A generalization of the Enright-Varadarajan Modules

R. Parthasarathy

For a semisimple Lie group admitting discrete series Enright and Varadarajan have constructed a class of modules. Denoted $D_{P,\lambda}$ (cf. [3]). Their infinitesimal description based on the theory of Verma modules parallels that of finite dimensional irreducible modules. The introduction of the modules $D_{P,\lambda}$ in [3] was primarily to give an infinitesimal characterization of discrete series but we feel that [3] may well be a starting point for a fresh approach towards dealing with the problem of classification of irreducible representations of a general semisimple Lie algebra.

In order to give more momentum to such an approach we first construct modules which broadly generalize those in [3]. We briefly describe them now.

Let g_0 be any real semisimple Lie algebra, $g_0 = \mathfrak{k}_0 + \mathfrak{p}_0$ a Cartan decomposition and θ the associated Cartan involution. Let $g = \mathfrak{k} + \mathfrak{p}$ be the complexification. Let $U(g), U(\mathfrak{k})$ be the enveloping algebras of g, k respectively and let U_k be the centralizer of k in $U(g)$. For each θ stable parabolic subalgebra q of g we associate in this paper a class of irreducible k finite $U(g)$ modules having the following property: Like finite dimensional irreducible modules and like the Enright-Varadarajan modules $D_{P,\lambda}$, any member of this class comes with a special irreducible k-type occurring in it with multiplicity one, with an explicit description of the action of U_k on the corresponding isotypical k-type. We obtain these modules by extending the techniques in [3].

To see in what way these modules are related to the θ invariant parabolic subalgebra q we refer the reader to §2.

When our parabolic subalgebra q is minimal in g and when rank of $g = \operatorname{rank} \mathfrak{k}$, the classes of $U(g)$ modules which we associate to this q coincides with the class of modules $D_{P,\lambda}$ of [3] (with a slight difference)
in parametrization). On the other hand when \(q = g \) is the maximal parabolic subalgebra, the class we obtain is just the class of all finite dimensional irreducible representations of \(g \).

If \(k \) has trivial center, the trivial one dimensional \(U(g) \) module is not equivalent to any of the modules \(D_{P,\lambda} \) of [3]. This gap is bridged by the introduction of our class of \(U(g) \) modules for every intermediate \(\theta \) invariant parabolic subalgebra \(q \) between \(q = g \) and \(q = a \) \(\theta \) invariant Borel subalgebra of \(g \).

We have to point out that the knowledge of [3] is a necessary prerequisite to read this paper. If an argument or construction needed at some stage of this paper is parallel to that in [3] then instead of repeating them, we simply refer to [3].

§1. \(\theta \)-stable parabolic subalgebras

As in the introduction, \(g = \mathfrak{k} + \mathfrak{p} \) is the complexified Cartan decomposition arising from a real one \(g_0 = \mathfrak{k}_0 + \mathfrak{p}_0 \). Let \(\theta \) be the Cartan involution. Let \(\mathfrak{b} \) the complexification of a fixed Cartan subalgebra \(\mathfrak{b}_0 \) of \(\mathfrak{k}_0 \). Then the centralizer of \(\mathfrak{b} \) in \(g \) is a \(\theta \) stable Cartan subalgebra \(\mathfrak{h} \), of \(g \). We can write

\[
\mathfrak{h} = \mathfrak{b} + \mathfrak{a}
\]

where \(\mathfrak{a} = \mathfrak{p} \cap \mathfrak{h} \). Let \(\mathfrak{a}_0 = \mathfrak{a} \cap \mathfrak{g}_0 \) and \(\mathfrak{h}_0 = \mathfrak{h} \cap \mathfrak{g}_0 \). Let \(\Delta \) be set of roots of \((g, \mathfrak{h}) \). For \(\alpha \) in \(\Delta \), denote by \(g^\alpha \) the corresponding root space.

\[\theta(\mathfrak{h}_0) = \mathfrak{h}_0 \] so \(\mathfrak{h}_0 \in \mathfrak{b} \).

\[
\Delta(\mathfrak{q}) = \{ \alpha \in \Delta \mid \alpha(H_\mu') \geq 0 \}
\]

\[
\theta(H'_\mu) = H'_\mu \text{ so } H'_\mu \in \mathfrak{b}.
\]

\[\Delta(\mathfrak{q}) = \{ \alpha \in \Delta \mid \alpha(H'_\mu) \geq 0 \}.
\]
Then one can see that

\[(1.5) \quad q = \mathfrak{h} + \sum_{\alpha \in \Delta(q)} \mathfrak{g}^\alpha.\]

Let \(C_\mathfrak{t} \) be the open Weyl chamber in \(i\mathfrak{b}_0 \) for \((\mathfrak{t}, \mathfrak{b})\) defined by the Borel subalgebra \(r_\mathfrak{t} \). Since we assumed that \(r_\mathfrak{t} \subseteq q \), it follows from 1.5 that

\[(1.6) \quad H'_\mu \subseteq \overline{C_\mathfrak{t}} = \text{the closure of } C_\mathfrak{t}.\]

Let \(\alpha \) be in \(\Delta \). If \(\alpha \) is identically zero on \(\mathfrak{b} \), it would follow that \(\mathfrak{b} \) is not maximal abelian in \(\mathfrak{t} \). Hence \(\alpha \) is not identically zero on \(\mathfrak{b} \). Let \(C'_\mathfrak{t} \) be the open subset of \(C_\mathfrak{t} \) got by deleting points of \(C_\mathfrak{t} \) where some \(\alpha \) belonging to \(\Delta \) vanishes. Then \(C'_\mathfrak{t} \) is the disjoint union

\[(1.7) \quad C'_\mathfrak{t} = \bigcup_{i=1}^{N} C'_{\mathfrak{t},j}\]

of its connected components and one has

\[(1.8) \quad \overline{C_\mathfrak{t}} = \bigcup_{i=1}^{N} \overline{C'_{\mathfrak{t},j}}.\]

Choose an index \(M \) between 1 and \(N \) such that

\[(1.9) \quad H'_\mu \subseteq \overline{C'_{\mathfrak{t},M}}.\]

Now choose an element \(X_j \) in \(C'_{\mathfrak{t},j} \) and consider the weight space decomposition of \(\mathfrak{g} \) with respect to \(\text{ad}(X_j) \). We now define a Borel subalgebra \(\mathfrak{r} \) of \(\mathfrak{g} \) by

\[(1.10) \quad \mathfrak{r}^j = \text{the sum of the eigen spaces for } \text{ad}(X_j) \]

with nonnegative eigenvalues.

If we define

\[(1.11) \quad P^j = \{ \alpha \in \Delta \mid \alpha(X_j) > 0 \}\]

then clearly \(P^j \) is a positive system of roots in \(\Delta \) and \(\mathfrak{r}^j = \mathfrak{h} + \sum_{\alpha \in P^j} \mathfrak{g}^\alpha \). Since \(X_j \) belongs to \(\mathfrak{t} \) clearly both \(\mathfrak{r}^j \) and \(P^j \) are \(\theta \) stable. 1.9 implies that for every \(\alpha \) in \(P^M \), \(\alpha(H'_\mu) \) is nonnegative. Hence from 1.4 and 1.5

\[(1.12) \quad \mathfrak{r}^M \subseteq q.\]
Also since X_M belongs to C_t, (1.10) implies that

(1.13) τ_t is contained in τ^M.

(q.e.d.)

(1.14) Corollary Let τ_t be as in Lemma 1.2. Let τ be a θ stable Borel subalgebra of g containing τ_t. Then τ equals one of the N Borel subalgebras τ^j of (1.10).

Proof Since τ contains b, τ contains a Cartan subalgebra of g containing b. h is the unique Cartan subalgebra of g containing b. Hence τ contains h. In the proof of Lemma 1.2 take $q = \tau$. Then it is seen $\tau = \tau^M$. (q.e.d.)

Rather than starting with a Borel subalgebra τ_t of k_t containing b, we want to start with an arbitrary θ invariant parabolic subalgebra of g and recover the set up in Lemma 1.2. For this we prove the following lemma.

(1.15) Lemma Let q be an arbitrary θ stable parabolic subalgebra of g. Then q contains a Borel subalgebra of k.

