Lectures on
Numerical Methods In Bifurcation Problems

By
H.B. Keller

Lectures delivered at the
Indian Institute Of Science, Bangalore

under the
T.I.LF.R.-l.I.Sc. Programme In Applications Of
Mathematics

Notes by
A.K.Nandakumaran and Mythily Ramaswamy

Published for the
Tata Institute Of Fundamental Research
Springer-Verlag
Berlin Heidelberg New York Tokyo



Author
H.B. Keller
Applied Mathematics 217-50
California Institute of Technology
Pasadena, California 91125
U.S.A.

©Tata Institute Of Fundamental Research, 1986

ISBN 3-540-20228-5 Springer-verlag, Berlin, Heidelberg,
New York. Tokyo
ISBN 0-387-20228-5 Springer-verlag, New York. Heidelberg
Berlin. Tokyo

No part of this book may be reproduced in any
form by print, microfilm or any other means with-
out written permission from the Tata Institute of
Fundamental Research, Colaba, Bombay-400 005.

Printed by
INSDOC Regional Centre.
Indian Institute of Science Campus,
Bangalore-560 012
and published by H.Goctzc, Springer-Verlag,
Heidelberg, West Germany
Printed In India



Preface

These lectures introduce the modern theory of continuatiquath fol-
lowing in scientific computing. Almost all problem in scienand tech-
nology contain parameters. Families or manifolds of sohsgiof such
problems, for a domain of parameter variation, are of printeréest.
Modern continuation methods are concerned with generatiege so-
lution manifolds. This is usually done by varying one par@anat a
time - thus following a parameter path curve of solutions.

We present a familiar, interesting and simple example inp&rél
which displays most of the basic phenomena that occur in cwrglex
problems. In Chaptdd 2 we examine some local continuatiothoas,
bases mainly on the implicit function theorem. We go on tooidtice
concepts of global continuation, degree theory and honyotoyari-
ance with several important applications in Chapler 3. layEér[4,
we discuss practical path following procedures, and intcedfolds or
limit point singularities. Pseudo-arclength continuatis also intro-
duced here to circumvent the simple foldfdiulties. General singular
points and bifurcations are briefly studied in Chapler 5 whaanch
switching and (multiparameter) fold following are disceds We also
very briefly indicate how periodic solutions path continoatand Hopf
bifurcations are Incorporated into our methods. FinallZivaptefb, we
discuss two computational examples and some details ofglemeth-
ods employed in carrying out such computations.

This material is based on a series of lectures | presentdub atata
institute of Fundamental Research in Bangalore, Indiangubecem-
ber 1985, and January 1986. It was a most stimulating and/&l
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experienced for me, and the response and interaction wataubdience
was unusually rewarding. The lecture notes were diligergorded
and written up by Mr. A.K. Nandakumar of T.I.F.R., BangalorEhe
final chapter was mainly worked out with Dr. Mythily Ramaswaof
T.I.LF.R. Ramaswamy also completely reviewed the entireusenipt,
corrected many of the more glaring errors and made many atier
provements. Any remaining errors are due to me. The iterdtaon-
verge on the final manuscript was allowed only one step dueetalis-
tance involved. The result, however, is surprisingly clwsparts of my
original notes which are being independently prepared finipation
in a more extend form.

| am most appreciative to the Tata Institute of Fundamergak&arch
for the opportunity to participate in their program. | als@skto thank
the U.S. Department of Energy and the U.S.Army Reseaflce€Onvho
have for years sponsored much of the research that hasectguthese
lectures under the grants: OE-AS03-7603-00767 and DAAGRE-
0041.

