HERMITIAN SYMMETRIC SPACE, FLAT BUNDLE AND HOLOMORPHICITY CRITERION

HASSAN AZAD, INDRANIL BISWAS, C. S. RAJAN, AND SHEHRYAR SIKANDER

ABSTRACT. Let $K \backslash G$ be an irreducible Hermitian symmetric space of noncompact type and $\Gamma \subset G$ a closed torsionfree discrete subgroup. Let X be a compact Kähler manifold and $\rho : \pi_1(X, x_0) \to \Gamma$ a homomorphism such that the adjoint action of $\rho(\pi_1(X, x_0))$ on $\text{Lie}(G)$ is completely reducible. A theorem of Corlette associates to ρ a harmonic map $X \to K \backslash G/\Gamma$. We give a criterion for this harmonic map to be holomorphic. We also give a criterion for it to be anti–holomorphic.

1. Introduction

Let G be a noncompact simple Lie group of adjoint type and $K \subset G$ a maximal compact subgroup, such that $K \backslash G$ is an irreducible Hermitian symmetric space of noncompact type. The Lie algebra of G will be denoted by \mathfrak{g}. Let Γ be a closed torsionfree discrete subgroup of G. Take a compact connected Kähler manifold X; fix a base point $x_0 \in X$. Let

$$\rho : \pi_1(X, x_0) \to \Gamma$$

be a homomorphism such that the adjoint action of $\rho(\pi_1(X, x_0))$ on \mathfrak{g} is completely reducible. This ρ produces a C^∞ principal G–bundle $E_G \to X$ equipped with a flat connection D. A reduction of structure group of E_G to K is given by a map $X \to K \backslash G/\Gamma$. Note that $K \backslash G/\Gamma$ is a Kähler manifold; it need not be compact.

A theorem of Corlette says that there is a C^∞ reduction of structure group of E_G to K such that corresponding map $H_D : X \to K \backslash G/\Gamma$ is harmonic [Co]. Our aim here is to address the following:

- When is H_D holomorphic?
- When is H_D anti–holomorphic?

Let $H : X \to K \backslash G/\Gamma$ be a C^∞ map giving a reduction of structure group of E_G to K. We give a criterion under which H is holomorphic or anti–holomorphic (see Theorem 4.3). Since a holomorphic or anti–holomorphic map between Kähler manifolds is harmonic, Theorem 4.3 gives criterion for H_D to be holomorphic or anti–holomorphic (see Corollary 4.4).

2010 Mathematics Subject Classification. 32M15, 32L05, 53C55.

Key words and phrases. Hermitian symmetric space, flat bundle, Hermitian structure, holomorphicity.
2. Harmonic map to G/K

A Lie group is called simple if its Lie algebra is so [He, page 131]. Let G be a connected real noncompact simple Lie group whose center is trivial. It is known that if K_1 and K_2 are two maximal compact subgroups of G, then there is an element $g \in G$ such that $K_1 = g^{-1}K_2g$ [He, page 256, Theorem 2.2(ii)]. In particular, any two maximal compact subgroups of G are isomorphic. Assume that G satisfies the condition that the dimension of the center of a maximal compact subgroup K of it is positive. This in fact implies that the center of K is isomorphic to $S^1 = \mathbb{R}/\mathbb{Z}$ [He, page 382, Proposition 6.2].

Fix a maximal compact subgroup $K \subset G$. Consider the left–translation action of K on G. The above conditions on G imply that the corresponding quotient $K\backslash G$ is an irreducible Hermitian symmetric space of noncompact type. Conversely, given any irreducible Hermitian symmetric space of noncompact type, there is a group G of the above type such that $K\backslash G$ is isometrically isomorphic to it [He, page 381, Theorem 6.1(i)]. In fact, this gives a bijection between the isomorphism classes of Lie groups of the above type and the holomorphic isometry classes of irreducible Hermitian symmetric spaces [He, page 381, Theorem 6.1(i)]. The Lie algebra of G will be denoted by \mathfrak{g}.