Proof Let $Ad(g)$ be the adjoint group of g and Q the parabolic subgroup with Lie algebra q. Let G^u be the compact form of $Ad(g)$ with Lie algebra $t_0 + ip_0$. Note that G^u is θ- stable. It is well known that $G^u \cap Q$ is a compact form of a reductive Levi factor of Q (cf.[8, § 1.2]). But $G^u \cap Q$ is θ stable since G^u and Q are θ stable. Thus, going to the Lie algebra level, q has a reductive Levi supplement which is θ stable. In this reductive Levi supplement we can surely find some θ stable Cartan subalgebra h' of g. Then, as in the proof of Lemma 1.2, we can find an element H'_μ in h' such that $\theta(H'_\mu) = H'_\mu$ and such that q is the sum of the nonnegative eigenspaces of $ad(H'_\mu)$. Since H'_μ lies in $h' \cap k$, clearly it follows that q contains a Borel subalgebra of k. (q.e.d)

(1.16) Corollary Let τ be any θ stable Borel subalgebra of g. Then $\tau \cap k$ is a Borel subalgebra of k.

56
§2. The objects \(r, r', PP' \) and the choice of \(P'' \) associated with a \(\theta \) stable parabolic subalgebra \(q \)

Now let \(q \) be a \(\theta \) stable parabolic subalgebra of \(g \). By (1.15) we can find a Borel subalgebra \(r_\Omega \) of \(\mathfrak{t} \) contained in \(q \). We fix a Cartan subalgebra \(b_0 \) of \(\mathfrak{t}_0 \) contained in \(r_\Omega \). Let \(a_0 \) be the centralizer of \(b_0 \) in \(p_0 \). Then \(h_0 = b_0 + a_0 \) is a \(\theta \) stable Cartan subalgebra of \(g_0 \). Let \(h = b + a \) be its complexification. Note that \(h \subseteq q \). By (1.12), we can find a \(\theta \) stable Borel subalgebra \(r \) of \(g \) such that \(r \subseteq r_\Omega \) and \(r \subseteq q \). One has then \(h \subseteq r \). There is a unique Borel subalgebra \(r' \) of \(g \) contained in \(q \) such that

\[
(2.1) \quad r \cap r' = h + u \text{ where } u \text{ is the unipotent radical of } q.
\]

Since \(\theta(r') \) has the same property, we have \(\theta(r') = r' \). Let \(r'_k \subseteq r' \cap \mathfrak{t} \). Then by (1.16), \(r'_k \) is a Borel subalgebra of \(\mathfrak{r} \). We observe that \(r'_k \) is the unique Borel subalgebra of \(\mathfrak{r} \) such that

\[
(2.2) \quad r_k \cap r'_k = b + u_k \text{ where } u_k \text{ is the unipotent radical of } q_k (= q \cap \mathfrak{t}).
\]

We denote by \(W_\mathfrak{t} \) the Weyl group of \((\mathfrak{t}, b)\) and by \(W_\mathfrak{g} \) the Weyl group of \((\mathfrak{g}, \mathfrak{h})\). \(W_\mathfrak{t} \) is naturally embedded in \(W_\mathfrak{g} \) as follows. If \(s \) belongs to \(W_\mathfrak{t} \) then \(s \) normalizes \(b \), hence also normalizes the centralizer of \(b \) in \(g \) which is precisely \(h \). Thus \(s \) belongs to \(W_\mathfrak{g} \).

We will now define two distinguished elements of the Weyl group \(W_\mathfrak{t} \). Let \(t \) be the unique element of \(W_\mathfrak{t} \) such that \(t(P_\mathfrak{t}) = -P_\mathfrak{t} \). Next we denote by \(\tau \) the unique element of the Weyl group \(W_\mathfrak{t} \) such that \(\tau(P_\mathfrak{t}) = P'_\mathfrak{t} \). The class of \(U(\mathfrak{g}) \) modules associated to \(q \) will be parametrized by some subsets of \(h^X \). We now prepare to describe these. Let \(\Delta_\mathfrak{t} \) be the set of roots for \((\mathfrak{t}, b)\). Whenever possible we will denote elements of \(\Delta_\mathfrak{t} \) by \(\varphi \) while elements of \(\Delta(= \text{the roots of } (\mathfrak{g}, \mathfrak{h})) \) will be denoted by \(\alpha \). For a root \(\varphi \) in \(\Delta_\mathfrak{t} \), denote by \(X_\varphi \) a nonzero root vector in \(\mathfrak{t} \) of weight \(\varphi \). For \(\alpha \) in \(\Delta \), we denote by \(E_\alpha \) a nonzero root vector in \(\mathfrak{g} \) of weight \(\alpha \). Let \(P \) and \(P' \) be the sets of positive roots in \(\Delta \) defined respectively by \(\mathfrak{t} \) and \(\mathfrak{r}' \). Next let \(P_\mathfrak{t} \) and \(P'_\mathfrak{t} \) be the sets of positive roots in \(\Delta_\mathfrak{t} \) defined respectively by \(\mathfrak{t} \) and \(\mathfrak{t}' \). Let \(\delta \) and \(\delta' \) denote half the sum of the roots in \(P \) and \(P' \) respectively and let \(\delta_\mathfrak{t} \) and \(\delta'_\mathfrak{t} \) denote half the sum of the roots in \(P_\mathfrak{t} \) and \(P'_\mathfrak{t} \) respectively.
Let P'' be a θ stable positive system of roots in \triangle such that if r'' is the corresponding θ stable Borel subalgebra of g then

\[(2.3) \quad r'' \supseteq r'_t \quad \text{and} \quad P'' \supseteq P' \cap -P.\]

\[(2.4) \quad r'' \supseteq r'_k \quad \text{and} \quad P'' \supseteq P' \cap -P.\]

\[\textbf{(2.5) Remark} \quad \text{If one takes } P'' = P' \text{ then (2.3) and (2.4) are clearly satisfied. If } q \text{ is a Borel subalgebra then } P' = P \text{ and } P'' \text{ which satisfies (2.3) also satisfies (2.4). If } q = g, \text{ then } P' = -P; \text{ the only candidate which satisfies (2.3) and (2.4) is } P''.\]

We can now describe the modules that we want to construct. As usual for α in P denote by H_α the element of $i b_0 + a_0$ such that $\lambda(H_\alpha) = 2(\lambda, \alpha)/(\alpha, \alpha)$ for every λ in bX. Similarly for ϕ in P_k, denote by H^k_ϕ the element of $i b_0$ such that $\lambda(H^k_\phi) = 2(\lambda, \phi)/(\phi, \phi)$ for every λ in bX. (Note: The Killing form of g induces a nondegenerate bilinear form on b which in turn induces one on bX).

Let $F(P'' : q, r)$ be the set of all elements μ in hX with the following properties:

\[(2.6) \quad \mu(H_\alpha) \text{ is a nonnegative integer for every } \alpha \text{ in } P''.\]

\[(2.7) \quad \mu(H^k_\phi) \text{ is nonzero for every } \phi \text{ in } P_k \text{ and } \mu(H_\phi) \text{ is nonzero for every } \alpha \text{ in } P \cap -P'.\]

\[\textbf{Example} \quad \text{Suppose } \mu \text{ belonging to } hX \text{ is such that } \mu(H_\alpha) \text{ is a positive integer for every } \alpha \text{ in } P''. \text{ Then one can show that } \mu \text{ belongs to } F(P'' : q, r). \text{ The method of showing that } \mu(H^k_\phi) \text{ is nonzero for every } \phi \text{ in } P_k \text{ can be found in the proof of (3.6).}\]

We now use some definitions and notations from [3, §§ 2, 5] (cf. also §§ 3, 5 here). Let U^t be the centralizer of t in $U(g)$. Let $\mu \in F(P'' : q, r)$. Our aim is to construct a t-finite irreducible $U(g)$ module, denoted $D_{P'' : q, r}(\mu)$ in which the irreducible t type with highest weight $-t(\tau\mu + \tau\delta - \tau\delta_t - \delta_t)$ (cf. 3.7) occurs with multiplicity one and such that on the corresponding isotypical $U(t)$ submodule, elements of U^t act by scalars given by the homomorphism $\chi_{P'' : q, r}$ (cf. § 5).

\[(2.8) \quad \text{Remark} \quad \text{Fix } q \text{ and } r. \text{ For any compatible choice of } P'' \text{ and for any element } \mu \text{ in } F(P'' : q, r), \text{ we will show (cf.3.6) that (i) } -\mu - \delta(H_\alpha) \text{ is a nonnegative integer for every } \alpha \text{ in } P \cap -P' \text{ and (ii) } \tau\mu + \tau\delta - \tau\delta_t - \delta_t(H^k_\phi) \text{ is a nonnegative integer for every } \phi \text{ in } P_t. \text{ Now define } F(q, r) \text{ to consist of all } \mu \text{ in } hX \text{ satisfying (i) and (ii) above. In general } F(q, r) \text{ properly contains } \cup_{P''} F(P'' : q : r). \text{ Our constructions}\]

58
and proofs in §§ 3, 4, 5 go through perfectly well for any \(\mu \) in \(\mathcal{F}(q, r) \) and so we do have a \(\mathfrak{t} \)-finite irreducible \(U(\mathfrak{g}) \) module in which the irreducible \(\mathfrak{t} \) type with highest weight \(-t(\tau \mu + \tau \delta - \tau \delta_\mathfrak{t})\) occurs with multiplicity one and such that on the corresponding isotypical \(U(\mathfrak{t}) \) submodule elements of \(U^\mathfrak{t} \) act by scalars given by \(\chi_{P_{\mathfrak{t},-\mu-\delta}} \). We have restricted ourselves to the subsets \(F(P' : q, r) \) rather than all of \(\mathcal{F}(q, r) \) only because condition (ii) is the definition of \(\mathcal{F}(q, r) \) is quite incomprehensible.

\[\section{3} \]

Choose and fix an element \(\mu \) in \(\mathcal{F}(P'' : q, r) \) as in \(\section{2} \) (cf. (2.6) and (2.7)). For facts about Verma modules that we will be using we refer to \([1, 2, 5, 6]\).

