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1 Introduction

Let r and s be non-zero integers such that ∆ = r2 + 4s 6= 0 and put α, β for
the two roots of the quadratic equation x2 − rx− s = 0. We assume further
that α/β is not a root of 1. Let (un)n≥0 and (vn)n≥0 be the Lucas sequences
of first and second kind of roots α and β given by un = (αn − βn)/(α − β)
and vn = αn + βn for all n ≥ 0, respectively. These sequences can be
defined also as u0 = 0, u1 = 1, v0 = 2, v1 = r and the recurrence relations
un+2 = run+1 + sun and vn+2 = rvn+1 + svn for all n ≥ 0, respectively.
Examples of such are when r = s = 1, for which the resulting sequences
(un)n≥0 and (vn)n≥0 are the sequence of Fibonacci numbers (Fn)n≥0 and
Lucas numbers (Ln)n≥0, and when r = 3, s = −2, for which the resulting
sequence un = 2n − 1 for n ≥ 0 is the sequence of Mersenne numbers.

In [7], we investigated Diophantine equations of the form

k∏
i=1

un+i = bym, (1)

in integers k > 1, n ≥ 0, |y| > 1, m > 1 and b such that P (b) ≤ k, where for
an integer ` we use P (`) for the largest prime factor of ` with the convention
that P (0) = P (±1) = 1, as well as the similar Diophantine equation when
the sequence (un)n≥0 is replaced by the sequence (vn)n≥0. The main result of
[7] is that the above Diophantine equations have only finitely many effectively
computable solutions. When (un)n≥0 is the sequence of Fibonacci numbers,
the above equation has no solutions when b = 1 and n > 0. A similar equation
as (1) where the consecutive indices n + i were replaced by arbitrary indices
ni for i = 1, . . . , k, but with the additional restriction that m is a prime
exceeding k was treated in [3].

In [2], Bilu, Kulkarni, and Sury investigated the Diophantine equation of
the form

x(x + 1) · · · (x + (k − 1)) + t = ym (2)

with a fixed rational number t and unknowns (x, k, y, m) with x, k, m ∈
Z, y ∈ Q, |y| 6= 0, 1 and min{k,m} > 1, and showed that if t is not a
perfect power of some other rational number, then the above Diophantine
equation has only finitely many such solutions, which are moreover effectively
computable.
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In this paper, we investigate an inhomogeneous analogue of equation (1),
which is nothing else but equation (2) when the product of consecutive inte-
gers is replaced by the product of consecutive members from a Lucas sequence
of the first kind.

Theorem 1. Let (un)n≥0 be a Lucas sequence of the first kind, t be a fixed
rational number, and assume that the equation

unun+1 · · ·un+k−1 + t = ym (3)

holds with integers n ≥ 0, k ≥ 1, m ≥ 2 and rational y, |y| 6= 0, 1. Assume
further that t is not a perfect power of some other rational number, that when
t is written in reduced form its numerator is coprime to s, and that ∆ > 0.
Then equation (3) has only finitely many solutions (n, k, y, m). Both param-
eters k and m are effectively computable in terms of the sequence (un)n≥0

and the number t. Moreover, if α and β are multiplicatively dependent, then
n is also effectively computable in terms of (un)n≥0 and t.

We do not know how to prove an analogue of Theorem 1 when the se-
quence (un)n≥0 is replaced by the sequence (vn)n≥0. However, in order for a
result like Theorem 1 to be valid for the sequence (vn)n≥0, one needs to also
eliminate the numbers t = ±2, as it can be seen from the example

L2n + 2(−1)n = L2
n,

which holds for n ≥ 0.

In particular, Theorem 1 shows that if t is a rational number which is not
a perfect power of some other rational number, then the equation

FnFn+1 · · ·Fn+k−1 + t = ym

has only finitely many effectively computable integer solutions (n, k, y, m)
with n ≥ 0, k ≥ 1, m ≥ 2 and |y| > 1, and that if t is an odd integer which
is not a perfect power, then the equation

(2n − 1)(2n+1 − 1) · · · (2n+k − 1) + t = ym (4)

has only finitely effectively computable integer solutions (n, k, y, m) with
n ≥ 0, k ≥ 1, |y| > 1 and m ≥ 2. Indeed, these consequences follow from the
fact that for the Fibonacci sequence one has β = α−1, while for the sequence
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(un)n≥0 of general term un = 2n − 1 for all n ≥ 0 one has α0 = 1 = β1,
and therefore in both such instances α and β are multiplicatively dependent;
hence, according to Theorem 1, all the solutions of these equations are ef-
fectively computable. In (4), the assumption t is odd is not required if m
exceeds a sufficiently large effectively computable number depending only on
t. This follows from the theory of linear forms in logarithms.

The above restrictions on t not being a perfect power of some rational
number are essential in order to guarantee finiteness of the number of solu-
tions, as it can be seen from the examples

F2nF2(n+1) + 1 = F 2
2n+1, (5)

and

F2nF2n+1F2n+2F2n+3 +
1

4
=

(
2L4n+3 − 3

10

)2

, (6)

which both hold for all n ≥ 0.

Acknowledgement. We thank the referee for a careful reading of the
manuscript and for many useful suggestions. Work on this paper started
during a visit of F. L. to the Tata Institute in Mumbai with an Associateship
from the TWAS in the Fall of 2005. This author thanks these institutions
for their hospitality and support.