Herbert B. Keller
Pasadena, California
December 29, 1986
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Chapter 1
Basic Examples

1.1 Introduction

Our aim in these lectures is to study constructive methodsdtving
nonlinear systems of the form :

(1.1) G(u,2) =0,

where is a possibly multidimensional parameter @ads a smooth
function or operator from a suitable function space intelits Fre-
quently we will work in finite dimensional spaces. In thisragductory
chapter we present two examples from population dynamidssardy
the behaviour of solutions regarding bifurcation, stip@ind exchange
of stability. Second chapter describes a local continnatie@thod and
using this we will try to obtain global solution dfi{1.1). Timportant
tool for studying this method is thienplicit function theorem We will
also present various predictor - solver methods. The thiepter deals
with global continuation theory. Degree theory and somdappli-
cations are presented there. Later in that chapter we widlysglobal
homotopies and Newton methods for obtaining solutions@étijuation
@)

In the fourth chapter, we describe a practical proceduredorput-
ing paths and introduce the method of arclength continnatitsing the
bordering algorithm presented in that chapter, we can coenpaths in

1



2 1. Basic Examples

an dficient way. In chaptdrl5, we will study singular points andibif
cation. A clear description of various methods of contirarapast sin-
gular points, folds, branch switching at bifurcations peiis presented
in that chapter. We also study multiparameter problems,fisifopca-
tions later in that chapter. The final chapter presents sameerical
results obtained using some of the techniques presentée jprévious
chapters.

1.2 Examples (population dynamics)

We start with a simple, but important example from poputatiynam-
ics (seel[11],1Z4]). Leti(t) denote the populations density in a particular
region, at time. The simplest growth law states that tta¢e of change
of population is proportional to the existing density, tist

du
(1.3 ot =pu,

whereg is the reproduction rate. The solution for this problem isgi
by
(1.4) u(t) = u.®%) u, = u(t,).

Note thatu(t) — oo ast — oco. This means that population grows
indefinitely with time. Obviously, we know that such situatiis not
possible in practice. Heng&cannot be a constant. It must decrease as
uincreases. Thus as a more realistic model, wg let a function o,
say linear inu:

(L5) B=hll- )
1

HereB, > 0, is the ideal reproduction rate, angis the maximal
density that can be supported in the given environment.

Note that ifu > u; theng < 0 so that(t) decays. On the other hand,
if u < u; thenu(t) grows as time increases. The solutions curve With
as above is sketched in figurell.1; it is:

U, Uy €51t

(1.6) u(t) = (U1 — W) + e

where u, = u(0).
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u

Uy

-

0

Figure 1.1:

We now consider the more general case, in which coupling avith
external population density, say, is allowed. Specifically we take

@.7) 2—? =p1(1- uﬂl)u + ao(Us — U)

where,

B

Uy

ideal reproduction rate(0),
maximal density

U, = exterior density
a, = flowrate @, > 0 ora, < 0).

Naturally, the population of a particular region may depepon
the population of the neighbouring regions. If the popoladi of the
exterior is less, then species may move to that regign>(0) and vice 4
versa {, < 0). The termu, (U, — U) accounts for this behaviour.

We scalel(T17) by setting

/11='81_Q/OU1,
B
A= Ly
1= Ui,
B
_u
t=f—

B1



4 1. Basic Examples

Then we have
du
(1.8) Fra G(u, ) = -2 + U + .
Herea = (11, A2) denotes the two independent parametgrand
Ao.

STEADY STATES: The steady state are solutions of

G(u,2) =0.
These solutions are :
A A
(1.9) u, = 31 + (71)2 + Ao

These solutions are distinct unless
A
(1.10) 2= ~(5 )

Along this curve in the {3, 12) plane,Gy(u,1) = 0. This curve
is known as a fold (sometimes it is called the bifurcatior) setd the
number of solutions changes as one crosses this curve ($EEF).

A1
two

No sofugAo
Real solution

3, >\2

%
Fold 008 /
A =0
Figure 1.2:

We examine three distinct cases :

() 22=0 (i) 42>0 (i) 12 <O.
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() 22 = 0: The solutions are two straight lines given by= 0
andu = A;. They intersect at the origin. The origin is thus a
bifurcation point, where two distinct solution branches intersect.

(i) A2 > 0: Inthis case, there are two solutiomsandu_, arcs of the
hyperbola, whose asymptotes are giveruby 0 andu = ;.

(i) 12 < 0: In this case, a real solution exists onlyif| > v-41,.
They are the hyperbolae conjugate to those of case (i)
(See FigIR).

(7

x>0 =
o>
//_

)\2<O

Figure 1.3:

A1

The solution surfaces in the space A, 1,) is sketched is Fid_114.6
It is clearly a saddle surface with saddle point at the origis we see
later on, the cases (ii) and (iii) are example of perturbdédrbation.