Let \(M \) be any \(U(\mathfrak{g}) \) module. Let \(Q \) be a subset of \(\Delta_\mathfrak{k} \). An element \(v \) of \(M \) is said to be \(Q \) extreme if \(X_\varphi \cdot v = 0 \) for every \(\varphi \) in \(Q \). For \(\lambda \) in \(\mathfrak{h}^X \), \(v \) is called a weight vector of weight \(\lambda \) with respect to \(\mathfrak{b} \) if \(H \cdot v = \lambda(H) \cdot v \) for all \(H \) in \(\mathfrak{b} \). By \(J(M) \) we denote the set of all \(\lambda \) in \(\mathfrak{b}^X \) for which there exists a nonzero weight vector of weight \(\lambda \) in \(M \), which is \(P_\mathfrak{t} \) extreme where \(P_\mathfrak{t} \) is the positive system of roots in \(\Delta_\mathfrak{t} \) defined in \(\section{2} \). For \(\varphi \) in \(\Delta_\mathfrak{t} \), \(M \) is said to be \(X_\varphi \) free if \(X_\varphi \cdot v = 0 \) implies \(v = 0 \). For a subalgebra \(\mathfrak{s} \) of \(\mathfrak{g} \), \(M \) is said to be \(\mathfrak{s} \)-finite if every vector of \(M \) lies in a finite dimensional \(\mathfrak{s} \) submodule of \(M \). For any \(\eta \) in \(\pi_\mathfrak{r} \) let \(m(\eta) \) denote the subalgebra of \(\mathfrak{g} \) spanned by the elements \(X_\eta, X_{-\eta} \) and \(H^k_\eta \). For the notion of \(U(\mathfrak{t}) \) module of \(\text{‘type } P_\mathfrak{t} \) we refer to \([3, \section{2}]\).

Let \(P_0 \) be a positive system of roots of \(\Delta \) and let \(\lambda \) in \(\mathfrak{b}^X \). The Verma module \(V_{\mathfrak{g},P_0,\lambda} \) of \(U(\mathfrak{g}) \) is defined as follows: It is the quotient of \(U(\mathfrak{g}) \) by the left ideal generated by the elements \(H - \lambda(H), (H \in \mathfrak{h}) \) and \(E_\alpha (\alpha \in P_0) \). The Verma modules of \(U(\mathfrak{t}) \) are defined similarly. We will suppress \(\mathfrak{g} \) and write \(V_{P_0,\lambda} \) for the Verma module \(V_{\mathfrak{g},P_0,\lambda} \).

We have the inclusions \(\mathfrak{h} \subseteq \mathfrak{r} \subseteq \mathfrak{q} \) (cf. \(\section{2} \)). Let \(\pi \) be the set of simple roots for \(P \). The parabolic subalgebras of \(\mathfrak{g} \) containing \(\mathfrak{r} \) are in one to one correspondence with subsets of \(\pi \). The subset of \(\pi \) corresponding to \(\mathfrak{q} \) is got as follows: Let \(\sigma \) in \(\mathfrak{h}^X \) be defined by \(\sigma(H) = \text{trace } (\text{ad}H) \vert u \). Then

\[\pi(\mathfrak{q}) = \{ \alpha \in \pi \mid (\sigma, \alpha) = 0 \} \]

From standard facts about parabolic subalgebras (cf. \([8, \section{1.2}]\)) we know that elements of \(P \cap -P' \) are of the form \(\sum m_i \alpha_i \) where \(m_i \) are nonnegative integers and \(\alpha_i \) are in \(\pi(\mathfrak{q}) \). For \(\alpha \) in \(\Delta \) the element \(s_\alpha \) of
W_g is the reflection corresponding to α. It is given by $s_\alpha(\lambda) = \lambda - 2(\lambda, \alpha)/(\alpha, \alpha) \cdot \alpha$. We now define a $U(\mathfrak{g})$ module W_1 by

\begin{equation}
W_1 = V_{P, -\mu - \delta}
\end{equation}

considered as a $U(\mathfrak{t})$ module it has some nice properties.

(3.4) Lemma W_1 considered as a module for $U(\mathfrak{t})$ is a weight module with respect to \mathfrak{b}; i.e. W_1 is the sum of the weight spaces with respect to \mathfrak{b}. Denoting also $-\mu - \delta$ the restriction of $-\mu - \delta$ to \mathfrak{b}, all the weights are of the form $-\mu - \delta - \sum n_i \varphi_i$ where φ_i are elements of P and n_i are positive integers. Finally the weight spaces are finite dimensional and the weight space corresponding to $-\mu - \delta$ is one dimensional.

Proof Since as a $U(\mathfrak{g})$ module W_1 is the sum of weight spaces with respect to $\mathfrak{h} = \mathfrak{b} + \mathfrak{a}$, the first statement is clear. Since no root α in \triangle is identically zero on \mathfrak{b}, we can pick up an element H in \mathfrak{b} such that for every α in P, $\alpha(H)$ is real and positive. As a $U(\mathfrak{g})$ module, the weights of W_1 with respect to \mathfrak{h} are of the form $-\mu - \delta - \sum m_i \alpha_i$ ($\alpha_i \in P, m_i$ nonnegative integers). By considering the action of H it is clear that weight spaces of W_1 with respect to \mathfrak{b} are finite dimensional and the weight space of \mathfrak{b} with weight $-\mu - \delta$ is one dimensional. Finally since P is θ stable the restriction to \mathfrak{b} of the weights with respect to \mathfrak{h} are of the form $-\mu - \delta - \sum n_i \varphi_i$ where φ_i are in P and n_i nonnegative integers.

(q.e.d)

(3.5) Corollary The $U(k)$ submodule of W_1 generated by the unique weight vector in W_1 of weight $-\mu - \delta$ is isomorphic to the $U(\mathfrak{t})$ Verma module $V_{\mathfrak{t}, P, -\mu - \delta}$. W_1 is $X_{-\varphi}$ free for every φ in P_t.

Proof Let v_1 be the nonzero weight vector in W_1 of weight $-\mu - \delta$. v_1 is killed by every element of $[\mathfrak{r}, \mathfrak{r}]$ hence in particular by every element of $[\mathfrak{r}, \mathfrak{r}]$. On the other hand let \mathfrak{r} be the unique Borel subalgebra of \mathfrak{g} such that $\mathfrak{r} \cap \mathfrak{r} = \mathfrak{h}$ and let $\mathfrak{n}(\mathfrak{r})$ be the unipotent radical of \mathfrak{r}. If $\mathfrak{r}_t = \mathfrak{r} \cap \mathfrak{t}$, then \mathfrak{r}_t is the unique Borel subalgebra of \mathfrak{t} such that $\mathfrak{r}_t \cap \mathfrak{r}_t = \mathfrak{b}$. Let $U(\mathfrak{n}(\mathfrak{r}))$ and $U(\mathfrak{n}(\mathfrak{r}_t))$ denote the corresponding enveloping algebras considered as subalgebra of $U(\mathfrak{g})$. One knows that W_1 is $U(\mathfrak{n}(\mathfrak{r}_t))$ free, [2]. Hence in particular it is $U(\mathfrak{n}(\mathfrak{r}_t))$ free. The corollary now follows from [2,7.1.8].

(q.e.d.)
There is an ascending chain of $U(\mathfrak{k})$ Verma modules containing $V_{t,P_{\mu}-\mu-\delta}$. This chain will give rise to a chain of $U(\mathfrak{g})$ modules, which is fundamental in the work [3].

