class map with respect to a Weil cohomology

theory, where d = dim X. By Künneth decomposition, we have

H2d(X ×X) ≃ ⊕
j
H2d−j(X)⊗Hj(X),

and the corresponding components of ∆X considered in H2d(X × X) are the Künneth

components. The hypothesis of algebraicity is the statement that each component in fact

is algebraic (see Kleiman’s article in Volume 1 of [23]).

If we assume Grothendieck’s standard conjectures in char k = 0 (see [11]), then

Motnum(k, F ) = Mothom(k, F ) and the category
•

Motnum(k, F ) is semisimple Tannakian.

Of course, the standard conjectures lie very deep and we only briefly touch upon this

subject, especially as this is well treated in the literature. Finally, we remark that the

theorems of Jannsen, when they were first proved, were greeted with surprise as the

semisimplicity with respect to numerical equivalence did not require assuming the stan-

dard conjectures.

Interlude on Standard Conjectures

Inspired by Serre’s work on Kählerian varieties and his letter to Weil, Grothendieck

formulated the standard conjectures on algebraic cycles in the 1960’s and showed (as had

Bombieri, independently) that these imply the Weil conjectures. We briefly recall these

conjectures below, remarking that unlike the Weil conjectures, they remain largely open

to this day. Let X ∈ Vk be a smooth projective algebraic variety of dimension d and let

H∗ denote a fixed Weil cohomology theory. Let D ∈ Pic(X) be the class of an ample

divisor on X and let η be its image in H2(X)(1) under the cycle class map; η is then

called a polarisation of X. The Lefschetz operator L = Lη is the cup-product by η on H∗

and there are maps

Ld−i : H i(X)(r)→ H2d−i(X)(d− i+ r)

for all i ≥ 0. The strong and weak Lefschetz theorems are assertions about this operator.

The strong Lefschetz theorem asserts that it is an isomorphism for all natural integers i ≤

d and any integer r. The weak Lefschetz theorem states that for L = LηY
, corresponding to
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the class ηY of a smooth hyperplane section i : Y →֒ X, the induced map H i(X)→ H i(Y )

is an isomorphism for every i ≤ d−2 and is injective for i = d−1. The Lefschetz involution

∗L = ∗L,X is defined as the operator Ld−i on ⊕
i,r
H i(X)(r) if i ≤ d and its inverse for i > d.

There is also the Hodge involution ∗H = ∗H,X which we do not describe precisely here

except for stating that it is the Lefschetz involution upto a sign on a certain ‘primitive’

decomposition of H∗(X) (see the references at the beginning of §4 for more details). We

shall also need the fact that ∗H induces a Q-valued quadratic form qH(X) onA∗hom(X)⊗Q,

the Q-vector space of algebraic cycles modulo homological equivalence. The following are

the assertions of the Standard Conjectures:

I. C(X) (Standard conjecture of Künneth type): The Künneth components of the diag-

onal ∆X are algebraic.

We have already commented on the diagonal components with respect to the Künneth

decomposition. This conjecture is known to be true for all X if k is a finite field and H∗ is

any of the classical Weil cohomologies. It is also known to hold if X is an abelian variety

over an arbitrary base field k and H∗ is an arbitrary Weil cohomology theory.

II. B(X) (Standard conjecture of Lefschetz type): The Lefschetz involution ∗L,X is alge-

braic (with Q-coefficients).

In other words, this conjecture asserts that the map between the cohomology groups

defined by the Lefschetz involution, viewed as a correspondence, is algebraic in the sense

mentioned before. This conjecture is known to be true in dimensions at most 2 (and at

most 4 in characteristic zero) and for abelian varieties.

III. I(X) (Standard conjecture of Hodge Type): The quadratic form qH(X) with values

in Q is positive definite.

It can be verified that for the classical Weil cohomology theories, this conjecture is true

for any field k once it is known to be true for all finite fields. If k is of characteristic zero

and H∗ is one of the classical cohomology theories, this conjecture reduces to the Hodge

index theorem. In any characteristic, it is known to hold for cycles modulo homological

equivalence over Q in dimensions 0 , 1 , d− 1 and d. For abelian varieties over finite fields,

there are some partial results.