2 The Proof of Theorem 1

The line of attack here is as follows. We first show that k is bounded in an
effective way. We then show that m is bounded in an effective way as well.
Finally, we show that with k and m fixed, the number n can assume only
finitely many values, which are furthermore effectively computable when α
and β are multiplicatively dependent. We begin by noticing that n > 0
because t is not a perfect power and there is no loss of generality in assuming
that m is a prime which we assume from now onwards. Also, we always
assume that |α| ≥ |β|.
Step 1. k is bounded.

Assume first that t is an integer. Then y is an integer. Since t is not a
perfect power, we conclude that |t| > 1 and further either −t is a perfect
square or the greatest common divisor of all the numbers ordp(t) with p | t is
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1. Here, ordp(t) is the exponent at which p appears in the prime factorization
of t. Assume first that −t is not a perfect square. Then it follows that there
exists a prime p dividing t such that

ordp(y
m − t) ≤ ordp(t),

and the assertion follows from (3) and the fact that gcd(p, s) = 1. So, it
remains to consider only the case when t = −a2 holds with some positive
integer a which is not a perfect power of odd exponent > 1 of some other
positive integer. Now we argue as above to conclude that m = 2. Therefore,
we see from (3) that all the prime divisors larger than a of unun+1 · · ·un+k−1

are congruent to 1 modulo 4, which implies that k is bounded since there
are infinitely many primes congruent to 3 modulo 4. Assume now that t is
not an integer. Then we write t = a/b, where a, b > 1 are integers and
gcd(a, b) = 1. We multiply both sides of equation (3) by b and we observe
that ordp(by

m) = 0 for every prime divisor p of b. Therefore b = bm
1 , where

b1 > 1 is an integer. Now we argue as above to the equation

bunun+1 · · ·un+k−1 + a = (b1y)m

to conclude that k is bounded.

Step 2. m is bounded.

Here, we assume that k is fixed. The fact that ∆ > 0 implies that α and
β are both real and so |α| > |β|. Write t = a/b, where a and b are coprime
integers with b positive. The sequence (wn)n≥0 of general term

wn = bunun+1 · · ·un+k−1 + a for all n ≥ 0 (7)

is a linearly recurrent sequence of order either k + 1 or k + 2, all whose roots
are simple and are precisely {αk−iβi | i = 0, 1, . . . , k} ∪ {1}. Clearly,

|α|k > max{1, |α|k−i|β|i : i = 1, . . . , k}. (8)

Furthermore,

wn = γ1

(
αk
)n

+
k∑

i=1

γi+1

(
αk−iβi

)n
+ γk+2
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with some coefficients γ1, . . . , γk+2, where

γ1 =
bαk(k−1)/2

(α− β)k
6= 0. (9)

In particular, the linearly recurrent sequence (wn)n≥0 has a dominant root
which is precisely αk. Now the assertion follows from a result from [8] applied
to the equation wn = bym = ym

1 , where y1 is an integer.

Step 3. α and β are multiplicatively independent.

We suppose that both k ≥ 1 and m ≥ 2 are fixed. All we want to prove
in this instance is that equation (13) has only finitely many solutions n. We
return to the sequence (wn)n≥0 given by formula (7) and we write it as

wn = b
k−1∏
i=0

(
αi αn − βi βn

α− β

)
+ a,

or, equivalently, as

wn = γ1α
n
1 + γ2α

n
2 + · · ·+ γk+2α

n
k+2, (10)

where γi ∈ K = Q(α), and

αi =

{
αk−(i−1)βi−1, for i ∈ {1, . . . , k + 1},

1, for i = k + 2.
(11)

We observe that none of αi with 1 ≤ i ≤ k + 1 is 1 since α and β are
multiplicatively independent and

|α|k > |αi| > |β|k

holds for all i ∈ {2, . . . , k}. Further,

γ1 =
bαk(k−1)/2

(α− β)k
, γk+1 = (−1)k bβk(k−1)/2

(α− β)k
and γk+2 = a (12)

are all nonzero. Should equation (3) have infinitely many nonnegative integer
solutions n, it would follow that for infinitely many n there exists an integer
y = y(n) such that the equation

wn = ym (13)

holds. To infer that this is impossible, we use the following extension of
Fuchs [6] of a result of Corvaja and Zannier [4].
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Theorem 2. Let (Gn)n≥0 be a linearly recurrent sequence of integers whose
general term is of the form

Gn = γ1α
n
1 + γ2α

n
2 + · · ·+ γsα

n
s for all n ≥ 0, (14)

where αi are algebraic integers for all i = 1, . . . , s, the ratios αi/αj are not
roots of unity for any i 6= j in {1, 2, . . . , s}, and γi are nonzero algebraic
numbers belonging to the field K = Q(α1, . . . , αs). Assume further that 1 6=
|α1| > max{|αi| : i = 2, . . . , s}. Let q ≥ 2 be any fixed prime number
and assume that for infinitely many n there exists an integer y such that the
equation

Gn = yq

holds. Then, there exist an integer t ≥ 1, algebraic numbers β1, . . . , βt in the
multiplicative subgroup generated by the numbers {αi : i = 1, . . . , s} inside
K, some other algebraic numbers δ1, . . . , δt (not necessarily in K), and two
nonzero integers c and d, so that the relation

Gc+nd = (δ1β
n
1 + · · ·+ δtβ

n
t )q (15)

holds for all nonnegative integers n.