Recall the two distinguished elements t and τ of $W_{\mathfrak{t}}$ from § 2. The highest weight of the special irreducible representation of \mathfrak{t} which the $U(\mathfrak{g})$ module $D_{\alpha^\vee,\mu}(\mu)$ will contain is described in the corollary to the lemma below.

(3.6) Lemma (i) $-\mu - \delta(H_{\alpha})$ is a nonnegative integer for every α in $P \cap -P'$ and (ii) $\tau\mu + \tau\delta - \tau\delta(H_{\phi})$ is a nonnegative integer for every ϕ in $P_\mathfrak{k}$.

Proof By (2.4), (2.7) and (2.8), one sees that $-\mu(H_{\alpha})$ is a positive integer for every α in $P \cap -P'$. The elements of $P \cap -P'$ are nonnegative integral linear combination of elements of $\pi(q)$. Since $\delta(H_{\alpha}) = 1$ for every α in $\pi(q)$ it now follows that $-\mu - \delta(H_{\alpha})$ is a nonnegative integer for every α in $P \cap -P'$.

To prove (ii) first suppose ϕ lies in $P_{\phi}' \cap P_{\mathfrak{k}}$. We will show that $\tau\mu - \delta(H_{\phi})$ and $\tau\delta - \tau\delta(H_{\phi})$ are both nonnegative integers. For this it is enough to show that $\tau\mu(H_{\phi})$ is a positive integer for every ϕ in $P_{\mathfrak{k}}$ and that $\tau\mu(H_{\phi})$ is a positive integer for every ϕ in $\tau P_{\mathfrak{k}}$. By (2.6) there exists a finite dimensional representation of \mathfrak{g} having a weight vector ν of weight δ with respect to the Cartan subalgebra \mathfrak{h} and such that ν is annihilated by $[\mathfrak{r}', \mathfrak{r}']$ (cf. (2.3)). Since $\mathfrak{r}' \subseteq \mathfrak{r}'', \nu$ is in particular annihilated by $[\mathfrak{r}', \mathfrak{r}']$. It is clear from this that $\mu(H_{\phi})$ is a nonnegative integer for every ϕ in P_{ϕ}'. In view of (2.7), $\mu(H_{\phi})$ is then a positive integer for every ϕ in P_{ϕ}'. Note that $\tau P_{\phi}' = P_{\mathfrak{k}}$. Hence $\tau\mu(H_{\phi})$ is a positive integer for every ϕ in $P_{\mathfrak{k}}$. It remains to show that $\tau\delta(H_{\phi})$ is a positive integer for every ϕ in $P_{\mathfrak{k}}$. For this consider the representation ρ of \mathfrak{g} having a weight vector ν of weight δ with respect to the Cartan subalgebra \mathfrak{h} and annihilated by $[\mathfrak{r}, \mathfrak{r}]$. Clearly then ν is annihilated by $[\mathfrak{r}, \mathfrak{r}]$, hence $\delta(H_{\phi})$ is a positive integer for every ϕ in $P_{\mathfrak{k}}$. To show that $\delta(H_{\phi})$ is nonzero we give the following reason: one can easily see that the stabilizer of ν in \mathfrak{g} is exactly \mathfrak{r}. If $\delta(H_{\phi})$ is zero for some ϕ in $P_{\mathfrak{k}}$, then $X_{-\phi}$ would stabilize ν. But $X_{-\phi}$ does not belong to \mathfrak{r}. Hence $\delta(H_{\phi})$ is a positive integer for every ϕ in $P_{\mathfrak{k}}$, so that $\tau\delta(H_{\phi})$ is a positive integer for every ϕ in $\tau P_{\mathfrak{k}}$.

Now suppose ϕ lies in $P_{\phi'} \cap -P_{\phi}'$. Let $\mathfrak{r}(q)$ be the maximal reductive subalgebra of \mathfrak{q} defined by $\mathfrak{r}(q) = \mathfrak{h} + \sum_{\alpha \in \mathfrak{q} \cap -\mathfrak{p}'} (\mathfrak{g}^\alpha + \mathfrak{g}^{-\alpha})$. By (ii) $-\mu - \delta(H_{\alpha})$ is a nonnegative integer for every α in $P \cap -P'$. Hence, if $n_{\mathfrak{q}}(q) = \sum_{\alpha \in \mathfrak{q} \cap -\mathfrak{p}'} \mathfrak{g}^\alpha$, there exists a finite dimensional representation of $\mathfrak{r}(q)$ and a weight vector for \mathfrak{h} of weight $-\mu - \delta$ annihilated by all of
$\mathfrak{n}_{\mathfrak{t}(q)}$, hence in particular by $\mathfrak{t} \cap \mathfrak{n}_{\mathfrak{t}(q)}$. Observe that $P_t \cap -P_t'$ is precisely the set of roots in P_t, whose corresponding root spaces span $\mathfrak{t} \cap \mathfrak{n}_{\mathfrak{t}(q)}$. Thus there exists a finite dimensional representation of $b + \sum_{\varphi \in P_t \cap -P_t'} (C \cdot X_{\varphi} + C \cdot X_{\varphi})$ with a weight vector for b of weight $-\mu - \delta$ annihilated by X_{φ} for every φ in $P_t \cap -P_t'$. Hence we conclude that $-\mu - \delta(H^\ell_{i})$ is a nonnegative integer for every φ in $P_t \cap -P_t'$. Since $-\tau(P_t \cap -P_t') = P_t \cap P_t'$, $\tau(\mu + \delta)(H^\ell_{i})$ is a nonnegative integer for every φ in $P_t \cap -P_t'$. On the other hand $\tau\delta = \delta^t = \text{half the sum of}$ the roots in P_t', while $\delta_t + \delta^t(H^\ell_{i}) = 0$ for every φ in $P_t \cap -P_t'$. Thus $\tau\mu + \tau\delta - \tau\delta_t - \delta_t(H^\ell_{i})$ is a nonnegative integer for every φ in $P_t \cap -P_t'$.

This completes the proof of (3.6). (q.e.d.)

Corollary \(-t(\tau\mu + \tau\delta - \tau\delta_t - \delta_t)(H^\ell_{i})\) is a nonnegative integer for every φ in P_t.

Proof Clear since $-tP_t = P_t$. (q.e.d.)

Let π_t be the set of simple roots of P_t. For φ in P_t, let s_{φ} be the reflection $s_{\varphi}(\lambda) = \lambda - \lambda(H_{\varphi})\varphi$ of b^X. If φ lies in π_t, s_{φ} is called a simple reflection. For w in W_t, the length $N(w)$ of w is the smallest integer N such that w is a product of N simple reflections. A reduced word for w is an expression of w as a product of $N(w)$ simple reflections. Choose any reduced word for the element τt of W_t. Following the notation in [5, §4.15], we write it as

$$\tau t = s_1 s_2 \cdots s_m$$

where $s_i = s_{\eta_i}, \eta_i = \varphi_{j_i}, \varphi_{j_i} \in \pi_t$. For λ in b^X and w in W_t write $w'(\lambda) = w(\lambda + \delta_t) - \delta_t$.

Having chosen the element μ in $F(P'' : q, r)$ we now define elements μ_i of b^X as follows:

$$\mu_{m+1} = -t(\tau\mu + \tau\delta - \tau\delta_t - \delta_t)$$

and

$$\mu_i = (s_is_{i+1} \cdots s_m)'\mu_{m+1} (i = 1, \cdots, m)$$

Note that $\mu_1 = (\tau t)'\mu_{m+1} = -\mu - \delta$ and that μ_1 and μ_{m+1} are independent of the reduced expression (3.8). We now define the positive integers e_i by

$$e_i = \mu_{i+1} + \delta_t(H^\ell_{i}) \cdot (i = 1, \cdots, m).$$
With μ_i defined as above, the following inclusion relations between Verma modules are well known [2.6]:

\[(3.11) \quad V_{t,P,\mu_1} \subseteq V_{t,P,\mu_2} \subseteq \cdots \subseteq V_{t,P,\mu_{m+1}}.\]

Define elements $v_1, v_2, \ldots, v_{m+1}$ of $V_{t,P,\mu_{m+1}}$ as follows: μ_{m+1} is the unique nonzero weight vector of $V_{t,P,\mu_{m+1}}$ of weight μ_{m+1}. For $i = 1, 2, \ldots, m$, $v_i = X^{e_i} \cdot v_{i+1}$. Then one knows that v_i is of weight μ_i and that $V_{t,P,\mu_i} = U(\mathfrak{g})v_i$. Associated to the reduced word (3.8) and μ in $F(P'': q, r)$ is a fundamental chain of $U(\mathfrak{g})$ modules: $W_1 \subseteq W_2 \subseteq \cdots \subseteq W_{m+1}$. It will turn out that W_1 and W_{m+1} are independent of the reduced expression (3.8). They are defined as follows: W_1 is defined to be $V_{\mathfrak{p},-\mu-\delta}$ as in (3.3). Then W_{m+1} is given by the following lemma.