IV. D(X) (Numerical and Homological equivalence): Homological equivalence coincides

over Q with numerical equivalence, i.e. A∗num(X)⊗Q = A∗hom(X)⊗Q.

This conjecture is trivially true for cycles of codimension 0 and d in any characteristic.

If the characteristic of k is zero, it is also true in codimensions 1 and d − 1. In the case

of characteristic zero, it is known to hold also for abelian varieties.
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We remark that the conjectures B(X) and I(X) together imply D(X). In characteristic

zero, B(X) implies all the standard conjectures.

5 Motivic Galois groups

The references for this section are [1], [21] and the articles by N. Schappacher and J.-P.

Serre in [23].

In this section, we shall assume that the field k has characteristic zero. In addition,

we make the very strong assumption that Grothendieck’s standard conjectures are true.

Under these hypotheses, note that
•

Motnum(k,Q) is semisimple Tannakian, by Theorem

4.4. The classical cohomology theories, in particular, H∗σ, which is the Betti realization

for an embedding σ : k →֒ C, gives a fibre functor

H∗σ :
•

Motnum(k,Q)→ VecQ.

Hence
•

Motnum(k,Q) is neutral and by the Tannakian formalism outlined in §2, we obtain

the corresponding pro-algebraic, affine Q-group scheme GMot,k = GMot,B := Aut⊗(H∗σ).

This group of course depends on the chosen embedding σ but we shall tacitly ignore this

dependence as it is largely irrelevant for our purposes.

Given a smooth projective variety X in
•

Motnum(k,Q), consider the Tannakian subcat-

egoryMX generated by h(X). By restricting the fibre functor above to this subcategory,

we then obtain the corresponding group GMot,B(X) over Q, called the motivic Galois

group of X. More generally, given an object E in
•

Motnum(k,Q), we can analogously de-

fine the Tannakian subcategoryME and the associated motivic Galois group GMot,B(E).

Let h(X), h(X ′) be objects in
•

Motnum(k,Q). We introduce an ordering M ≺ M ′ in
•

Motnum(k,Q) if M belongs to MM ′ . Then there are natural surjective transition maps

Gmot,B(X ′)→ GMot,B(X) with respect to this ordering, and we define

GMot,B := lim
←

GMot,B(X)

where the projective limit is taken with respect to these surjective transition maps.

Examples. (1) Let M0 be the Tannakian category of Artin motives (corresponding to

Artin representations realized over Q). Recall that this is the subcategory of
•

Motnum(k,Q)

generated by h(SpecE) where E runs over all finite extensions of k. Then the correspond-

ing group GMot,M0 = Gal(k̄/k). Thus the Galois group of Γk = Gal(k̄/k), where k̄ is a
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separable closure of k, is a natural quotient of the motivic Galois group. There is a natural

exact sequence

0→ G0
Mot,B → GMot,B → Γk → 0,

which is functorial with respect to algebraic extensions of the base field k. Conjecturally,

G0
Mot,B = GMot,k̄.

(2) LetMT denote the Tannakian subcategory of Tate motives, which is the subcategory

generated by the Tate or Lefschetz motive. Then GMot,MT
= Gm.

(3) Let E be an elliptic curve over Q. Then

GMot,B(E) =







GL2 if E has no complex multiplication

T if E has complex multiplication,

where T is either a maximal torus in GL2 or a normaliser of a maximal torus. This

is, of course, related to the l-adic realizations of the motive associated to E. Further,

the inclusion MT → ME corresponds to the morphism GMot,B(E) → Gm given by the

determinant of matrices.

(4) Consider the (semisimple Tannakian) category of pure motives
•

MotAHS(k,Q) with

respect to Absolute Hodge cycles, à la Deligne. Let CMk be the smallest full Tannakian

subcategory generated by the motives h1(A) for all abelian varieties A defined over k,

such that A is potentially CM. With respect to the fibre functor defined by the Betti

realization, we obtain a pro-algebraic group scheme over Q, which is the Taniyama group,

as considered by Langlands. This will be treated in greater detail later in the lectures of

Clozel and Fargues (see [21]).