A2

Figure 1.4:
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STABILITY : To examine the stability of these states we note (1.8)
can be written as:

(2.112) —=—(Uu-u)u-uw).

du
dt

Then it clearly follows that :

<O0ifu<u. <u;

(1.12) >0ifu <u<uy

dt)” -
<0ifu. <uy <u.

This means that decreases when it is in the semi-infinite intervals
U < u- andu,; < u. It increases ini_ < u < u,. Hence it follows that
u, is always stable and that is always unstable. Note that the trivial
solutionu = 0 consists ofu, for 4; < 0. andu_ for 41 > 0. Thus in
the bifurcation casel, = 0, the phenomenon of exchange of stability
occurs asl; changes sign. That is the branch which is stable changes as
A1 passes though the bifurcation valie= 0.

, ¢ .
v A1 /T A

|

¢u_ / % }

Figure 1.5: , = 0) Figure 1.6: Q> > 0)
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Figure 1.7: Q> < 0)

We consider another model of reproduction ggtsay, quadratic in

u:
u
(1.13) p=Fll- ()]
1
Then equation{1]8) reduces to :
du 3
. -V = £ = - 1 25
(1.14) 0 G(u, Q) = -u+ U+ A
where now :

a
A1 = l——u2,
1 ( ,31)1

L= L2y
2=_ 09
gt
2
u
t=t—.
b1

As before we find steady states and then examine their syafilie
study states are given by the roots of :

(1.15) Gud)=-ud+u+l=0

The three roots are given by :

(1.16) U =a+bu = —(a%b) +i @(a%b)
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where,
A2 ’15 ‘li 1/2)3
a (7 + (_ _ 2_7)
b A2 'lg ’li 1/2)Y3
(7 + (_ _ 2_7)

In particular either we have 3 real roots or one real rootaflyeif

4 . .
/15 - 2—7/1f > 0, the there will one real root and two conjugate complex

4 . .
roots. If/lg - 2—7/13 = 0 then there will be three real roots of which two

4 . .
are equal. If15 - 2—7/@ < 0 then there will be three distinct real roots.
This can be seen as follows. Put

a= (ay +iby)¥3, thenb = (a1 — iby)*3.

By changinga; + ib; to polar co-ordinates, we can easily see that
a+ bis areal number and— b is purely imaginary. Now

Gu(u, ) = —=3u® + 1;.

Combining [I.Ib) together witG,(u, 1) = 0 we get

27
(1.17) 2= ng.

This curve in the {1, 1) plane representsfald where the two real
roots become equal; across the fold they become complexin Agée
that across the fold (Bifurcation Set) the number of sohgichanges.
Observe that al, = 0, the solution contains the trivial branch= 0
and the parabola whose branchestare- + v/1; which passes through
the origin. Hence the origin is kifurcation point. We call this con-
figuration apitchfork bifurcation. For A, > 0 or A, < 0 there is no
bifurcation. The fold has a cusp at the origin and is sket¢chédg.[T.3.
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7

3 solytions

l 1 solution o

Figure 1.8:

Now we will analyse the stability results inftérent cases.[{1I4)
can be written as :

(1.18) — =—(U—Ug)(u—uy)(u—u).

du
dt

(i) A2 = 0: The dynamic in this case are simply generated by,

(1.19) T IR/ (RSN}

and hence we see that:

>0ifu < -1 <0,
du|<0if — VA1 <u<0,
dt |>0if0 <u< VI,

<0if0 < VA1 <u.

(1.20)

Thusu, is stable forl; < 0 and it becomes unstable &schanges
sign toA; > 0. In this latter range both, are stable.

(i) A2 > 0: Then

> Oif U< U,
Oif up <u<u,

(1.21) du >0ty <u <
dt |>0ifu. <u<u,,

<0ifuy <u
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(i) A2 < 0: In a similar way the stability results can be obtained here

also.

The stability results are indicated in figufeslIL9, L[T0J1.The
solution surface is sketched in figure~1.12.

5 ¢ £ A1

!