(3.12) Lemma There exists a $U(\mathfrak{g})$ module $W_{m+1} = U(\mathfrak{g}) \cdot v_{m+1}$ such that (a) W_1 is a $U(\mathfrak{g})$ submodule of W_{m+1}, (b) v_1 belongs to $U(\mathfrak{g})v_{m+1}$, (c) v_{m+1} is a P_t extreme weight vector (with respect to \mathfrak{h}) of weight μ_{m+1} (d) W_{m+1} is X_φ free for all φ in P_t and (e) W_{m+1} is a sum of $U(\mathfrak{g})$ submodules of type P_t.

Proof Start with the conclusion of V_{t,P,μ_1} in W_1 given by Corollary 3.5 and the inclusion of V_{t,P,μ_i} in $V_{t,P,\mu_{m+1}}$ given by 3.11. By 3.5 we know that W_1 is X_φ free for every φ in P_t. Now [3, Lemma 4] gives us the module W_{m+1} with the properties required in the lemma. (One easily sees that the results of [3 § 2] do not depend on the assumption there that rank of $\mathfrak{g} = \text{rank of } \mathfrak{t}$).

(q.e.d)

(3.13) Remark If V and \overline{V} are Verma modules for, say, $U(\mathfrak{t})$ then the space of $U(\mathfrak{t})$ homomorphisms of V into \overline{V} has dimension equal to zero or one. Thus the inclusion of $V_{t,P,\mu_{m+1}}$ given by (3.11) is independent of the reduced expression (3.8) for τt. Hence also the $U(\mathfrak{g})$ module W_{m+1} and the inclusion of W_1 in W_{m+1} with the properties listed in Lemma 3.12 can be chosen to be independent of the reduced expression (3.8).

Having defined W_1 and W_{m+1} as above, now for any given reduced word for τt such as (3.8), we define submodules W_2, W_3, \ldots, W_{m} of W_{m+1} by

\[(3.14) \quad W_i = U(\mathfrak{g})v_i\]

where v_i are the elements of W_{m+1} defined after (3.11). We have
$W_1 \subseteq W_2 \subseteq \cdots \subseteq W_{m+1}$ because v_i belongs to $U(\mathfrak{t})v_{i+1}, (i = 1, \cdots , m)$. The properties of this chain of $U(\mathfrak{g})$ modules are summarized below from the work of [3, § 3]:

(3.15) $W_1 = V_{\mu - \delta}$ and each W_i is the sum of its weight spaces with respect to \mathfrak{b}. Moreover as a $U(\mathfrak{t})$ module W_i is the sum of $U(\mathfrak{t})$ submodules of type P_k.

(3.16) Each W_i is a cyclic $U(\mathfrak{g})$ module with a cyclic vector v_i, which is a P_k extreme weight vector of weight μ_i with respect to \mathfrak{b}, $i = 1, \cdots , m+1$.

(3.17) The P_k extreme vectors of weight μ_i in W_i are scalar multiples of v_i; for $i = 1, \cdots , m+1$, the vector v_i does not belong to W_{i-1}.

(3.18) Each W_i is $\mathfrak{X}_{-\varphi}$ free for every φ in P_k and W_{i+1}/W_i is $m(\eta_i)$ finite ($i = 1, \cdots , m$).

(3.19) $v_i = \mathfrak{X}_{\eta_i}v_{i+1}(i = 1, \cdots , m)$.

(3.20) Let w be in W_k. Let $i = 1, \cdots , m$. Suppose $w'(\mu_{m+1})$ belongs to $J(W_i)$. Then $N(w)$ equals at least $m + 1 - i$.

We will not prove the properties (3.15) to (3.20) here since they are essentially proved in [3, Lemma 5]. Though (3.20) has the same form as [3, Lemma 5, vi] its proof is different in our case. It is important to first know the case $i = 1$ of (3.20) to carry over the inductive arguments of [3, § 3] to our situation. To this end we prove the following lemma. Before that we make the following remark.

(3.21) Remark Let H'_q be the element of \mathfrak{h} defined by $(H'_q, H) = \text{trace } (\text{ad } H | u)$, for every H belonging to \mathfrak{h}, where u is the unipotent radical of \mathfrak{q}. Since \mathfrak{q} and \mathfrak{h} are θ invariant $\theta(H'_q) = H'_q^\ast$; hence H'_q belongs to \mathfrak{b}. One can easily prove the following: For every α in $P \cap -P'$, $\alpha(H'_q)$ is a positive real number; and for every φ in $P_\ell \cap -P'_\ell$, $\varphi(H'_q)$ equals zero while for every φ in $P_\ell \cap P'_\ell$, $\varphi(H'_q)$ is a positive real number. (Observe that any φ in $P_\ell \cap -P'_\ell$ is the restriction to \mathfrak{b} of some α in $P \cap -P'$).

Now we come to the lemma which is basic to carry over the inductive arguments of [3, § 3].
\textbf{(3.22) Lemma} \textit{Let w be in W_t. Suppose $w'(\mu_{m+1})$ belongs to $J(W_1)$. Then $N(w)$ is greater than or equal to m.}

\textbf{Proof} Since $w'(\mu_{m+1})$ belongs to $J(W_1)$ it is in particular a weight of W_1 of for b. Hence by (3.4), $w'(\mu_{m+1})$ is of the form $\mu_1 - \sum n_i \alpha_i | b$, where n_i are nonnegative integers and α_i are in P. That is $w(\mu_{m+1} + \delta_t) = \mu_1 - \sum n_i \alpha_i | b = \tau t(\mu_{m+1} + \delta_t) - \delta_t - \sum n_i \alpha_i b$. Thus

$$\tau t(\mu_{m+1} + \delta_t) - w(\mu_{m+1} + \delta_t) = \sum n_i \alpha_i | b.$$

Write $\mu'_{m+1} = -t\mu_{m+1}$. Hence

(3.23)

$$-\tau(\mu'_{m+1} + \delta_t) + wt(\mu'_{m+1} + \delta_t) = \sum n_i \alpha_i | b$$

where n_i are nonnegative integers and α_i are in P. The left side of the equality in (3.23) is the sum of $wt(\mu'_{m+1} + \delta_t) - (\mu'_{m+1} + \delta_t)$ and $(\mu'_{m+1} + \delta_t) - \tau(\mu'_{m+1} + \delta_t)$. We claim that (3.23) implies

(3.24)

$$P_t \cap -wt P_t$$

is contained in $P_t \cap -\tau P_t$.

To see this enumerate the elements of $P_t \cap -wt P_t$ in a sequence $(\epsilon_1, \epsilon_2, \ldots, \epsilon_k)$ such that ϵ_1 is a simple root of P_t and ϵ_{i+1} is a simple root of $s_{\epsilon_i} \cdots s_{\epsilon_1} P_t (i = 1, \ldots, k - 1)$. Then $wt = s_{\epsilon_k} \cdots s_{\epsilon_1}$ (cf. (5, 4.15.10) and [7, 8.9.13]). By induction on i one can show that $(\mu'_{m+1} + \delta_t) - s_{\epsilon_i} \cdots s_{\epsilon_1} (\mu'_{m+1} + \delta_t)$ can be written as $\sum d_{j,i} \epsilon_j$ where $d_{j,i}$ are positive integers. Thus $(\mu'_{m+1} + \delta_t) - wt(\mu'_{m+1} + \delta_t)$ can be written as $d_{1,\epsilon_1} + d_{2,\epsilon_2} + \cdots + d_{k,\epsilon_k}$ where d_j are positive integers. Similarly $(\mu'_{m+1} + \delta_t) - \tau(\mu'_{m+1} + \delta_t)$ can be written as $d'_1 \epsilon'_1 + d'_2 \epsilon'_2 + \cdots + d'_h \epsilon'_h$ where d'_i are positive integers and $(\epsilon'_1, \ldots, \epsilon'_h)$ is an enumeration of $P_t \cap -\tau P_t$. With these observations we can write

(3.25)

$$-\tau(\mu'_{m+1} + \delta_t) + wt(\mu'_{m+1} + \delta_t)$$

$$= (d'_1 \epsilon'_1 + \cdots + d'_h \epsilon'_h) - (d_1 \epsilon_1 + \cdots + d_k \epsilon_k)$$

where $d'_1, \ldots, d'_h, d_1, \ldots, d_k$ are positive integers. Let $H'_{q'}$ be the element of \mathfrak{h} defined by $(H'_{q'}, H) = \text{trace} \left(\text{ad} \ H \ | \ u \right)$, where u is the unipotent radical of q. Then $H'_{q'}$ belongs to b. We can apply remark (3.21) to (3.25) and conclude that $[-\tau(\mu'_{m+1} + \delta_t) + wt(\mu'_{m+1} + \delta_t)](H'_{q'})$ is a strictly negative real number unless (3.24) holds. But by looking at the right hand side of (3.23) and applying remark (3.21), we see that $[-\tau(\mu'_{m+1} + \delta_t) + wt(\mu'_{m+1} + \delta_t)](H'_{q'})$ is a nonnegative real number.
Thus we have proved the validity of (3.24). Now (3.24) implies that $N(wt)$ is less than or equal to $N(\tau)$. But note that $N(wt) = N(t) - N(w)$, while $N(\tau) = N(t) - N(\tau t) = N(t) - m$. Hence $N(w)$ is greater than or equal to m. (q.e.d.)