The above theorem is basically Corollary 2 in [6]. In that paper, it is
only stated that β1, . . . , βt are algebraic numbers, but a close inspection of
the arguments used in the proof of the main result from [6] shows that the
numbers βj for j = 1, . . . , t, can be chosen to be of the form α

µ1j

1 · · ·αµsj
s ,

where the numbers µij are rational numbers of denominators dividing q. Now
the assertion of Theorem 2 follows by considering Gc+n(qd) = Gc+(nq)d for all
nonnegative integers n in (15). Here, we replace βj by βq

j , and δj by δjβ
c
j .

Hence, we get that the numbers βj for j = 1, . . . , t can indeed be chosen to be
in the multiplicative subgroup generated by the numbers {αi : i = 1, . . . , s}
inside K. Applying Theorem 2 above to the instance in which equation (13)
has infinitely many integer solutions (n, y1), we get that there exists positive
integers c and d such that the relation

k+2∑
i=1

γ′i(α
′
i)

n = (
t∑

j=1

δjβ
n
j )m (16)

holds identically for all nonnegative integers n, where γ′i = γiα
c
i , and α′i = αd

i

for all i = 1, . . . , k + 2, with some integer t ≥ 1, algebraic numbers δj for
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j = 1, . . . , t, and algebraic numbers βj inside the multiplicative subgroup
generated by both α and β inside K for all j = 1, . . . , t. By replacing n by 2n
if needed, it follows that we may replace α and β by α2 and β2, respectively,
and thus we may assume that α > β > 0, and that βj > 0 for all j = 1, . . . , t.
Now the positive real numbers α > β are multiplicatively independent, and
therefore the two functions n 7→ αn and n 7→ βn are algebraically independent
over C. Thus, relation (16) implies that in formula (16) we may formally
replace αn by X and βn by Y obtaining an equality of the form

k+1∑
i=1

γ′iX
d(k−(j−1))Y d(j−1) + a = F (X, Y )m,

with some F (X, Y ) in Q[X, Y, X−1, Y −1]. Specifically, if

βj = α
l1,j

1 · · ·αlk+2,j

k+2 = α
Pk+1

i=1 li,j(k−(j−1))β
Pk+1

j=1 li,j(j−1) = αmjβnj

holds with some integers l1,j, . . . , lk+2,j, then

F (X, Y ) =
t∑

j=1

δjX
mjY nj . (17)

Thus, we have arrived at a relation of the form

k+1∑
i=1

γ′iX
d(k−(j−1))Y d(j−1) + a = (

t∑
j=1

δjX
mjY nj)m, (18)

in Q[X, Y, X−1, Y −1]. Since the left hand side of (18) is a polynomial in
X and Y , we observe that F (X,Y ) is a polynomial in X and Y as well.
To prove that (18) is impossible, we argue as follows. We notice that the
left hand side of (18) is of the form Hdk(X, Y ) + a, where Hdk(X, Y ) is a
homogeneous polynomial in the indeterminates X and Y of degree dk ≥ 1,
and a is a nonzero constant. Evaluating (18) at (X, Y ) = (0, 0), we get that
F (0, 0) = δ is a number such that δm = a 6= 0. Thus, δ 6= 0. Let d1 ≥ 1 be
the degree of F , and write

F (X, Y ) = Hd1(X, Y ) + Hd2(X,Y ) + · · ·+ Hdµ(X, Y ) + δ, (19)

where µ ≥ 1, 0 < dµ < dµ−1 < · · · < d1, and Hdi
(X, Y ) is a nonzero

homogeneous polynomial of degree di in the indeterminates X and Y for all
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i = 1, . . . , µ. Clearly, the representation (19) is unique. Comparing degrees,
we get dk = d1m. If µ ≥ 2, then

Hdk(X, Y ) + a = F (X, Y )m

= Hd1(X, Y )m + mHd1(X, Y )q−1Hd2(X, Y )

+ monomials of degree less than (m− 1)d1 + d2. (20)

This relation is impossible because the non-constant polynomial Hdk(X,Y )+
a appearing in the left hand side of (20) does not contain monomials of
positive degree (m−1)d1+d2 < d1m = dk. If µ = 1, we derive a contradiction
similarly. Thus, equation (13) has only finitely many solutions (n, k, y, m) in
this instance.

Step 4. α and β are multiplicatively dependent.

Here, we shall distinguish two instances, according to whether α is ratio-
nal or not.

Case 1. α ∈ Q.

Since α and β are algebraic integers, it follows that α and β are both
integers. Moreover, since these two integers are multiplicatively dependent,
it follows that there exist an integer ρ with |ρ| > 1 and nonnegative coprime
integers e > f such that α = ε1ρ

e and β = ε2ρ
f , where ε1, ε2 ∈ {±1}.

Moreover, since e and f are coprime, it follows that one of them is always
odd. Thus, replacing ρ by −ρ, if necessary, we may always assume that one
of the two signs ε1 and ε2 is +1.

We split all the solutions of equation (13) into two classes, namely the
ones that have n even, and the ones that have n odd. We shall show in
detail that there are only finitely many solutions with n even and they are
furthermore effectively computable. Up to some minor differences which we
will point out, the arguments for the case in which n is odd are entirely
similar. With k fixed, consider the polynomial

P (X) =
1

(α− β)k

k−1∏
i=0

(αiXe − βiXf ) + t. (21)

Any solution of equation (13) will be a solution of the Diophantine equation

bP (ρn) = bym = ym
1 , (22)
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with an integer y1 such that |y1| > 1, and a bounded prime number m.
Here is a criterion which is useful to us. Let K be an algebraic number field

with OK its ring of integers. Let P (X) ∈ K[X] be nonconstant. Let δ1, . . . , δµ

be all the distinct roots of the polynomial P of multiplicities σ1, . . . , σµ,
respectively. Let φ ∈ K be such that the greatest prime factor of NK(φ) is
bounded.