(5) Let V be a Q-Hodge structure, given by the homomorphism h : S → GL(V)R (see

§2). The Mumford-Tate group, denoted MT(V ) is the smallest algebraic subgroup M ⊂

GL(V), defined over Q, such that h factors through MR. In particular, consider an abelian

variety A over k with a fixed embedding of k into C, and the associated natural Hodge

structure on V := H1(A(C),Q). Let MV be the Tannakian subcategory generated by

V and consider its associated motivic Galois group GMot,B(V ). Assume that the Hodge

conjecture holds for all products An, n ≥ 1. Then the Mumford-Tate group MT(V ) is

the connected component of GMot,B(V ). For a prime l, let ρl be the associated l-adic

Galois representation

ρl : Γk → GL(Vl),

where Vl ≃ V ⊗ Ql. Assume now that k is finitely generated over Q. Let Gl(V ) denote

the image of ρl. Conjectures of Grothendieck and Mumford-Tate assert that the Zariski

closure of Gl(V ) is GMot,B(V )Ql
.
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Realizations and Conjectures

Let E ∈
•

Motnum(k,Q), where k is of finite type over Q. Fix a prime l and let P be

a set of prime numbers. Considering the l-adic realization, (cf. the talk of M. Kim), we

obtain a Ql-vector space Vl(E) on which the Galois group Γk := Gal(k̄/k) acts. There is

a Galois representation

ρl,E : Γk → GL(Vl(E)).

Let Gl,E be the image of this representation. Again, conjecturally, the Zariski closure of

Gl,E is GMot,B(E)BbbQl
. As l varies the different ρl form a strictly compatible system of

Galois representations (see [29]), and we have a homomorphism

ρE : Γk →
∏

l∈P

Gl,E.

We next explain how the classical Tate conjecture and Hodge conjecture can be refor-

mulated in a categorical framework (see [1]).

LetX be a smooth, projective algebraic variety over k and fix an embedding σ : k →֒ C.

The étale cohomology groups H2j
ét (X̄,Ql)(j) with the Tate twists, have an action of the

Galois group Γk. Let Aj(X) ⊂ H2j
ét (X̄,Ql)(j) be the Q-span of the image of the cycle

class map. Tate’s conjecture is the assertion that

Ql ⊗Q A
j(X) = (H2j

ét (X̄,Ql(j))
Γk .

In order to reformulate this, we consider the functor

RTate :
•

Motnum(k,Ql)→ RepQl
(Γk)

given by the l-adic Galois representation associated to a motive, as explained in the

paragraph above. An equivalent formulation of Tate’s conjecture then is the assertion

that RTate is fully faithful.

In a similar vein, there is also a reformulation of the Hodge conjecture. We now

assume that the base field k is of characteristic zero and fix an embedding k →֒ C. Recall

that the Hodge conjecture is the assertion that the rational (p, p) classes in the Hodge

decomposition are in fact algebraic; here p is the dimension of XC . Let QHS be the

category of pure Hodge structures over Q. There is a functor

RHodge :
•

Motnum(k,Q)→ QHS
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and the Hodge conjecture is equivalent to the assertion that RHodge is fully faithful.

We end this section with the following remarks. The first one is the rather vague

statement that conjecturally, Shimura varieties parametrize families of motives, and pro-

vide a bridge to the theory of automorphic forms via algebraic representations on adélic

groups (see [21] and the lectures of Clozel, Fargues on this subject). Secondly, as is clear

from the discussion in this section, the definition of the motivic Galois groups rely very

strongly on the standard conjectures. Deligne weakens this dependence with his theory

of Absolute Hodge cycles. André and André-Kahn study other methods of obtaining the

unconditional existence of motivic Galois groups.