(3.22) Enables us to carry over the inductive arguments in [3, § 3] without any further change and obtain the properties (3.15) to (3.20).

§ 4. The ℓ-finite quotient $U(g)$ module of W_{m+1}

The difference between the special situation in [3] and our more general situation becomes more apparent in this section which parallels [3, § 4].

Start with an arbitrary reduced word (3.8) for τt and let $W_1 \subseteq W_2 \subseteq \cdots \subseteq W_{m+1}$ be a fundamental chain of $U(g)$ modules satisfying (3.15) through (3.20). Recall $W_1 = V_{P,-\mu,-\delta}$. Recall the subset $\pi(q) \subseteq \pi$ corresponding to the parabolic subalgebra q. For α in π and λ in h_X define $s^X_\alpha(\lambda) = s_\alpha(\lambda + \delta) - \delta$. By lemma 3.6, $-\mu - \delta(H_\alpha)$ is a nonnegative integer for every α in $P \cap -P'$, hence in particular for every α in $\pi(q)$. Thus one has the inclusion of the Verma modules $V_{P,s^X_\alpha(-\mu,-\delta)} \subseteq V_{P,-\mu,-\delta}$ for every α in $\pi(q)$. We now define a $U(g)$ submodule.

\begin{equation}
W_0 = \sum_{\alpha \in \pi(q)} V_{P,s^X_\alpha(-\mu,-\delta)} \text{ of } W_1.
\end{equation}

As is well known the Verma modules have unique proper maximal submodules. Let I be the proper maximal $U(g)$ submodule of $V_{P,-\mu,-\delta}$.

Then each $V_{P,s^X_\alpha(-\mu,-\delta)} (\alpha \in \pi(q))$, is contained in I. Hence

\begin{equation}
v_1 \text{ does not belong to } W_0.
\end{equation}

Now fix some $i_i (i = 1, \cdots, m)$. Define a $U(g)$ submodule (relative to some reduced word (3.8) for τt) \overline{W}_i of W_{m+1} as follows: Let $W_{i,0}$ be the $U(g)$ submodule of all vectors in W_{m+1} that are $m(\eta_i)$ finite mod W_{i-1}; once $W_{i,0}, \cdots, W_{i,p-1}$ are defined, $W_{i,p}$ is the $U(g)$ submodule of all vectors in W_{m+1} that are $m(\eta_i, \cdots, \eta_{i+p})$ finite mod $W_{i,p-1}$, $p = 1, 2, \cdots, m - i$. We have $W_{i,0} \subseteq \cdots \subseteq W_{i,m-i}$. We then define $\overline{W}_i = W_{i,m-i}$. Define

\begin{equation}
\overline{W} = W_m + \overline{W}_1 + \overline{W}_2 + \cdots + \overline{W}_m.
\end{equation}
Thus for each reduced expression (3.8) for τt, we have defined a $U(g)$ submodule W of W_{m+1}.

(4.4) **Proposition** For any reduced word (3.8) for τt define the $U(g)$ submodule W of W_{m+1} as above. Then v_{m+1} does not belong to W. If $\lambda \in \mathfrak{b}^X$ is such that W_{m+1} has a nonzero P_t extreme weight vector (with respect to \mathfrak{b}) of weight λ which is nonzero mod W, then $(\tau t)'\lambda$ is a P_t extreme weight of W_1/W_0.

Proof We refer to the proof of [3, Lemma 9].

Since we do not have a full chain of $U(g)$ modules corresponding to a reduced word for t as in [3] but only a shorter chain corresponding to a reduced word for τt, we have to work more to obtain a \mathfrak{t}-finite quotient $U(g)$ module of W_{m+1}. We now define

(4.5) $W_X = \sum W$, the summation being over all reduced expressions (3.8) for τ.

(4.6) **Lemma** v_{m+1} does not belong to W_X. Let $\lambda \in \mathfrak{b}^X$ be such that there is a P_t extreme vector in W_{m+1} of weight λ which is nonzero mod W_X. Then $(\tau t)'\lambda(H^t\phi)$ is a nonnegative integer for every ϕ in $P_t\cap -P_t$.

Proof v_{m+1} is a P_t extreme weight vector in W_{m+1} of weight μ_{m+1}. From (3.7) and the definition of μ_{m+1}, we know that $\mu_{m+1}(H^t\phi)$ is a nonnegative integer for every ϕ in P_t. Now suppose v_{m+1} belongs to W_X. Since $W_X = \sum W$, W_X is a quotient of the abstract direct sum $\oplus W$, the summation being over all reduced words (3.8) for τt. We can then apply [3, Lemma 7] and conclude that for some reduced word (3.8) for τt, the corresponding W has a nonzero P_t extreme vector of weight μ_{m+1}. This vector has to be a nonzero scalar multiple of v_{m+1} in view of (3.17). Hence v_{m+1} belongs to that W. But this contradicts (4.4). This proves the first assertion in (4.6).

Next let λ be as in the lemma. Let c be the reductive component of \mathfrak{q} defined by $c = \mathfrak{h} + \sum_{\alpha \in \mathfrak{p} \cap -\mathfrak{p}'} (\mathfrak{g}^\alpha + \mathfrak{g}^{-\alpha})$. We claim that W_1/W_0 is c-finite. For this it is enough to show that the image $\overline{\sigma}_1$ in W_1/W_0 of v_1 is c-finite. For any α in $\pi(\mathfrak{q})$ the submodule $V_{g,\mathfrak{p},\sigma}^\alpha(\mu_1)$ of W_1 coincides with $U(\mathfrak{g})X^\alpha_{\sigma_1} X_{\sigma_1}^{\mu_1} \cdot v_1$ (cf. [2, 7.1.15]). Thus we have $W_0 = \sum_{\alpha \in \pi(\mathfrak{q})} U(\mathfrak{g})X^\alpha_{\sigma_1} X_{\sigma_1}^{\mu_1} \cdot v_1$. Hence the annihilator in $U(\mathfrak{g})$ of $\overline{\sigma}_1$ contains $U(\mathfrak{g})X^\alpha_{\sigma_1} X_{\sigma_1}^{\mu_1}$ for every α in $\pi(\mathfrak{q})$. This suffices in view of [2, 7.2.5] to conclude that $\overline{\sigma}_1$ is c-finite. Thus W_1/W_0 is c-finite.
Let \(c_\ell = c \cap \ell \). Then in particular \(W_1/W_0 \) is \(\ell \)-finite. But note that \(c_\ell = b + \sum_{\varphi \in P_\ell \cap -P_\ell} (\mathbb{C} \cdot X_\varphi + \mathbb{C} \cdot X_{-\varphi}) \).

Now choose some reduced word \((3.8)\) for \(\tau t \) and relative to it define \(\overline{W} \) as in (4.3). Note that \(\overline{W} \subseteq W_X \). For \(\lambda \) as in the lemma, choose a \(P_\ell \) extreme weight vector \(v \) in \(W_{m+1} \) which is nonzero mod \(W_X \) and is of weight \(\lambda \). Then \(v \) is in particular nonzero mod \(\overline{W} \). Hence from (4.4), \((\tau t)^' \lambda \) is a \(P_\ell \) extreme weight of \(W_1/W_0 \). Since \(W_1/W_0 \) is \(c_\ell \)-finite, it now follows that \((\tau t)^' \lambda (H_\varphi^\ell) \) is a nonnegative integer for every \(\varphi \) in \(P_\ell \cap -P'_\ell \). (q.e.d)

For our proof of the \(\ell \)-finiteness of \(W_{m+1}/W_\ell \), we need one more lemma.