Criterion 1. Let ρ ∈ K be an algebraic number which is not a root of unity
and P (X) ∈ K[X]. Assume that the multiplicities of the nonzero roots are
coprime. Then the Diophantine equation

P (ρn) = φym (23)

has only finitely many effectively computable solutions (n, y, m) with m ≥ 2,
n > 0 and y ∈ OK.

We shall use the above criterion only when m is bounded.

Proof. Write

P (X) = a0

µ∏
i=1

(X − δµ)σµ ,

where δ1, . . . , δµ are the distinct roots of P (X). Let L = K(δ1, . . . , δµ) be the
splitting field of P (X). Write d for the degree of P , and D for a positive
integer which is divisible by the denominators of ρ, the roots δ1, . . . , δµ and
leading term a0 of P (X). We write τ = ρD and γi = δiD for i = 1, . . . , µ.

Multiplying now equation (23) across by Dn+d+1, we get an equation
which can be rewritten as

(Da0)

µ∏
i=1

(τn − γiD
n)σi = Dn+d+1φym. (24)

Since the left hand side above is an algebraic integer, so is the right hand
side. We may suppose that γ1 6= 0 and that gcd(σ1, m) = 1. Now we argue
as in [1] to conclude that

τn − γ1D
n = η1λ

m
1 , (25)

where n is a positive integer, λ1 is an algebraic integer in L and η1 is an
algebraic number in L having both bounded denominator and largest prime
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factor of NL(η1). Since ρ = τ/D is not a root of unity and γ1 6= 0, the left
hand side of the above equation is a binary recurrent sequence of algebraic
integers in L which is non-degenerate. It follows, from known results about
perfect powers in non-degenerate binary recurrent sequences (see, for exam-
ple, Corollary 9.2 in [8], or the book [9]), that the above equation (25) has
only finitely many such solutions n and γ1, which are, moreover, effectively
computable. This completes the proof of the criterion.

Remark. The above proof of Criterion 1 proves more. It proves that if
ρ ∈ K is an algebraic number which is not a root of unity such that the
equation P (ρn) = φym has infinitely many solutions (n, y, m) with y ∈ K
and m prime, then all but finitely many such solutions will have m a divisor
of all the multiplicities of all the nonzero roots of P (X). We shall use this
formulation in what follows.

We use the above Criterion 1 to infer that (22) has only finitely many
solutions. Assume first that 0 is not a root of P . In this case, by the above
criterion, equation (22) has only finitely many solutions except for the case in
which m is a prime number, and all the roots of P have multiplicity a multiple
of m. Then there must exist a nonzero rational number c and a polynomial
F monic with rational coefficients such that the relation P (X) = cF (X)m

holds. We now show that c is not an mth-power of some rational number.
Indeed, if f > 0, then P (0) = t = cF (0)m, and since t 6= 0 is not an m-
power of some rational number, we get that F (0) 6= 0, and that c is not an
mth-power of a rational number either. If f = 0, then e = 1 and we may
assume that α = ρ. In this case, we have P (1) = t = cF (1)m. Since t 6= 0
is not an mth-power of some rational number, we get again that c is not an
mth-power of some rational number either. We now show that equation (22)
has no solutions when |ρ|n > max{δi : i = 1, . . . , µ}. Indeed, if equation
(22) has a solution with such a large n, we then get an equation of the form

cF (ρn)m = ym,

with some rational number y. Since the roots of F are the same as the roots of

P , and since n is large, we get that F (ρn) 6= 0. In particular, c =

(
y

F (ρn)

)m

is an mth-power of a rational number, which as we have seen is impossible.

Thus, we are left with investigating the case in which 0 is a root of P . In
this case, we have that f = 0, therefore e = 1, α = ρ and β = ±1. Moreover,
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since P (0) = 0, we get that

t = −(−1)kβk(k−1)/2

(α− β)k
. (26)

We now show that 0 is a simple root of P , and that P has no triple roots.
Indeed, the fact that 0 is a simple root comes from the fact that the coefficient
of the monomial X in P (X) is precisely

(−1)k−1βk(k−1)/2

(α− β)k

k−1∑
i=0

(
α

β

)i

=
(−1)k−1β(k−1)(k−2)/2

(α− β)k+1
(αk − βk),

and this last number is nonzero because α/β = ±ρ is not a root of unity.
This shows that 0 is a simple root of P (X). We observe that P (X) assumes
the value t at the points (β/α)i with i = 0, 1, . . . , k − 1, which are all real
and distinct. Now we apply Rolle’s theorem at these points to conclude that
the roots of P ′(X) are simple. Thus, P has no triple root. We shall use this
argument several times in the paper.

Since we already know that 0 is a simple root, and that P (X) has no
triple roots, it follows that all the nonzero roots of P (X) are either simple
or double. If one of the nonzero roots of P (X) is simple, then we are in
the hypothesis of Criterion 1, therefore equation (13) has only finitely many
effectively computable solutions (m, n) with n even. The case n odd can be
handled similarly. Assume now that all the nonzero roots of P (X) are double
roots. Then k must be odd. But if k is odd, then equation (26) tells us that

t =

(
β(k−1)/2

α− β

)k

.