6 Motives over finite fields

The main reference for this short section is the article by Milne in [23]. We now suppose

that k = Fq is a finite field of characteristic p. In this case, the hypothesis of algebraicity

of the Künneth components of the diagonal is satisfied and Jannsen’s theorem is therefore

valid. Thus
•

Motnum(k,Q) is a semisimple Q-linear Tannakian category (see Theorem

4.4). However, if k ⊃ Fp2 , then, as was pointed out by Serre, the category
•

Motnum(k, F )

is not neutral. In other words, there is no F -valued fibre functor if F ⊂ Q or Qp. In

such cases, when there is a Tannakian category with a fibre functor over an extension of

the field of coefficients F , the associated object Aut⊗(ω) for a fibre functor ω into the

category VecF ′ , with [F ′ : F ] > 1, is a gerbe or groupoid and is related to non-abelian

cohomology [10].

We now describe the simple objects in the semisimple category
•

Motnum(k, F ). For

each motive M , there is a Frobenius endomorphism πM in End(M). When M is the

Tate motive, the action of πM is just multiplication by q−1, and for any pure motive

M , the Q-algebra Q[πM ] ⊂ End(M) is a product of fields. By the algebraicity of the

Künneth components, for a smooth projective varietyX, we have h(X) = h0(X)+h1(X)+

· · · + h2d(X), where d is the dimension of X. A consequence of the Weil conjectures,

proved by Deligne, is the fact that for every homomorphism φ : Q[πhi(X)] → C, we have
∣

∣φ(πhi(X))
∣

∣ = qi/2.

Recall that an algebraic number κ is said to be a Weil q-number of weight m if for

every embedding σ : Q[κ] →֒ C, we have |σ(κ)| = qm/2, and for some k, qkκ is an algebraic

integer. LetW(q) denote the set of Weil q-numbers. Then the Galois group Gal(k̄/k) acts

onW(q). It can be shown that there is a bijection between the set of isomorphism classes

of simple objects in
•

Motnum(k, F ) and the set of Galois orbit classes of Weil q-numbers.
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7 Mixed Motives and Algebraic K-theory

This section is a prelude to the lectures of Marc Levine and those of André, Kahn, Riou

and Ivorra. The main references are [4], [18], [15], [16], [12], [13], [14], [22], [24], [25] and

the articles by B. Kahn and M. Levine in [9].

Recall that the category of pure motives is constructed from smooth projective va-

rieties. In a nutshell, the (conjectural) category of mixed motives is supposed to take

into account all smooth varieties. The conjectural description of the existence of such an

abelian tensor category of mixed motives is due to Deligne and independently, Beilinson

(see [3], [27] and the articles of Deligne and Beilinson in [23]). The Beilinson conjectures

are formulated in the framework of this category. Furthermore, the category Motnum of

pure numerical motives is expected to be contained in this larger abelian tensor category

as the full subcategory consisting of semisimple objects. Let k be a field andMMk denote

the (conjectural abelian) category of mixed motives. For integers q, there are the Tate

objects Z(q) in MMk, and in keeping with this notation (but changing the convention

from our §3), we shall denote the Tate motive by Z(1). For an object M ∈ MMk and

an integer n, the Tate twist M(n) is defined as M ⊗ Z(n).

Recall that ifX is a smooth variety over k, there are defined the algebraicK-groups due

to Quillen, denoted Ki(X), for integers i ≥ 0 [26]. The weight p-subspaces of Ki(X)Q :=

Ki(X)⊗Z Q are defined by

Ki(X)(p) := {x ∈ Ki(X)Q | ψk(x) = kp.x∀ k ≥ 2},

where ψk is a certain operator on the K-groups called the k-th Adams operator.

The conjectures of Beilinson relating values of L-functions to algebraic K-theory [27]

are via the motivic cohomology groups, which are bigraded and are defined as certain

Ext groups in the derived category Db(MMk). Specifically, if X a smooth variety, then

there is an object h(X) in the derived category Db(MMk), and the bigraded ‘motivic

cohomology groups’, denoted Hp
M

(X,Z(q)), for integers p, q, are defined as

Hp
M

(X,Z(q)) := Extp
MMk

(I, h(X)(q)).