Fix a closed torsionfree discrete subgroup $\Gamma \subset G$. Therefore, the two-sided quotient

$$M_\Gamma := K\backslash G/\Gamma$$

(2.1)

is a connected Kähler manifold.

Let X be a compact connected orientable real manifold. Fix a base point $x_0 \in X$. Let

$$\beta : \tilde{X} \longrightarrow X$$

(2.2)

be the universal cover of X associated to x_0. The right–action of the fundamental group $\pi_1(X, x_0)$ on \tilde{X} will be denoted by "·". Let

$$\rho : \pi_1(X, x_0) \longrightarrow \Gamma$$

(2.3)

be a homomorphism such that the adjoint action of $\rho(\pi_1(X, x_0)) \subset G$ on the Lie algebra \mathfrak{g} is completely reducible. Associated to ρ we have a principal G–bundle $E_G \longrightarrow X$ equipped with a flat connection D. We note that E_G is the quotient of $\tilde{X} \times G$ (see (2.2)) where two points $(x_1, g_1), (x_2, g_2) \in \tilde{X} \times G$ are identified if there is an element $z \in \pi_1(X, x_0)$ such that $x_2 = x_1 \cdot z$ and $g_2 = \rho(z)^{-1}g_1$. The natural projection $\tilde{X} \times G \longrightarrow \tilde{X}$ produces the projection $E_G \longrightarrow X$ from the quotient space, and the right–translation action of G on $\tilde{X} \times G$ produces the action of G on E_G. The trivial connection on the trivial principal G–bundle $\tilde{X} \times G \longrightarrow \tilde{X}$ descends to the connection D on the principal G–bundle E_G.

The above construction gives the following:

Corollary 2.1. The pulled back principal G–bundle β^*E_G is identified with the trivial principal G–bundle $\tilde{X} \times G$ by sending any $(x, g) \in \tilde{X} \times G$ to (x, z), where z is the equivalence class of (x, g). This identification takes the connection β^*D on β^*E_G to the trivial connection on the trivial principal G–bundle $\tilde{X} \times G$.
A Hermitian structure on E_G is a C^∞ reduction of structure group $E_K \subset E_G$ to the maximal compact subgroup $K \subset G$. For such a reduction of structure group E_K, we have the reduction of structure group
\[\beta^* E_K \subset \beta^* E_G = \tilde{X} \times G \rightarrow \tilde{X}, \]
where β is the projection in (2.2). Therefore, a Hermitian structure on E_G is given by a $\pi_1(X, x_0)$–equivariant C^∞ map
\[h : \tilde{X} \rightarrow G/K \] (2.4)
with $\pi_1(X, x_0)$ acting on the left of G/K via the homomorphism ρ.

Let $\iota : G/K \rightarrow K \backslash G$ be the isomorphism that sends a coset gK to the coset Kg^{-1}. Let
\[E_K \subset E_G \]
be the reduction of structure group to K corresponding to a map h as in (2.4). Since h is $\pi_1(X, x_0)$–equivariant, the composition $\iota \circ h$ descends to a map
\[H_D : X \rightarrow M_\Gamma = K \backslash G/\Gamma \] (2.5)
(see (2.1)).

Fix a Riemannian metric g_X on X. A theorem of Corlette says that there is a Hermitian structure $E'_K \subset E_G$ such that the above map h is harmonic with respect to $\beta^* g_X$ and the natural invariant metric on G/K [Co, page 368, Theorem 3.4] (in the special case where $\dim X = 2$ and $G = \text{PSL}(2, \mathbb{R})$, this was proved in [Do]). Note that h is harmonic if and only if H_D in (2.5) is harmonic with respect to g_X and the natural metric on M_Γ. If E'_K is another Hermitian structure such that corresponding map $\tilde{X} \rightarrow G/K$ is also harmonic, then there is an automorphism δ of the principal G–bundle E_G such that
\begin{itemize}
 \item δ preserves the flat connection D on E_G, and
 \item $\delta(E_K) = E'_K$.
\end{itemize}
In other words, if $h' : \tilde{X} \rightarrow G/K$ is the $\pi_1(X, x_0)$–equivariant map corresponding to this E'_K, then then there is an element $g \in G$ such that
\begin{itemize}
 \item g commutes with $\rho(\pi_1(X, x_0))$, and
 \item $h'(y) = gh(y)$ for all $y \in \tilde{X}$.
\end{itemize}
Note that the first condition that g commutes with $\rho(\pi_1(X, x_0))$ implies that the map $y \mapsto gh(y)$ intertwines the actions of $\pi_1(X, x_0)$ on \tilde{X} and G/K.