Lemma (4.7) Let \(\eta \) be in \(b^X \). Suppose \(\eta (H_\varphi^\ell) \) is nonnegative for every \(\varphi \) in \(P_\ell \). Let \(s \) be in \(W_\ell \). Suppose \(\tau ts'^\ell \eta (H_\varphi^\ell) \) is nonnegative for every \(\varphi \) in \(P_\ell \cap -P'_\ell \). Then \(N(\tau t) = N(\tau ts') + N(s'^{-1}) \).

Proof \((\tau ts') \eta = \tau ts(\eta + \delta_t) - \delta_t \). Since \(\eta (H_\varphi^\ell) \) is nonnegative for every \(\varphi \) in \(P_\ell \), \(\tau ts(\eta + \delta_t)(H_\varphi^\ell) \) is negative for every \(\varphi \) in \(-\tau tsP_\ell \). Also \(-\delta_t (H_\varphi^\ell) \) is negative for every \(\varphi \) in \(P_\ell \). Hence \((\tau ts') \eta (H_\varphi^\ell) \) is negative for every \(\varphi \) in \((-\tau tsP_\ell) \cap P_\ell \). Hence the assumption implies

\[(4.8) \ P_\ell \cap -\tau tsP_\ell \subseteq \text{complement of } P_\ell \cap -P'_\ell \text{ in } P_\ell.\]

Note that \(TP_\ell = -P_\ell \) and \(\tau P_\ell = P'_\ell \). So, \(-P'_\ell = \tau tP_\ell \). So, the complement of \(P_\ell \cap -P'_\ell \) in \(P_\ell \) is \(P_\ell \cap -\tau tP_\ell \). Hence from (4.8) we have

\[(4.9) \ P_\ell \cap (-\tau tsP_\ell) \subseteq P_\ell \cap (-\tau tP_\ell).\]

Let \((\epsilon_1, \epsilon_2, \cdots, \epsilon_j, \epsilon_{j+1}, \cdots, \epsilon_m)\) be an enumeration of the elements of \((-\tau tP_\ell) \cap P_\ell \) such that \(\epsilon_1 \) is a simple root of \(P_\ell \), \(\epsilon_2 \) is a simple root of \(s_{\epsilon_1} P_\ell, \cdots, \epsilon_{j+1} \) is a simple root of \(s_{\epsilon_1} s_{\epsilon_{j-1}} \cdots s_{\epsilon_1} P_\ell (i = 1, \cdots, m - 1) \). Because of (4.9) we can further assume \((\epsilon_1, \cdots, \epsilon_j)\) is an enumeration of \((-\tau tsP_\ell) \cap P_\ell \). Let

\[\varphi'_1 = s_{\epsilon_1} \cdots s_{\epsilon_{i-1}} (\epsilon_i)(i = 1, \cdots, m)(\varphi'_1 = \epsilon_1).\]

Then \(\varphi'_1 \) belongs to \(\pi_\ell \). One can show that \(\tau t = s_{\epsilon_m} \cdots s_{\epsilon_1} \) and a reduced word for \(\tau t \) is

\[\tau t = s_{\varphi'_1} s_{\varphi'_2} \cdots s_{\varphi'_m}.\]
Similarly $\tau ts = s_\epsilon \ldots s_{\epsilon, 1}$ and a reduced word for τts is

(4.11) \[\tau ts = s_{\varphi_1'} \ldots s_{\varphi_j'}. \]

Note that $N(\tau t) = m$ and $N(\tau ts) = j$. Now from (4.10) and (4.11) it is clear that $s^{-1} = s_{\varphi_{j+1}'} \ldots s_{\varphi_m'}$ is a reduced word for s^{-1}. These observations substantially prove the lemma. (q.e.d.)

(4.12) Remark With the data assumed in Lemma 4.7 we have actually proved more than what is asserted in (4.7): There exists a reduced word $\tau t = s_{\varphi_1'} \ldots s_{\varphi_j'} s_{\varphi_{j+1}'} \ldots s_{\varphi_m'}$ for τt such that $s^{-1} = s_{\varphi_{j+1}'} \ldots s_{\varphi_m'}$.

The following proposition gives the \mathfrak{t}-finite $U(\mathfrak{g})$ module quotient of W_{m+1}.

(4.13) Proposition The $U(\mathfrak{g})$ module W_{m+1}/W_X is \mathfrak{t}-finite.

Proof Let $\tau m+1$ be the image of v_{m+1} in W_{m+1}/W_X. Since $U(\mathfrak{g})\tau m+1 = W_{m+1}/W_X$, it suffices to prove that $U(\mathfrak{t}) \cdot \tau m+1$ has finite dimension over \mathbb{C}. For this again, by well known facts [2, 7.2.5] it suffices to prove that the annihilator of $\tau m+1$ in $U(\mathfrak{t})$ contains $X^{e(\varphi)}$ for every φ in $\pi_\mathfrak{t}$, where $e(\varphi) = \mu_{m+1}(H_\varphi^\mathfrak{t}) + 1$ (observe that in view of (3.7), $\mu_{m+1}(H_\varphi^\mathfrak{t})$ is a nonnegative integer for every φ in $\pi_\mathfrak{t}$). Thus it suffices to show that for every φ in $\pi_\mathfrak{t}$,

(4.14) \[X^{e(\varphi)} \cdot v_{m+1} \text{ belongs to } W_X. \]

Suppose (4.14) is not true. Choose a φ in $\pi_\mathfrak{t}$, such that $X^{e(\varphi)} v_{m+1}$ does not belong to W_X. Then $X^{e(\varphi)} v_{m+1}$ is a $P_\mathfrak{t}$ extreme vector of weight $s_{\varphi}(\mu_{m+1})$ in W_{m+1} which is nonzero mod W_X. Hence by (4.6), $(\tau ts_{\varphi})' \mu_{m+1}(H_{\varphi'}^\mathfrak{t})$ is a nonnegative integer for every φ' in $P_\mathfrak{t} \cap -P'_{\mathfrak{t}}$. We can now apply (4.7) and (4.12) and conclude that there exists a reduced word.

(4.15) \[\tau t = s_{\varphi_1'} s_{\varphi_2'} \ldots s_{\varphi_{m-1}'} s_{\varphi_m'} (\varphi_i' \in \pi_\mathfrak{t}) \]

for τt such that

(4.16) \[\varphi_m' = \varphi. \]
Take the reduced word (4.15) for τt in (3.8) and consider the corresponding modules W_m and W. By definition $W_m \subseteq \overline{W}$. But in the fundamental chain $W_1 \subseteq \cdots \subseteq W_m \subseteq W_{m+1}$ associated to the reduced word (4.15) for τt, the module W_m is simply $U(g) \cdot X_{-\varphi} v_{m+1}$. This is clear from the definitions (cf. (3.14) and the definition of v_i after (3.11) and (4.16). Thus it follows that $X_{-\varphi} v_{m+1} \in \overline{W} \subseteq W_X$. But this is a contradiction to the hypothesis. Thus (4.14) is true and proved and with that also the \mathfrak{e}-finiteness of W_{m+1}/W_X. (q.e.d)

§ 5

Let \mathfrak{b} be a Cartan subalgebra of \mathfrak{g} and \mathfrak{h} its centralizer in \mathfrak{g}, so that \mathfrak{h} is a θ stable Cartan subalgebra of \mathfrak{g}. Let P be a system of positive roots for $(\mathfrak{g}, \mathfrak{h})$ such that $\theta(P) = P$. Let

$$n^+ = \sum_{\alpha \in P} g^\alpha$$

and

$$n^- = \sum_{\alpha \in P} g^{-\alpha}.$$

The following fact is standard if $\mathfrak{b} = \mathfrak{h}$, but it remains true in our general case.

(5.1) Lemma Let $U^\mathfrak{b}$ be the centralizer of \mathfrak{b} in $U(\mathfrak{g})$. If the set P of positive roots satisfies $\theta(P) = P$, we have a unique homomorphism

(5.2) $\beta_P : U^\mathfrak{b} \rightarrow U(\mathfrak{h})$

such that for any y in $U^\mathfrak{b}$.

(5.3) $y \equiv \beta_P(y) \pmod{U(\mathfrak{g})n^+}$.