(/\2 = (J) U_

Figure 1.9: {2 = 0)
11

|

Figure 1.10: 4> > 0)

Figure

u

S~

1.11: {» < 0)

A

/

=7

Figure 1.12:
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Now we present one more example from population dynamics1in
which there are two species in the same region. We know that ik a
constant struggle for survival amongdfeérent species of animals living
in the same environment. For example, consider a regiorbitdthby
foxes and rabbits. The foxes eat rabbits and hence this gapuigrows
as the rabbits diminish. But when the population of rabbésrdases
suficiently the fox population must decrease (due to hunger)a fes
sult the rabbits are relatively safe and their populati@antstto increase
again. Thus we can expect a repeated cycle of increase arehde®f
the two species, i.e. a periodic solution. To model this phanon, we
take the coupled system :

=l - (5 - (7 T+ allo ~ O) - 7

(1.22) Ul \71

Vi =Byl - (T)Z - (~_)2] V+ (Vo — V) + 0.
Ug Vi

Hereld'is prey density and is predator density ang,™> 0, y, > O.
We have also assumed that both species compete for the sage “v
tation” so that each of theirfiective reproduction rates are diminished
together. To scale we now introduce:

] v
u= ~ vV = ~
Vi 1
G Y/
(1.23) Up = =2 Vo = \7—0
1 1
1 _
Yu = )’uul, W = val-

But to simplify we will consider only a special case in whidiet

eight parameters are reduced to one by setting : 13
Bu=Bv=yvww=w=1
(124) Uo = VO = O,

/l::l.—a’u:l—a’v.

Note that herel is similar to the parametet; of our previous ex-
ample.
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Now (I.Z4) reduces to the system :

u (4 -1\(u 2 u
w2 () =6 TGl
Note that(tj) = (8), the trivial solution is valid for alll. First we

consider a small perturbatiof§?) about the trivial solutior(g). This
satisfies the linearized problem :

(1.26) (2”) = A(i“) where A = (/11 _/11)
v/t v

The eigenvalues oA are given by :
(1.27) n.=A=+I.

These eigenvalues are distinct and hence the solutionsedirth
earized problem must have the form :

ou = a et + ae™t

1.28
( ) oV = ble”+t + bze”-t

For all 1 < 0, we thus have thatu, 6v — 0 ast — . Hence the
trivial state is a stable solution. On the other hand, i 0, thenéu, sv
grow exponentially as — oo and the trivial state is unstable far> 0.
Observe that there is an exchange of stabilitylagosses the origin.

For A = 0 we get periodic solution of the linearized problem. Indeed

we nhow show that the exact nonlinear solutions have singlatufre, but
that stable periodic solutions exist for alb> O.
Introduce polar co-ordinates in the, ¢) plane :

U= pcosh,v=psing,

1.29
(1.29) u2+v2:p2,tan9:\—L:.

The system[{1.25) becomes, wijtte O:

(1.30) p €oSf—ph sin 6= Ap cosf—p sin@—p° cosé,
' O Sin@+pH cosl=p cosb+p sin@—p° cosé.



1.2. Examples (population dynamics) 13

Appropriate combinations of these equations yield :

(1.31) p=ap-p°=p-pd)
(1.32) f=1+1

Thusé(t) = 6 + t, wheredy is an arbitrary constant. Froa{1131),

for 1> 0, p(t) is given by,o(t)(L'o(t))l/2 = Ce!t, wherer = V1andC

- p(t)
is an arbitrary constant. Far< 0, p(t) is given byL = Cell,

VP2(t) - 4

We now examine two casds> 0 andA < 0.

() 2 <0: Thenp < 0O for all t. This impliesp(t) decreases to 0 ds
increases.

(i) A > 0: Here we have to consider 3 possibilities for the state yat an
timetg:

(i) p(to) < per = VA

Now p(t) < 0 andp(t) increases towargs; ast T co
(iib) p(to) > per

Now p(t) < 0 andp(t) decreases towargsg, ast T oo

(iic) p(to) = per
Now p(t) = 0 and we have the periodic solution :

u= Pecr Ccos 60 + t),V = Pecr Sln (90 + t)

These solutions are unique upto a phage;The “solution surface”
in the (U, v, 1) space contains the trivial branch and a paraboloid, which
is sketched in Fid_1.13
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) w ecr:\/X

-

dn

~.