3. Constructions using flat connection and Hermitian structure

Let G and K be as before. As before, the Lie algebra of G will be denoted by \mathfrak{g}. The Lie algebra of K will be denoted by \mathfrak{k}. We have the isotypical decomposition
\[\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{p} \] (3.1)
for the adjoint action of the center of K [He, p. 208, Theorem 3.3(iii)]. Note that the adjoint action of K on \mathfrak{g} preserves this decomposition. Let

$$\phi : \mathfrak{g} \rightarrow \mathfrak{k} \quad \text{and} \quad \psi : \mathfrak{g} \rightarrow \mathfrak{p}$$

be the projections associated to the decomposition in (3.1).

Let Y be a connected complex manifold, F_G a C^∞ principal G–bundle on Y and D^Y a flat connection on the principal G–bundle F_G. Fix a C^∞ reduction of structure group of F_G

$$F_K \subset F_G$$
to the subgroup K. Let

$$\text{ad}(F_K) = F_K(\mathfrak{k}) := F_K \times^K \mathfrak{k} \rightarrow Y \quad \text{and} \quad F_K(\mathfrak{p}) := F_K \times^K \mathfrak{p} \rightarrow Y$$

be the vector bundles associated to this principal K–bundle F_K for the K–modules \mathfrak{k} and \mathfrak{p} respectively. Let $\text{ad}(F_G) = F_G \times^G \mathfrak{g} \rightarrow Y$ be the adjoint vector bundle for F_G. From (3.1) it follows that

$$\text{ad}(F_G) = \text{ad}(F_K) \oplus F_K(\mathfrak{p}).$$

The connection D^Y on F_G is defined by a \mathfrak{g}–valued 1–form on the total space of F_G; this form on F_G will also be denoted by D^Y. The restriction of this form D^Y to F_K will be denoted by D'. Consider the \mathfrak{k}–valued 1–form $\phi \circ D'$ on F_K, where ϕ is the projection in (3.2). It is K–equivariant and restricts to the Maurer–Cartan form on the fibers of the principal K–bundle F_K. Hence $\phi \circ D'$ is a connection on F_K; we will denote by D_K this connection on F_K. Consider the \mathfrak{p}–valued 1–form $\psi \circ D'$ on F_K, where ψ is the projection in (3.2). It is K–equivariant and its restriction to any fiber of the principal K–bundle F_K vanishes identically. Therefore, $\psi \circ D'$ is a C^∞ section $F_K(\mathfrak{p}) \otimes T^*Y$, where $F_K(\mathfrak{p})$ is the vector bundle defined in (3.3), and T^*Y is the real cotangent bundle of Y. Let

$$D^{Y,p} \in C^\infty(Y, F_K(\mathfrak{p}) \otimes T^*Y)$$

be this $F_K(\mathfrak{p})$–valued 1–form on Y.

Using the complex structure on Y we may decompose any $F_K(\mathfrak{p})$–valued 1–form on Y into a sum of $F_K(\mathfrak{p})$–valued forms of types $(1,0)$ and $(0,1)$. Let

$$D^{Y,p} = D^{1,0} + D^{0,1}$$

be the decomposition of the above $F_K(\mathfrak{p})$–valued 1–form $D^{Y,p}$ into $(1,0)$ and $(0,1)$ parts.