Here I := Z(0) is the identity object of the tensor category MMk. Just as the classical

Atiyah-Hirzebruch spectral sequence relates singular cohomology groups to topological

K-theory, it is conjectured that the motivic cohomology groups are related to algebraic

K-theory by a spectral sequence. Another important component of these theories is

Bloch’s higher Chow groups.
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There is the notion of a Bloch-Ogus cohomology theory, which associates (as a con-

travariant functor) bigraded abelian groups to smooth varieties. Roughly speaking, for

the theory of mixed motives, the Bloch-Ogus theory plays a role similar to that of Weil

cohomology for pure motives. All the classical Weil cohomology theories in fact turn out

to extend as Bloch-Ogus theories satisfying the Künneth formula. Further, motivic co-

homology is also a Bloch-Ogus cohomology theory, and is even supposed to be universal,

in the sense that any other Bloch-Ogus theory factors through motivic cohomology. We

now give a quick description of the conjectural properties of the theory of mixed motives.

Denote the category of smooth varieties over k by Smk. Let Ab denote the category

of abelian groups and D(Ab) be its derived category. If Γ is a Bloch-Ogus cohomology

theory, then conjecturally, there is a contravariant functor from Smk to Db(MMk) and

a realization functor

RΓ :MMk → D(Ab).

We now state the conjectural properties expected of the category of mixed motives (see

Levine’s articles cited above).

Conjecture: (1) Let k be a field. There is a rigid tensor categoryMMk, containing the

‘Tate objects’ Z(n), n ∈ Z, and a functor

h : Smop
k → Db(MMk)

such that the functorX 7→ ⊕
p,q
Hp
M

(X,Z(q)) is the universal Bloch-Ogus cohomology theory

on Smk. For each X ∈ Smk, the object

hi(X)(q) := H i(h(X))⊗Q(q)

is inMMk.

(2) InMMk⊗Q, the full subcategory of semisimple objects is equivalent to the category

Motnum(k,Q) of pure motives.

(3) Suppose that k embeds into C and let RB denote the realization functor with respect

to the Betti cohomology, which is a Bloch-Ogus cohomology theory. Then the functor

H0 ◦ RB :MMk ⊗Q→ VecQ

is a fibre functor, making MMk ⊗ Q a neutral Tannakian category over Q. Similarly, if

Rl is the l-adic realization functor, then

H0 ◦ Rl :MMk ⊗Ql → VecQl
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is a fibre functor andMMk ⊗Ql is a neutral Tannakian category over Ql.

(4) For each object M inMMk, there is a natural finite weight filtration

0 = Wn−1(M) ⊂ Wn(M) ⊂ · · · ⊂Wm(M) = M

such that the graded quotients gr∗WM , after tensoring with Q, are in Motnum(k,Q). For

M = hi(X), the weight filtration is sent to the weight filtration of singular cohomology,

respectively étale cohomology under the corresponding realization functors.

(5) For X smooth projective over k of dimension d, hi(X) is pure (“of weight i”) and

there is a decomposition (not necessarily unique) in Db(MMk ⊗Q) such that

h(X)Q =
2d

⊕

i=0

hi(X)[−i].

(This statement can in fact be derived from the earlier statements).

(6) There are natural isomorphisms

Hp
M

(X,Z(q))⊗Q ≃ K2q−p(X)(q)

which should arise from an Atiyah-Hirzebruch type spectral sequence

Ep,q
2 = Hp−q

M
(X,Z(−q)) =⇒ K−q−p(X).

Further, this spectral sequence degenerates at E2 after tensoring with Q.

To date, there is no satisfactory construction of an abelian category of mixed motives

that satisfies all the conditions in the above conjecture. There are the analogues of ‘abso-

lute Hodge cycles’ à la Deligne and constructions by Deligne and Jannsen of Tannakian

categories of mixed motives. For other constructions using realizations, we refer to the

works of Beilinson, Huber and Nori.