Thus, t is a perfect power of a rational number when k > 1. We are therefore

left with the case k = 1, in which case we have t =
1

α− β
, and

un + t =
αn + (1− βn)

α− β
. (27)

If n is even, or n is odd and β = 1, we get that

un + t =
αn

α− β
.
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Assume now that the equation

αn

α− β
= ym (28)

admits at least one solution (n, m, y) with n ≥ 2 and y a rational number.
Notice that |α|n = |ρ|n > |ρ|+1 ≥ |α−β| holds, because |ρ| > 1 is an integer.
Assume first that m is odd. Since αn and |α − β| = α ± 1 are coprime, it
follows that α − β is an mth-power of some integer since m is odd. In
particular, t is an mth-power of some rational number, which is impossible.
Assume next that m = 2. In this case, we get that either both αn and α− β
are perfect squares, or both −αn and −(α−β) are perfect squares. The first
instance gives us again that t is the square of some rational number, which
is impossible, while the second instance implies that n is odd, that −α = a2

1

is a perfect square, and that a2
1 ± 1 = −α + β = a2

2 is a perfect square as
well. However, the only integer solutions (a1, a2) of the equation a2

1 ± 1 = a2
2

have |a1| ≤ 1, therefore |ρ| = |α| ≤ 1, which is impossible. This takes care
of the case when n is even, or when n is odd but β = 1. Finally, when n is
odd and β = −1, equation (27) becomes

αn + 2

α + 1
= ym.

Since n is odd, α+1 | (αn +1), therefore α+1 and αn +2 are coprime. Since
their ratio is an mth power of a rational number, we deduce that α + 1 is
an mth power of an integer, so, in particular, t is an m power of a rational
number, which is a contradiction.

The case α ∈ Q is therefore settled.

Case 2. α 6∈ Q.

Let K = Q(α). Then [K : Q] = 2. Since α and β are multiplicatively
dependant, there exist integers i > 0 and j such that αi = βj holds. Conju-
gating the above relation by the only nontrivial Galois automorphism of K,
we also get that βi = αj. Thus,

βi2 = (βi)i = (αj)i = αij = (αi)j = (βj)j = βj2

,

and therefore
βi2−j2

= 1.
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Since β is not a root of unity (otherwise, so is α, and therefore also α/β,
which is impossible), we must have that i2 = j2, so i = j or i = −j. The
case i = j leads to (α/β)i = 1, which is impossible. The case i = −j gives
(αβ)i = 1 implying β = ζα−1, where ζ ∈ {±1}.

In particular, s = −ζ = ±1. Since ∆ = r2 + 4s = r2 ± 4 and r∆ 6= 0, we
get that ∆ > 0, therefore K is a real quadratic field.

We shall write R(X) for the element of K[X, X−1] given by

R(X) =
1

(α− β)k

k−1∏
i=0

(
αiX − ζn βi

X

)
+ t = c

P1(X)

Xk
, (29)

where

c =
αk(k−1)/2

(α− β)k
, (30)

and P1(X) is the monic polynomial in K[X] given by

P1(X) =
k−1∏
i=0

(X2 − ζn ρi) + t1X
k, (31)

with

ρ =
β

α
=

ζ

α2
, and t1 =

t

c
= t

(α− β)k

αk(k−1)/2
. (32)

Any solution (n, y) of equation (13) leads to a solution of the equation

ym = R(x) = c
P1(x)

xk
,

with x = αn, and therefore of the equation

P1(α
n) =

αnk

c
ym, (33)

with some rational number y with |y| 6= 0, 1, which has a bounded denomi-
nator. Since the number α is a unit in K (but not a root of unity), it follows
that we may apply Criterion 1 to conclude that equation (33) has only finitely
many effectively computable solutions (n, y), provided that the polynomial
P1(X) satisfies, of course, the conditions from this criterion.

From now on, we shall resume ourselves to proving that the polynomial
P1(X) satisfies the conditions from Criterion 1. Clearly, 0 is not a root of
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P1(X), because the last coefficient of P1(X) is (−1)kρk(k−1)/2 6= 0. We assume
that this is not the case. By the Remark following the proof of Criterion 1, it
follows that we may assume that equation (33) has infinitely many solutions
(n, y, m), where m is a prime and it is a factor of all the multiplicities of all
the nonzero roots of P1(X).

To insure first that P1(X) has a sufficiently large degree, we shall start
by treating separately the cases in which k ∈ {1, 2}.
Subcase 2.1. k = 1.

In this case, we have P1(X) = X2 + t1X − ζn, whose discriminant is
∆1 = t21 + 4ζn = 0 implying t21 = −4ζn, n is odd, ζ = −1, t1 = ±2, and

t = ct1 =
±2

α− β
=

±2√
r2 + 4

, which is not possible since t ∈ Q.

Subcase 2.2. k = 2.