Define

$$\omega_{D^Y} := \frac{1}{\sqrt{-1}} (D^{1,0} - D^{0,1}) \in C^\infty(Y, (\text{ad}(F_G) \otimes T^*Y) \otimes_{\mathbb{R}} \mathbb{C}),$$

where $D^{1,0}$ and $D^{0,1}$ are constructed in (3.6). From (3.6) it follows that

$$\omega_{D^Y} \in C^\infty(Y, F_K(\mathfrak{p}) \otimes T^*Y) \subset C^\infty(Y, (\text{ad}(F_G) \otimes T^*Y) \otimes_{\mathbb{R}} \mathbb{C})$$

(see (3.4)). In other words, ω_{D^Y} is a real 1–form on Y with values in the real vector bundle $F_K(\mathfrak{p}) \subset \text{ad}(F_G) \otimes_{\mathbb{R}} \mathbb{C}$.
We now work in the set-up of Section 2. Assume that the manifold X is equipped with a complex structure. Identify two elements (g_1, g_1') and (g_2, g_2') of $(K \backslash G) \times G$ if there is an element $\gamma \in \Gamma$ such that $g_2 = g_1 \gamma^{-1}$ and $g_2' = \gamma g_1'$. The corresponding quotient will be denoted by \mathcal{E}_G. The group G acts on \mathcal{E}_G; the action of any $g \in G$ sends the equivalence class of $(g_1, g_1') \in (K \backslash G) \times G$ to the equivalence class of $(g_1, g_1' g)$. Consider the map

$$\mathcal{E}_G \longrightarrow M_\Gamma = K \backslash G / \Gamma$$

that sends the equivalence class of any $(g, g') \in (K \backslash G) \times G$ to the equivalence class of g. It, and the above action of G on \mathcal{E}_G, together make \mathcal{E}_G a principal G–bundle on M_Γ. Pull back the left invariant Maurer–Cartan form on G using the projection to the second factor $(K \backslash G) \times G \longrightarrow G$. This pulled back form descends to the quotient space \mathcal{E}_G. It is straightforward to check that this descended form defines a connection on the principal G–bundle \mathcal{E}_G. This connection on \mathcal{E}_G will be denoted by D^0. The connection D^0 is flat.

Consider the submanifold $\{ (g^{-1}, g) \mid g \in G \} \subset G \times G$. Let

$$\mathcal{N} \subset (K \backslash G) \times G$$

be the image of it under the obvious quotient map. Let

$$\mathcal{E}_K \subset \mathcal{E}_G$$

be the image of \mathcal{N} in the quotient space \mathcal{E}_G (recall that \mathcal{E}_G is a quotient of $(K \backslash G) \times G$). It is straightforward to check that the action of the subgroup $K \subset G$ on \mathcal{E}_G preserves \mathcal{E}_K. More precisely, \mathcal{E}_K is a reduction of structure group of the principal G–bundle $\mathcal{E}_G \longrightarrow M_\Gamma$ to the subgroup $K \subset G$.

Take ρ as in (2.3). As in Section 2, let (E_G, D) denote the associated flat principal G–bundle over the compact complex manifold X. Take any C^∞ reduction of structure group

$$E_K \subset E_G$$

to $K \subset G$.

Proposition 4.1. The pulled back principal G–bundle $H^*_D \mathcal{E}_G$, where H_D is constructed in (2.5), is canonically identified with the principal G–bundle E_G. This identification between E_G and $H^*_D \mathcal{E}_G$ takes

1. the pulled back connection $H^*_D D^0$ to the connection D on E_G, and
2. the reduction $H^*_D \mathcal{E}_K \subset H^*_D \mathcal{E}_G$ (see (4.2)) to the reduction $E_K \subset E_G$.

Proof. Consider the pulled back reduction of structure group $\beta^* E_K \subset \beta^* E_G$, where β is the universal cover in (2.2). From Corollary 2.1 we know that $\beta^* E_G = \widetilde{X} \times G$. Let

$$f' : \beta^* E_K \longrightarrow G$$

be the composition

$$\beta^* E_K \hookrightarrow \beta^* E_G \xrightarrow{\sim} \widetilde{X} \times G \xrightarrow{\text{pr}_2} G,$$
where \(\text{pr}_2 \) is the projection to the second factor. Now define the map