Observe however, that the conjectured motivic cohomology groups themselves require

only the derived category Db(MMk). Voevodsky (see [8]) constructed (in the 1990’s) a

tensor triangulated category of motives, DMgm(k), which has all the expected structural

properties of Db(MMk). There are also other constructions of such triangulated cate-

gories of motives, due to Hanamura and M. Levine. Assuming resolution of singularities

for k, the triangulated categories of Levine and Voevodsky are known to be equivalent

(even with integer coefficients, see [22]). For a general perfect field k, one needs to tensor

with Q to get a comparison theorem, as F. Ivorra has shown. In addition, it is known

that the Q-motivic cohomology groups obtained by Hanamura’s construction are also the
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same. In particular, there is now a very good candidate for the motivic cohomology groups.

There are also several constructions for the analogue of the Atiyah-Hirzebruch spectral se-

quence, though a solution to the foundational problem of constructing an abelian category

of mixed motives still remains elusive.

Mixed Tate Motives

We denote by TMk the category of mixed Tate motives, which is the full abelian

Tannakian subcategory of (MMK ⊗ Q) generated by the Tate objects Q(n), n ∈ Z,

and closed under extensions. There is also a triangulated version of this construction,

which we denote by DTM(k) and which is defined as the triangulated subcategory of

DMgm(k) generated by the Tate objects Z(n). It comes equipped with a duality functor

on DTM(k). A natural question is whether the conjecture above on mixed motives

holds for mixed Tate motives. But even here, there is an obstruction which is called the

Beilinson-Soulé vanishing conjecture and is the following conjecture:

Conjecture: (Beilinson-Soulé vanishing conjecture): Let F be a field. ThenKp(F )(q) = 0

if 2q ≤ p and p > 0.

An equivalent formulation is the following.

Conjecture: Let F be a field. Then

Hp(F,Q(q)) := HomDTM(k)(Q,Q(q)[p]) = 0 if p ≤ 0 and q > 0.

The conjecture is known to be true for global fields.

It can be shown that if DTM(k) is the bounded derived category of a rigid abelian

tensor category Tk with ‘good’ properties (i.e. those expected from the Beilinson-Deligne

theory), then the vanishing conjecture above would hold. We also have the following

partial converse due to Levine.

Theorem 7.1. (Levine) Let k be a field and assume that the Beilinson-Soulé vanishing

conjecture holds for k. Then there is a t-structure on DTM(k) with heart TMk satisfy-

ing:

(a) TMk contains all the Tate objects Q(n) and these generate TMk as an abelian cate-

gory, which is closed under extensions in DTM(k).

(b) The tensor operation and duality on DTM(k) restrict to TMk, making TMk a rigid

tensor category.
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We close this paragraph by remarking that various mathematicians (Deligne, Gon-

charov, Manin, Terasoma...) have shown that there is a relation between the category of

mixed Tate motives and (multi)zeta values and polylogarithms.

Mixed Motivic Galois groups

Recall that conjecturally the category of pure motives Motnum(k,Q) embeds as a

semisimple full subcategory of the conjectured category of mixed motives MMk. As-

sume now that k admits an embedding into C and fix such an embedding. Then by the

conjecture stated above, there is fibre functor H0 ◦ RB over Q whch makes MMk ⊗ Q

a neutral Tannakian category. We denote the associated motivic Galois group over Q by

MGMot,B and clearly there is a natural surjection

MGMot,B → GMot,B.

On the other hand, there is an exact tensor functorMMk⊗Q→Motnum(k,Q), splitting

the inclusion, which via the Tannakian formalism, corresponds to taking the associated

graded for the weight filtration. This gives a splitting to the above surjection and an

exact sequence

1→ Uk →MGMot,B → GMot,B → 1

with Uk a connected pro-unipotent algebraic group scheme over Q. We now restrict

ourselves to Tate motives. Then the category of mixed Tate motives, TMk contains the

abelian full subcategory MT of the pure Tate motives considered earlier. On the other

hand, as explained above, there is an exact tensor functor TMk → MT splitting the

inclusion. Let GTM,k denote the motivic Galois group associated to TMk. We thus get

a split surjection

GTM,k → Gm → 1,

whose kernel is a pro-unipotent group with an action of Gm.
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