**Ritabrata
Munshi**

School of Mathematics, Tata Institute of Fundamental Research

Office: (on long term leave, presently at ISI Kolkata (Calcutta))

Email: rmunshi /at/ math.tifr.res.in

(last updated: July 30, 2015)

**Preprints/Publications:
**(arxiv)

A case of simultaneous non-vanishing

(with J. Sengupta)

Hybrid subconvexity bounds for L(1/2, Sym^2 f x g)

(with R. Holowinsky and Z. Qi)

The circle method and bounds for $L$-functions – IV: Subconvexity for twists of GL(3) $L$-functions.

*Annals of Math., to appear*Character sums of composite moduli and hybrid subconvexity

*(with R. Holowinsky and Z. Qi). Contemp. Math., to appear*Pairs of quadrics in 11 variables.

*Compositio Math., 151 (2015) 1189-1214*The circle method and bounds for $L$-functions - III: $t$-aspect subconvexity for GL(3) $L$-functions.

*J. Amer. Math. Soc., 28 (2015) 913-938*The circle method and bounds for $L$-functions - II: Subconvexity for twists of GL(3) $L$-functions.

*American J. Math. 137 (2015) 791-812*On some recent applications of circle method.

*Math. Student*84 (2015) 23-38Determination of GL(3) Hecke-Maass forms from twisted central values (with J. Sengupta).

*J. Number Theory 148 (2015) 272-287*Pairs of diagonal quadratic forms and linear correlations among sums of two squares

(with Tim Browning)

*Forum Math. 27 (2015) 2025-2050*On effective determination of Maass forms from central values of Rankin-Selberg L-functions.

(with Jyoti Sengupta)

*Forum Math*.*27 (2015) 467-488*The circle method and bounds for L-functions – I.

*Math. Annalen 358 (2014) 389-401*Bounds for twisted symmetric square L-functions - III.

*Advances in Math. 235*(2013) 74-91Shifted convolution sums for GL(3) x GL(2).

*Duke Math J. 162 (2013) 2345-2362*Shifted convolution of divisor function $d_3$ and the Ramanujan $\tau$ function.

*The Legacy of Srinivasa Ramanujan, Ramanujan Math. Soc. Lec. Notes Ser. 20 (2013) 251-260*Bounds for twisted symmetric square L-functions – II. (unpublished)

Bounds for twisted symmetric square L-functions.

*Journal für die reine und angewandte Mathematik (Crelle's Journal) 682 (2013) 65–88.*Rational points on singular intersections of quadrics.

(with Tim Browning)

*Compositio Math. 149 Issue 09 (2013), 1457 – 1494*A note on simultaneous nonvanishing twists.

*Journal of Number Theory 132**(2012), no.4, 666-674*Level aspect subconvexity for Rankin-Selberg L-function.

(with Roman Holowinsky)

*International Colloquium on Automorphic Representations and L-functions, TIFR, 2012.*On a hybrid bound for twisted L-values.

*Archiv der Math. 96**(2011), 3, 235-245*Inequalities for the divisor function.

*The Ramanujan Journal 25**(2011), no. 2, 195-201*On quadratic families of CM elliptic curves.

*Trans. Amer. Math. Soc.**363**(2011), 4337-4358.*On mean values and nonvanishing of L-functions in a nonlinear family.

*Compositio Math. 147*(2011), 19-34On the number of squares represented by a product of two ternary quadratic forms.

Q. J. Math 62 (2011), 157-171

On effective determination of modular forms by twists of critical L-values.

*Math. Annalen 347*, no. 4 (2010) 963-978The circle method and pairs of quadratic forms. (with Henryk Iwaniec)

*Journal de Theorie des Nombres de Bordeaux 22*no. 2 (2010) 403-419Cubic polynomials and quadratic forms. (with Henryk Iwaniec)

*Journal of the London Mathematical Society 81*(2010) 45-64Density of positive rank fibers in an elliptic fibration -- II.

*International Journal of Number Theory 6*no. 1, (2010) 15-23**,**Level of distribution of special values of L-functions.

*Acta Arithmetica 138,*no. 3 (2009)Density of rational points on cyclic covers of P^n.

*Journal de Theorie des Nombres de Bordeaux 21*, no. 2 (2009), the special issue on 25th Journees ArithmetiquesDensity of rational points on elliptic fibrations -- II.

*Acta Arithmetica 134*, no. 2 (2008)Density of rational points on elliptic fibrations.

*Acta Arithmetica 129*, no. 1 (2007)Density of positive rank fibers in an elliptic fibration.

*Journal of Number Theory 125*, no. 1 (2007)The Jordan curve theorem.

*Resonance*No.9 September (1999), 32-37, No.11 November (1999), 14-20Hilbert's Nullstellensatz,

*Bulletin of the Bombay Mathematical Colloquium*, vol. 15, No. 1-2, January (1999), 20-24.

(See Prof. J.P. May's article "Munshi's Proof of the Nullstellensatz", Amer. Math. Monthly, 110 (2003), No. 2, 133--140; and Prof. R.G. Swan's article "On Munshi's Proof of the Nullstellensatz", http://www.math.uchicago.edu/~swan/nss.pdf)