\[
f'' : \beta^*E_K \rightarrow (K \backslash G) \times G, \quad z \mapsto (\widehat{f'}(z)^{-1}, f'(z)),
\]
where \(\widehat{f'}(z)^{-1} \in K \backslash G \) is the image of \(f'(z)^{-1} \) under the quotient map \(G \rightarrow K \backslash G \). The Galois group \(\pi_1(X, x_0) \) for \(\beta \) has a natural right–action of the pullback \(\beta^*E_K \) that lifts the right–action of \(\pi_1(X, x_0) \) on \(\hat{X} \). For any \(z \in \beta^*E_K \) and \(\gamma \in \pi_1(X, x_0) \), we have

\[
f''(z \cdot \gamma) = (\widehat{f'}(z)^{-1} \rho(\gamma), \rho(\gamma)^{-1} f'(z)),
\]
where \(z \cdot \gamma \in \beta^*E_K \) is the image of \(z \) under the action of \(\gamma \). This, and the fact that \(\text{image}(f'') \subset \mathcal{N} \) (defined in (4.1)), together imply that \(f'' \) descends to a map

\[
\tilde{d} : E_K \rightarrow \mathcal{E}_K
\]
(see (4.2)). This map \(\tilde{d} \) is clearly \(K \)–equivariant, and the following diagram is commutative

\[
\begin{array}{ccc}
E_K & \xrightarrow{\tilde{d}} & \mathcal{E}_K \\
\downarrow & & \downarrow \\
X & \xrightarrow{H_D^*} & M
\end{array}
\]

Therefore, we get an isomorphism of principal \(K \)–bundles

\[
f : E_K \rightarrow H_D^* \mathcal{E}_K.
\]
(4.3)

Since \(E_G \) (respectively, \(\mathcal{E}_G \)) is the extension of structure group of \(E_K \) (respectively, \(\mathcal{E}_K \)) using the inclusion of \(K \) in \(G \), the isomorphism \(f \) in (4.3) produces an isomorphism of principal \(G \)–bundles

\[
\hat{f} : E_G \rightarrow H_D^* \mathcal{E}_G.
\]

It is straightforward to check that \(\hat{f} \) takes the connection \(D \) to the connection \(H_D^*D^0 \). \(\square \)

Define \(\mathcal{E}_K(p) := \mathcal{E}_K \times^K p \rightarrow M_\Gamma \) as in (3.3). Also, construct the associated vector bundle \(E_K(p) \) on \(X \) as done in (3.3).

Corollary 4.2. The pulled back vector bundle \(H_D^* \mathcal{E}_K(p) \), where \(H_D \) is defined in (2.5), is canonically isomorphic to \(E_K(p) \).

Proof. The isomorphism \(f \) in (4.3) between principal \(K \)–bundles produces an isomorphism between the associated vector bundles. \(\square \)

Let

\[
\omega_{D^0} \in C^\infty(M_\Gamma, \mathcal{E}_K(p) \otimes_\mathbb{R} T^*M_\Gamma)
\]
be the real 1–form constructed as in (3.7) for the pair \((D^0, \mathcal{E}_K) \). Using the isomorphisms in Proposition 4.1 and Corollary 4.2, together with the homomorphism

\[
(dH_D)^* : H_D^*T^*M_\Gamma \rightarrow T^*X,
\]
the pulled back section \(H_D^* \omega_{D^0} \) produces a section

\[
\widehat{H_D^* \omega_{D^0}} \in C^\infty(X, E_K(p) \otimes_\mathbb{R} T^*X).
\]
(4.5)
Let
\[\omega_D \in C^\infty(X, E_K(p) \otimes T^*X) \]
be the real 1–form constructed as in (3.7) for the pair \((D, E_K)\).

Theorem 4.3. The map \(H_D\) is holomorphic if and only if \(\tilde{H}^*_D \omega_{D0} = \omega_D\) (see (4.5) and (4.6)).

The map \(H_D\) is anti–holomorphic if and only if \(\tilde{H}^*_D \omega_{D0} = -\omega_D\).