Figure 1.13:

This is a standard example of Hopf bifurcation - a periodicithon
branches fi from the trivial steady state akcrosses a critical value,
in this casel = 0. The important fact is that for the complex pair
of eigenvalues. (1), the real part crosses zero and as we shall see in
general, it is this behaviour which leads to Hopf bifurcatio

We have seen the change in the number of solutions across fold
and two types of steady state bifurcations and one type dbgierbi-
furcation in our special population dynamics example. Wallsfow
study much more general steady states and time dependdnhtmpsoin
which essentially these same phenomena occur. Indeed thdp a
sense typical of the singular behaviour which occurs asnpeters are
varied in nonlinear problems. Of course even more varie@viebr is
possible as we shall see (séé [411[18[1[23], for examplefe Of the
basic tools in studying singular behaviour is to reduce tisract case
to simple algebraic forms similar to those we have alreadglistl (or
generalizations).



Chapter 2
Local continuation methods

2.1 Introduction
17

We will use a local continuation method to get global solsi@f the
general problem:

(2.1) G(u, 1) = 0

Suppose we are given a solutiar?,(1°) of (). The idea of local
continuation is to find a solution af{ + §1) for a small perturbation
61. Then perhaps, we can proceed step by step, to get a glolbal sol
tion. The basic tool for this study is the implicit functiohebrem.The
continuation method may fail at some step because of théeexis of
singularities on the curve (for example folds or bifurcatfmints). Near
these points there exist more than one solution and thedinfalnction
theorem isotvalid.

First we recall a basic theorem which is the main tool in pnguhe
implicit function theorem.

2.2 Contraction Mapping Theorem

Let B be a Banach space and: B — B satisfy

(@) F(Q) c Q for some closed subsétc B.
(2.2) (b) IIF(W = FW)II < 6llu - V|| for somed €
(0,1) andforall uve Q.

15



16 2. Local continuation methods
Then the equation
u=F(u

has one and only one solutiori & Q. This solution is the limit of any
sequencéuy}, U =0,1,2, ... generated by

@) U, € Q, arbitrary;

(23) (b) uysr =F(u),U=012......

The convergence is such that

U U

" 0 0
(2.3) ©Iu* —uyll < m”uo - F(uw)ll = m”uo = Uyl

Proof. Well known O
We will state another lemma which shows how to find aéetn

which the conditions of theorerfi{2.2) hold.

2.4 Contracting Ball Lemma

Letp > 0,0 € (0, 1) be such that for some,& B, F satisfies:

(@) lluo — F()ll < (1 - O)p.

@4 () IFU) - FO)I < ellu—i forall ,uve B)(u).

where
By(Uo) = {u€ B [lu—Uoll < p}.

Then the condition§Z.2) of theorem(Z2) hold withQ = B, (Uo).
Proof. For anyu € B,(up),
IF(U) = Uoll < [IF(U) = F(uo)ll + lIF(Uo) — Uoll < Bp + (L = O)p = p,

which proves (a) ofl(Z]2). Part (b) di{2.2) is trivial m|
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2.5 Fundamental Theorem of Calculus

Let F be a diferentiable operator defined on a Banach space B. Then
forallu, ve B;

1
(2.5) F(U) - F(v) = f %F(tu+(l—t)v)dt
0

We have on dferentiating
dEtF(tu +(1-tVv) =Fytu+ (L -t)v)(u-v),

and if we see
1

Fu(u,v) = fFu(tu +(1-tv)dt
0
then we obtain the mean value formula :

(2.6) F(u) — F(V) = Fy(u, V)(u — V).

This is valid providedF is differentiable on the “line” joiningu
andv.
Now we will state and prove:

2.7 Implicit Function Theorem

Let G: By x B, — B satisfy for somep; > 0, p» > 0, syficiently
small, (B is a Banach space and,Bs the parameter space, either o
is Euclidean space or more generally it can be a Banach sptue)
following conditions:

(@) G(u°, 1% =0 for someu? € By, A° € By.
27 (b) GO =Gy, 29 is nonsingular with a bounded
' inverse, i.e. :[[(GY)~1| < My, for some constanitlo.
(¢) G(u, 1) andGy(u, ) are continuous orB,, (u°) x B,,(1°).
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Then for alla € B,,(2°), there exists (1) € B, (u°) such that:

(d) u(2°) = °
(e) ExistenceG(u(1), 1) = 0.
() Uniqueness : Fonl € sz(/lo) there is no solution of
(2.7) G(u,2) = 0 in B,,(u°) other thanu(d).
(g) Continuous dependencei(l) is continuous on
B,,(1°) and has, upto a factor, the same modulus
of continuity with respect tal, asG(u, 1).