In this case, we have

P1(X) = (X2 − ζn)(X2 − ζnρ) + t1X
2 = X4 − (ζn + ζnρ− t1)X

2 + ρ. (34)

The degree of the polynomial P1(X) is four and 0 is not a root of P1(X).
Since all the roots of P1(X) are multiple, we get that m = 2. Equation (3)
now implies that α > 0 since if α < 0, then the inequality

unun+1 + t < 0

holds for all sufficiently large n, so this expression cannot be a perfect square.
Further, the polynomial P1(X) has a double root if and only if

(ζn + ζnρ− t1)
2 = 4ρ = 4ζ/α2

implying ζ = 1 and t = 1/(r − 2ε), where ε ∈ {±1}.
Returning to our original problem, we get

unun+1 + t =
(αn − 1/αn)(αn+1 − 1/αn+1)

r2 − 4
+

1

r − 2ε

=
1

r2 − 4

(
α2n+1 +

1

α2n+1
−
(

α +
1

α

)
+ r + 2ε

)
=

1

r2 − 4

(
α2n+1 +

1

α2n+1
+ 2ε

)
=

1

r2 − 4

(
(
√

α)2n+1 +

(
ε√
α

)2n+1
)2

. (35)
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Let α1 =
√

α. If the equation (13) has at least one solution (n, y) with an
integer n ≥ 0 and a rational number y, we then get that

(
√

α)2n+1 +

(
ε√
α

)2n+1

= ±y
√

r2 − 4 ∈ K, (36)

and since α2
1 = α ∈ K, we then deduce that α2n+1

1 ∈ K, therefore α1 ∈ K.
Let β1 be the conjugate of α1 ∈ K. If β1 = ε/α1, it then follows that

(
√

α)2n+1 +

(
ε√
α

)2n+1

= α2n+1
1 + β2n+1

1 ∈ Z, (37)

where the last number which appears in the right hand side of (37) is an
integer because it is the 2n+1th member of the Lucas sequence of the second
kind (vm)m≥0 with roots α1 and β1. Now (36) and (37) together imply that√

r2 − 4 ∈ Q, which is not possible. Thus, β1 = −ε/α1, therefore

unun+1+t =
1

r2 − 4
(α2n+1

1 −β2n+1
1 )2 =

(α1 − β1)
2

r2 − 4

(
α2n+1

1 − β2n+1

α1 − β1

)2

. (38)

We now recognize that the number (α2n+1
1 − β2n+1

1 )/(α1 − β1) appearing in
the right hand side of equation (38) is an integer (it is the 2n+1th member of
the Lucas sequence of the first kind with roots α1 and β1), and therefore we
must have that (α1−β1)

2/(r2−4) is a square of a rational number. However,

(α1 − β1)
2

r2 − 4
=

α + β − 2α1β1

r2 − 4
=

r + 2ε

r2 − 4
=

1

r − 2ε
= t,

and we have obtained that t is a perfect square of a rational number, which
is impossible.

Remark. Incidentally, notice that we have proved a somewhat stronger
statement, namely that if (un)n≥0 is a Lucas sequence of the first kind with
s = ±1, then there exists a rational number t such that the equation unun+1+
t = y2 has infinitely many solutions (n, y) with a nonnegative integer n ≥ 0
and a rational number y, if and only if α = α2

1 is a perfect square in Q(α1),
and in this case, with −ε = α1β1, the number t must be equal to 1/(r − 2ε)
and must be a perfect square. In particular, t is unique. Such a result appears
also in [5]. As an example of this phenomenon, when (un)n≥0 = (F2n)n≥0 is
the Lucas sequence of the first kind of all even indexed Fibonacci numbers,
the resulting value of t is precisely t = 1, which explains formula (5).
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From now on, we assume that k ≥ 3. To understand the multiplicities of
the roots of P1(X), we use the obvious fact that δ is a root of multiplicity σ
of P1(X) if and only if δ is a root of multiplicity σ of

R1(X) =
P1(X)

Xk
. (39)

We shall also notice that the functions R1(X) and

R2(X) =
k−1∏
i=0

(
X − ζnρi

X

)
= R1(X)− t1

differ by the additive constant t1. In particular, it follows that R′
1(X) and

R′
2(X) are equal, so they have the same roots with the same multiplicities.

Based on these observations, we shall show that we may apply Criterion 1
when m ≥ 3.

When ζ = 1, R1(X) assumes the value t1 at exactly 2k distinct real points
{±α−i | i = 0, . . . , k−1}. By Rolle’s theorem, R′

1(X) has 2k−1 roots in the
interval [−1, 1] and they are all distinct. In particular, P1(X) cannot have
a triple root, because otherwise R′

1(X) will have a double root, and this is
impossible. Thus, we may apply Criterion 1 when m ≥ 3.

When ζ = −1, the situation is more complicated because R2(X) has
complex non-real roots, so we may not apply Rolle’s theorem right away.
However, let us consider just the case in which n is even because the case in
which n is odd is entirely similar. In this case,

R2(X) =
k−1∏
j=0

(
X − (−1)j

α2jX

)
. (40)

With the same argument as before, R1(X) assumes the value t1 at 2b(k −
1)/2c + 2 real points, namely {±α−j : 0 ≤ j ≤ k − 1 and j ≡ 0 (mod 2)},
therefore, by Rolle’s theorem, R′

1(X) has at least 2b(k− 1)/2c+ 1 real roots
which are all distinct. Let i =

√
−1 and

R3(X) = i−kR2(iX) =
k−1∏
j=0

(
X − (−1)j+1

α2jX

)
. (41)

It is clear that iδ is a root of R2(X) if and only if δ is a root of R3(X). Further,
we see from Rolle’s theorem again, that R′

3(X) has at least 2bk/2c−1 distinct
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real roots; thus, R′
2(X) = R′

1(X) has also at least 2bk/2c−1 distinct complex
roots, all of them living on the imaginary axis. Thus, we have identified
2bk/2c+ 2b(k− 1)/2c = 2k− 2 roots of R′

1(X) which are all distinct (notice
that the intersection of the real axis with the imaginary axis is the origin,
which is not one of these roots), and so we conclude that either all the roots
of P1(X) are of multiplicity at most two, or there exists only one root of
multiplicity three, and all the other ones have multiplicities at most 2. But
the degree of P1(X) is 2k > 4 and even, therefore, if there exists a triple
root, there must exist another root of P1(X) which is simple, and therefore
we can apply Criterion 1 for all m > 2.