Proof We have

(5.4) $U(\mathfrak{g}) = U(n^- + \mathfrak{h}) \oplus U(\mathfrak{g})n^+$

and this decomposition is stable under adH for every H in \mathfrak{h} i.e. $adH(U(n^- + \mathfrak{h})) \subseteq U(n^- + \mathfrak{h})$ and $adH(U(\mathfrak{g})n^+) \subseteq U(\mathfrak{g})n^+$. For y in $U^\mathfrak{b}$, let $y = y_0 + y_1$ be its decomposition with respect to (5.4). Define
$\beta_P(y) = y_0$. We claim $\beta_P(y)$ belongs to the subalgebra $U(\mathfrak{h})$ of $U(n^- + \mathfrak{h})$. Since y is in U^b, y_0 and y_1 are also in U^b. Let $S(n^- + \mathfrak{h})$ and $S(\mathfrak{h})$ denote the symmetric algebras and λ the symmetrizer map of $S(n^- + \mathfrak{h})$ onto $U(n^- + \mathfrak{h})$. Then for H in \mathfrak{b}, $\lambda^{-1}(y_0)$ is annihilated by adH (extended as a derivation to $S(n^- + \mathfrak{h})$). It is enough to show that $\lambda^{-1}(y_0)$ belongs to $S(\mathfrak{h})$. Using (1.14), one can show that there exists an element X_P in \mathfrak{b} such that $\alpha(X_P)$ is a nonzero real number for every α in $\Delta (= \text{the roots of } (\mathfrak{g}, \mathfrak{h}))$ and such that P consists of precisely those α in Δ such that $\alpha(\lambda^{-1}(y_0))$ is positive. It is then clear that in $S(n^- + \mathfrak{h})$, the null space for adX_P is just $S(\mathfrak{h})$. Since $adX(\lambda^{-1}(y_0)) = 0$ for every X in \mathfrak{b}, in particular $adX_P(\lambda^{-1}(y_0)) = 0$. Hence $\lambda^{-1}(y_0)$ belongs to $S(\mathfrak{h})$, so that $\beta_P(y)$ belongs to $U(\mathfrak{h})$.

Now suppose y and y' are in U^b. Let $y = y_0 + y_1$ and $y' = y_0' + y_1'$ be their decomposition with respect to (5.4), so that $\beta_P(y) = y_0$ and $\beta_P(y') = y_0'$. Then $yy' = y_0y_0' + y_0y_1' + y_1y_0' + y_1y_1'$. Clearly y_0y_0' belongs to $U(\mathfrak{h})$ and $y_0y_1' + y_1y_0'$ belongs to $U(\mathfrak{g})n^+$. Also $y_1y_0' \in U(\mathfrak{g})n^+ \cdot U(\mathfrak{h}) \subseteq U(\mathfrak{g})U(\mathfrak{h})n^+$. Thus y_0y_0' is the component of yy' in $U(n^- + \mathfrak{h})$ with respect to (5.4). We already know that this component is in $U(\mathfrak{h})$. Thus β_P is a homomorphism of algebras.

The centralizer $U^\mathfrak{t}$ of \mathfrak{t} in $U(\mathfrak{g})$ is contained in U^b. As usual interpret elements of $S(\mathfrak{h})$ as polynomials on $\mathfrak{h}^\mathfrak{X}$. For any φ in $\mathfrak{h}^\mathfrak{X}$, define a homomorphism $\chi_{P,\varphi}$ of $U^\mathfrak{t}$ into \mathbb{C} as follows:

$$\chi_{P,\varphi}(y) = \beta_P(y)(\varphi) \quad (y \in U^\mathfrak{t}).$$

The main results of the previous sections can now be formulated. Let \mathfrak{b}_0 be a Cartan subalgebra of \mathfrak{t}_0 and \mathfrak{b} its complexification. Let \mathfrak{q} be a θ stable parabolic subalgebra of \mathfrak{g} containing \mathfrak{b}. The centralizer \mathfrak{h} of \mathfrak{b} in \mathfrak{g} is a Cartan subalgebra of \mathfrak{g} and \mathfrak{q} contains \mathfrak{h}. Let \mathfrak{r} be a θ stable Borel subalgebra of \mathfrak{g} contained in \mathfrak{q} (cf. (1.15) and (1.2)). Let P be the set of positive roots for $(\mathfrak{g}, \mathfrak{h})$ corresponding to \mathfrak{r}. Define the θ stable Borel subalgebra $\mathfrak{r}' \subseteq \mathfrak{q}$ by (2.1). Choose a θ stable positive system P'' of roots of $(\mathfrak{g}, \mathfrak{h})$ having properties (2.3) and (2.4). Denote by $F(P'': \mathfrak{q}, \mathfrak{r})$ the set of all elements μ in $\mathfrak{h}^\mathfrak{X}$ having properties (2.6) and (2.7). Now choose a μ in $F(P'': \mathfrak{q}, \mathfrak{r})$ and recall the objects associated to it in §§ 3, 4.

We can now state

Theorem Let \mathfrak{q} be a θ stable parabolic subalgebra. Let $\mu \in F(P'': \mathfrak{q}, \mathfrak{r})$. Let $W_{P''(\mu)} = W_{m+1}/W_X$ (cf. (3.12) and (4.5)). Then $W_{P''(\mu)}$ is a \mathfrak{t} finite $U(\mathfrak{g})$ module having the following properties:
(i) $W_{P': q, r}^{\tau}(\mu) = U(g)\overline{\pi}_{m+1}$, where $\overline{\pi}_{m+1}$ is the image of the vector v_{m+1} of W_{m+1}. The irreducible finite dimensional representation of \mathfrak{t} with highest weight $-t(\tau\mu + \tau\delta - \tau\delta_t - \delta_t)$ occurs with multiplicity one in $W_{P': q, r}^{\tau}(\mu)$. The corresponding isotypical $U(\mathfrak{k})$ submodule of $W_{P': q, r}^{\tau}$ is $U(\mathfrak{k})\overline{\pi}_{m+1}$; on this space elements of $U(\mathfrak{g})$ act by scalars given by the homomorphism $\chi_{P', -\mu - \delta}$.

(ii) If τ_λ is an irreducible finite dimensional representation of \mathfrak{k} with highest weight λ with respect to $P_\mathfrak{t}$, then the multiplicity of τ_λ in $W_{P': q, r}^{\tau}(\mu)$ is finite; it is zero if λ is not of the form $\tau_\lambda'(-\mu - \delta - \sum_{\varphi \in P} m_\varphi \varphi) | b$ where m_φ are nonnegative integers.

Proof By (4.13), we know that $W_{P': q, r}^{\tau}(\mu)$ is nonzero and \mathfrak{t}-finite. By (4.6) the vector v_{m+1} of W_{m+1} does not belong to W_X. The image of v_{m+1} in $W_{P': q, r}^{\tau}(\mu)$ is $P_\mathfrak{t}$ extreme of weight $(\tau_\lambda')(-\mu - \delta) = -t(\tau\mu + \tau\delta - \tau\delta_t - \delta_t)$ (which is dominant by (3.7)) and this image generates an irreducible \mathfrak{k}-module with highest weight $-t(\tau\mu + \tau\delta + \tau\delta_t - \delta_t)$ with respect to $P_\mathfrak{t}$.

Based on the preceding sections one can complete the proof of the theorem in the same way as [3, Theorem 1].

It is easy to conclude from (5.6) that $W_{P': q, r}^{\tau}(\mu)$ has a unique proper maximal $U(\mathfrak{g})$ submodule and hence $W_{P': q, r}^{\tau}(\mu)$ has a unique nonzero quotient $U(\mathfrak{g})$ module which is irreducible. We denote this $U(\mathfrak{g})$ module by $D_{P': q, r}^{\tau}(\mu)$. The following theorem is now immediate from (5.6).

(5.7) **Theorem** Let $\mu \in F(P'' : q, r)$. Up to equivalence there exists a unique \mathfrak{t}-finite irreducible $U(\mathfrak{g})$ module $D_{P'' : q, r}^{\tau}(\mu)$ having the following property: The finite dimensional irreducible $U(\mathfrak{k})$ module with highest weight $-t(\tau\mu + \tau\delta - \tau\delta_t - \delta_t)$ (with respect to $P_\mathfrak{t}$) occurs with multiplicity one in $D_{P'' : q, r}^{\tau}(\mu)$ and the action of $U(\mathfrak{t})$ on the corresponding isotypical $U(\mathfrak{k})$ submodule is given by the homomorphism $\chi_{P', -\mu - \delta}$.

The uniqueness follows from the well known theorem of Harish Chandra [4]: An irreducible \mathfrak{t}- finite $U(\mathfrak{g})$ module M is completely determined by a nonzero isotypical $U(\mathfrak{t})$ submodule of M and the action of $U(\mathfrak{t})$ on it.
REFERENCES

(Oblatum 13-VII-1976)

Tata Inst. Fund. Research
School of Math.
Bombay, 400005 India

73