Proof. SinceG) is nonsingular, it follows that:

Gl = Gou - G(u, 2) if and only if G(u, 1) = 0.

HenceG(u, 1) = 0 is equivalent to :

(2.8) u = (GOu) G2 - G(u, )] = F(u, 1)

Thus the problem of solvinG(u, 2) = 0 reduces to finding the fixed
point of the operatoF (u, A) for a givenA. Note thatu® is a fixed point
for 1 = A°.

Next, we will check the conditions (a) and (b) of the confiragt
ball lemmal(Z}) so that we can apply the contraction mapfhiagrem
Z32). Take any € By, (1°) and useF (WP, 2°) = WP, to get:

IW® = F(, )l = IF (U, 2% - F(u, )]
< MollG(W, ) - G(u, )]
< Mowo(] 2° = ).

Thus we have
(2.9) U = F (W, D)l < Mowo(p2)-

Here we have introduced the modulus of continuitydefined as:

(2.10) wolp) = sup IG(u, 2) — GV, )II.
1=l < p,
{/1, le sz(AO),]

u,v e B, ().
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wo is honnegative and nondecreasing and alg) — 0 asp — 0 by
(7c). Next fou, v € B, (u°), we have:

F(u,2) - F(v,2) = (G)[Go(u - V) - (G(u, 2) - G(v, )]
(2.11a) = (GY)YGY - Gy(u, v, D](u - V),

where,

1
Gu(u, v, 2) = f Gu(tu + (1 — t)v, A)dt.
0

Thus we have:
1

G2 - Gy(u,v, 1) = f [Gy — Gu(tu + (1 - t)v, )]dt,
0

1
B f [Gu(P. 2°) = [Gu(W, 2) + [Gu(W°, 2)
0

(2.11b) = Gy(tu + (1 - t)v, A)]dt.
But
(2.11¢) IGU(P, 2% = Gu(U, D)|| < wa(p2).
and
(2.11d) IGu(WC, A — Gy(tu + (1 — t)v, )| < wi(p1),
where we have introduced the moduli of continuity andw, as :
wifpr) = sup IGO0, 2) - Gy(w, D)l
2 € B,,(1°)
w, € B,, (W0),
and _
wa(p2) = sup IGu(u, 4) = Gu(v, DII-

A, A€ B,, (29,

[u,\ie Bpl(uo),’
1= 2] < p2.

22
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Again note thatv; andw- are nonnegative and nondecreasing. Also

wi(p1) — 0 asp; — 0 andwy(p2) — 0 asp, — 0 by (ZIIt). Now
using the results (2.11) it follows that :

(2.12) IF(u, 2) = F(v, DIl < Mo(w1(p1) + w2(p2))llu— VI|.

For any fixedd € (0,1) we can choosg; andp, small enough to
make :

(2.13a) Mo(w1(p1) + w2(p2)) <6 < 1.
Now fix p; and reduce; (if necessary) so that:
(2.13b) Mow1(p2) < (1 - 0)p1.

Then [Z9) and[{Z12) together show that the conditions rofie
&32) hold for somep; andp,. Hence we can apply the theoren{2.2)
which prove the result§{d.7d,e,f).

Now we prove[ZI7g). Fat, A € B,,(1°), we have:

uCD) = Ul = 1IF (), ) = u(DIl
< IF(u(). ) = IF (). DIl
+ ||F(u(/ll, 1) = F(u(1), /l)||_,
< 61u(2) — uCDIl + Mowo(1 - ).
by (ZI0) and[Z12). Thus we get :
10G8) ~ U < 7% ol ~ )

This shows thati(1) is continuous ierz(/io) and has the same mod-
ulus of continuity with respect ta, asG(u, 1), upto a scalar multiple
Mo/(1 - 6).