Thus, it remains to investigate the case in which m = 2, and all the roots
of P1(X) are double. In this case, there exists a polynomial P2(X) ∈ K[X]
which is monic such that the relation

P1(X) = P2(X)2 (42)

holds. We now show that k is even. Indeed, assume that k is odd. Notice
that all the monomials appearing in P1(X), except for the monomial Xk,
are of even degrees. Let j be odd such that Xj is the monomial of smallest
possible odd degree that appears in P2(X). Thus,

P2(X) = Xj+1P3(X) + ajX
j +

∑
0≤i<j/2

aiX
2i. (43)

Such a number j exists, for if not, then P1(X) = P2(X)2 will not contain
any monomial of odd degree. One proves immediately that the value of j
must necessarily be k, and since the degree of P2(X) is precisely k and P2(X)
is monic, we get that the relation P2(X) = Xk + P4(X

2) holds with some
polynomial P4(X) ∈ K[X] of degree < k/2. Thus,

P1(X) = (Xk + P4(X
2))2 = X2k + P4(X

2)2 + 2XkP4(X
2). (44)

Identifying the monomials of odd degrees appearing in the left and right hand
sides of (44), we get that t1 = 2P4(X

2), therefore P4(X
2) = d is constant.

In particular, P1(X) = (Xk + d)2 = X2k + 2dXk + d2 does not contain the
monomial X2k−2, because k > 2. However, the coefficient of X2k−2 in P1(X)
is obviously

−ζn

k−1∑
i=0

ρi = −ζn 1− ρk

1− ρ
6= 0,
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because ρ is not a root of unity. This contradiction shows that k must be
even. Thus, k ≥ 4.

Subcase 2.3. k = 4.

In this case, we get that

P1(X) = (X2 − ζn)(X2 − ζnρ)(X2 − ζnρ2)(X2 − ζnρ3) + t1X
4. (45)

Since P1(X) = P2(X)2, and P1(−X) = P1(X), and 0 is not a root of P1(X),
it follows easily that P2(X) contains only monomials of even degrees. Thus,
we get that numbers a and b exist in K such that P2(X) = X4 + aX2 + b,
and substituting X2 by Z in (42), we get the relation

(Z − ζn)(Z − ζnρ)(Z − ζnρ2)(Z − ζnρ3) + t1Z
2 = (Z2 + aZ + b)2. (46)

Identifying coefficients in (46), we get

2a = −ζn(1 + ρ + ρ2 + ρ3), a2 + 2b = ρ + ρ2 + 2ρ3 + ρ4 + ρ5 + t1, (47)

2ab = −ζnρ3(1 + ρ + ρ2 + ρ3), b2 = ρ6. (48)

From the first equations in (47) and in (48), we get that b = ρ3, and inserting
this into the second equation in (47) we find the value of t1, namely,

t1 = a2 + 2b− (ρ + ρ2 + 2ρ3 + ρ4 + ρ5)

=
1

4

(
1 + ρ + ρ2 + ρ3

)2
+ 2ρ3 − (ρ + ρ2 + 2ρ3 + ρ4 + ρ5)

=
1− 2ρ− ρ2 + 4ρ3 − ρ4 − 2ρ5 + ρ6

4
.

Thus, with formulas (32), we get that

t =
α6 − 2α5β − α4β2 + 4α3β3 − α2β4 − 2αβ5 + β6

4(α− β)4
. (49)

Writing αβ = −s = ±1, and using (vn)n≥0 for the Lucas sequence of the
second kind with roots α and β, the above formula (49) can be rewritten as

t =
v6 + 2sv4 − v2 − 4s

4(r2 + 4s)2
. (50)

Since v0 = 2, v1 = r, one can use the recurrence relation vn+2 = rvn+1 + svn,
which holds for all n ≥ 0, to check that v2 = r2 +2s, v4 = r4 +4r2s+2, v6 =
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r6 + 6r4s + 9r2 + 2s, and plugging all these into (50), we get, after some
simplifications,

t =
r6 + 8r4s + 16r2

4(r2 + 4s)2

=
r2(r4 + 8r2s + 16s2)

4(r2 + 4s)2

=
r2

4
=
(r

2

)2

. (51)

Of course, (51) is impossible, because t is not allowed to be a perfect power
of some other rational number.

Remark. Incidentally, we noticed that we proved that if (un)n≥0 is a Lu-
cas sequence of the first kind with s = ±1 such that there exists a rational
number t with the property that unun+1un+2un+3 + t is a perfect square for
infinitely many n ≥ 0, then t = (r/2)2. In particular, t is uniquely deter-
mined, and is a perfect square. When (un)n≥0 = (Fn)n≥0 is the Fibonacci
sequence, we have r = 1, therefore t = 1/4, which explains the example
shown at (6).