Proof. The real tangent bundle \(TM_\Gamma\) of \(M_\Gamma = K\backslash G/\Gamma\) is identified with the associated vector bundle \(E_K(p)\), where \(E_K\) is the principal \(K\)–bundle in (4.2). Also, we have \(H^*_D E_K = E_K\) by Proposition 4.1. Combining these we conclude that the vector bundle \(E_K(p) \to X\) in (3.3) is identified with the pullback \(H^*_D TM_\Gamma\). The \(E_K(p)\)–valued 1–form \(D^p \in C^\infty(X, E_K(p) \otimes T^*X)\), obtained by substituting \((X, D, E_K)\) in place of \((Y, D^Y, F_K)\) in (3.5), coincides with the section given by the differential
\[dH_D : TX \to H^*_D TM_\Gamma. \]
From this it follows that \(\omega_D\) in (4.6) is the section given by the homomorphism
\[TX \to H^*_D TM_\Gamma, \quad v \mapsto dH_D(J_X(v)), \]
where \(J_X : TX \to TX\) is the almost complex structure on \(X\).

Let
\[D^{0,p} \in C^\infty(M_\Gamma, E_K(p) \otimes T^*M_\Gamma) \]
be the section constructed just as \(D^{0,p}\) is constructed in (3.5) after substituting \((E_G, D^{0}, E_K)\) in place of \((Y, D^Y, F_K)\). This \(D^{0,p}\) coincides with the section given by the identity map of \(TM_\Gamma\) (recall that \(TM_\Gamma\) is identified with \(E_K(p)\)). Therefore, the section \(\omega_{D0}\) in (4.4) coincides with the section given by the almost complex structure
\[J_{M_\Gamma} : TM_\Gamma \to TM_\Gamma \]
on \(M_\Gamma\). Consequently, \(\tilde{H}^*_D \omega_{D0} = \omega_D\) (respectively, \(\tilde{H}^*_D \omega_{D0} = -\omega_D\)) if and only if the differential \(dH_D\) takes the almost complex structure \(J_X\) to \(J_{M_\Gamma}\) (respectively, \(-J_{M_\Gamma}\)). This completes the proof. \(\square\)

Now assume that the complex manifold \(X\) is Kähler. This means that \(X\) is equipped with a Hermitian structure \(g_X\) such that

- the almost complex structure \(J_X\) on \(X\) is orthogonal with respect to \(g_X\), and
- the \((1,1)\) on \(X\) associate to the pair \((g_X, J_X)\) is closed.

If \(A\) and \(B\) are Kähler manifolds, then any holomorphic map \(A \to B\) is harmonic [EL, page 1, § (1.2)(e)], [Li]. This implies that any anti–holomorphic map \(A \to B\) is also harmonic; to see this simply replace the almost complex structure \(J_A\) of \(A\) by the almost complex structure \(-J_A\). Therefore, Theorem 4.3 has the following corollary:
Corollary 4.4. Take the Hermitian structure on E_G given by a map $H_D : X \to K\backslash G/\Gamma$. If $\widetilde{H}_D^*\omega_D = \omega_D$, then the map

$$X \to K\backslash G/\Gamma$$

given by a harmonic metric in [Co] is holomorphic. In that case H_D gives a harmonic metric. Conversely, if H_D gives a harmonic metric and $\widetilde{H}_D^*\omega_D = \omega_D$, then H_D is holomorphic.

Take the Hermitian structure on E_G given by a map $H_D : X \to K\backslash G/\Gamma$. If $\widetilde{H}_D^*\omega_D = -\omega_D$, then the map $X \to K\backslash G/\Gamma$ given by a harmonic metric in [Co] is anti–holomorphic. In that case H_D gives a harmonic metric. Conversely, if H_D gives a harmonic metric and $\widetilde{H}_D^*\omega_D = -\omega_D$, then H_D is anti–holomorphic.

References

Department of Mathematics and Statistics, King Fahd University, Saudi Arabia

E-mail address: hassanaz@kfupm.edu.sa

School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha Road, Bombay 400005, India

E-mail address: indranil@math.tifr.res.in

School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha Road, Bombay 400005, India

E-mail address: rajan@math.tifr.res.in

International Centre for Theoretical Physics, Strada Costiera 11, 34151 Trieste, Italy

E-mail address: shehryar.sikander1@gmail.com