From now on, we assume that k ≥ 6. We now notice that either 4 | k, or
ζ = 1. Indeed, the fact that ζ = 1 when k ≡ 2 (mod 4) follows by identifying
the last coefficient of P1(X) from (42), which, on the one hand must be a
perfect square (the perfect square of the last coefficient of P2(X)), while on
the other hand it must be, by (31) and (32),

(−ζn)k ρk(k−1)/2 = ζk(k−1)/2 1

αk(k−1)
,

and αk(k−1) is already a perfect square in K, while when ζ = −1, we have
ζk(k−1)/2 = −1, because k ≡ 2 (mod 4), and −1 cannot be a square in K,
because the quadratic field K is real. Hence, 4 | k when ζ = −1. We also
write t1 = t22, for some algebraic number t2. Note that t2 ∈ K when ζ = 1
(or when ζ = −1 and n is even) because in this case by evaluating (42) at
X = 1 we get that t1 = P1(1) = P2(1)

2 is a square of an element in K.

We shall first treat the case in which 4 | k. In particular, k ≥ 8. As we
have pointed out before, the polynomial P1(X) has only monomials of even
degrees, therefore the polynomial P2(X) has only monomials of even degrees
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as well. In particular, writing P5(X) for the polynomial in K[X] such that
P2(X) = P5(X

2) and Z = X2 formula (42) becomes

k−1∏
i=0

(Z − ερi) + t22Z
k/2 = P5(Z)2,

where ε = ζn ∈ {±1}, which can be rewritten as

k−1∏
i=0

(Z − ερi) = (P5(Z)− t2Z
k/4)(P5(Z) + t2Z

k/4). (52)

From (52), together with the fact that P5(Z) is monic of degree k/2, it follows
that there exists a partition of {0, . . . , k− 1} into two subsets I and J of the
same cardinality k/2 such that

P5(Z)− t2Z
k/4 =

∏
i∈I

(Z − ερi) and P5(Z) + t2Z
k/4 =

∏
j∈J

(Z − ερj).

(53)
Thus,

2t2Z
k/4 =

∏
j∈J

(Z − ερj)−
∏
i∈I

(Z − ερi). (54)

By identifying the coefficient of Zk/2−1 from both sides of (54), we get∑
i∈I

ρi =
∑
j∈J

ρj (55)

since k > 5. Writing α2 = α2, equations (32) and (55) lead to a relation of
the type

αk−1
2 =

k−2∑
i=0

εiα
i
2 with some εi ∈ {±1} for i = 0, . . . , k − 2. (56)

The above equation implies that α2 < 2. However, α2 = α2, and α is a

quadratic unit, therefore |α| ≥ 1 +
√

5

2
. Hence, 2 > α2 >

(
1 +

√
5

2

)2

,

which is a contradiction.

Finally, the case in which k ≡ 2 (mod 4) can be dealt with in a similar
way. Namely, in this case we have that ζ = 1. Further, α > 0 by equation
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(3). Indeed, if α < 0, then unun+1 < 0 for all large n. In particular, for k ≡ 2
(mod 4), the inequality

k−1∏
i=0

un+i + t = t +

k/2−1∏
i=0

un+2iun+2i+1 < 0,

holds for all large values of n, so equation (3) cannot hold with some rational
number y and m = 2. Thus, α > 0 and we may write

k−1∏
i=0

(X2 − ρi) + t22X
k = P2(X)2,

therefore

k−1∏
i=0

(
X − ρi

) (
X + ρi

)
= (P2(X)− t2X

k/2)(P2(X) + t2X
k/2). (57)

Hence, we conclude again that we may partition the set {±ρi : i = 0, . . . , k−
1} into two subsets, let’s call them A and B, each one of them of cardinality
k such that

P2(X)− t2X
k/2 =

∏
ρ∈A

(X − ρ) and P2(X) + t2X
k/2 =

∏
ρ′∈B

(X − ρ′).

(58)
Thus, we get the relation

2t2X
k/2 =

∏
ρ′∈B

(X − ρ′)−
∏
ρ∈A

(X − ρ). (59)

Since k > 3 in this case, we may identify the coefficient of Xk−1 from both
sides of relation (59), getting a relation of the form∑

ρ′∈B

ρ′ =
∑
ρ∈A

ρ. (60)

The above relation (60) might be trivial or not. That is, if there exists ρ ∈ A
such that −ρ 6∈ A, then, as in the previous case, equation (60) conducts
to the conclusion that there exists µ ≥ 1, 0 ≤ i1 < · · · < iµ indices in
{0, . . . , k − 1}, and signs εν ∈ {±1} for ν = 0, . . . , µ such that the equation

µ∑
ν=0

ενα
ν = 0 (61)
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holds. The conclusion is again that α < 2. However, since ζ = 1, it follows
that α is a quadratic unit of norm 1, and the smallest such is again at least(

1 +
√

5

2

)2

> 2, which is a contradiction.

Assume that (60) is trivial. In this case, whenever ρ ∈ A we also have
that −ρ ∈ A. But if this is so, since k/2 ≥ 3, we may identify the coefficient
of X2 from both sides of equation (59), and since both A and B have the
property that once they contain an element they also contain the negative of
this element, we get the relation∑

ρ′∈B

1

ρ′2
=
∑
ρ∈A

1

ρ2
. (62)

With α2 = α2, equation (62) conducts to an equation of the form

αk−1
2 =

k−2∑
i=0

εiα
i
2 with some εi ∈ {±1} for i = 0, . . . , k − 2,

which leads again to the conclusion that α2 < 2, which is impossible.

This completes the analysis of the case in which α 6∈ Q, and Theorem 1
is therefore proved.
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