2.14 Step Length Bound

The Implicit function theorem simply gives conditions uneéich one
can solve the equatioB(u, 1) = 0 in a certain neighbourhood af, 1°.



2.14. Step Length Bound 21

In other words, if (°, 2°) is a solution, we can solv&(u, 1) = 0, for
eacha € B,,(19), for somep, > 0. It is interesting to know (especially
for applying continuation method) how large the neighboodB,,(1°)
may be. In fact actually we want to find the maximwm for which

Z134,b) hold.

We assumé& andG,, satisfy Lipschitz conditions. Thus
(2.15) wy (p) = Kup, U= 0, 1 2.

To get an idea of the magnitude of these Lipschitz constaatsate
that for smoottG: 24

Ko % [|Gall, K1 ~ [IGuull, K2 ~ [IGyall-
Using [ZI5) in[[Z13b) gives :
MoKop2 < (1 - 6)p1.

Thus if we take :

(1-6)o1
2.16 =—=
(2.16) P2= Ky

then [Z13b) holds. In addition we require:
Mo(Kyo1 + Kopp) <6 < 1.

Thus if we take

_ 60— MoKop2
pl - MOKl 1)
then [2.I6) yields,
_(1-0)p
where,

A= MZKoKy + B, B=MoKo.

We want to maximize, as a function o over (Q 1). The following
properties hold (see Fig2.1):

(i) p2(0) = p2(1) = 0.
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(i) p2(0)>0foro< 6 < 1andpy(0)<0ford <O0.
(i) p2(0) —» —c0 as6 T A/B.

(iv) for & > A/B, p2(0) > 0 andp,(0) —» « as# | A/B and also as

0 — oo

O 6 \A/B 0,

62(9)

Figure 2.1:
25
Thusp»(0) has a maximum & = _¢(0.1) and a minimum af, >
A/Bwhich are easily determined to be :

A
6. = 5l1=(1-B/AY?
The maximum is thus:

[1-5(1-(1-B/AYYL-1-B/AY?
B(1 - B/A)Y/?

Pomax = P2(0-) =

We write:
A 1 1 MoKoKy
B £ € Ko

(2.172) 0. ==+Z 4. ,

(2.17b)  po =
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We recall thatMg = [|(G2) Y. Then ifG) becomes singular during
continuation,Mg becomes infinite and the continuation procedure ex-
plained here must fail. We notice this phenomenon first by ¢lgeired
step sizes getting smaller. Also note that small stepstrésuoh larger
Ko, K1 andK5 as well.

In the implicit function theorem, we assumed that there islat®n
(u°, 29). Next we prove a similar theorem in which we assume only that
IG(WP, 29)|| is small.

2.18 Approximate Implicit Function Theorem

Let G: B; x B, — B satisfy for someé > 0, p1 > 0, po > 0 syficiently
smalt

(@) IG(U°, 29 < 5 for some P € By, A° € B,.
(b) GO isinvertible and||(GJ)Il < Mo
for some constaniVl,.
(c) G and G, are continuous orB,, (u°) x B,,,(19).

(2.18)

Then there exist(W), for all A € B, (u°), such that

(d) G(u(2),2) =0 and U2) € (U%B,,(u0) [Existence]

(e) Foragivena e sz(/lo) there is no solution of
G(u,2) =0 in B,,(u°) other thanu(2) [uniqueness]

() u(2) is continuous oanz(/io) and has the same modulus
of continuity asGy(u, 1) [continuity].

Proof. We can prove the result in the same way as we have proved
the implicit function theorem. Sinc€? is nonsingular, the problem
G(u, 2) = 0 reduces to the fixed point problem

u=F(u,A2).

where 27
F(u, 1) = (G G0 - G(u, 1)].

New for A € B,,(1°), we have:

U = F (U, Il < 1 = F(U, 9 + IF (W, %) = F(, )l
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and so:
(2.192) I = F(W®, )l < Mo(8 + wo(o2))-
Herewy is given by [Z1D)(2.10). Next, far, v € Bpl(uo):
F(u, ) - F(v, ) = (G)) [G] - Gu(u, v, )(u - v),

whereGy(u, Vv, 1) is defined as in[{ZI1a). Again usifg{ZlL1b,c,d) we
obtain:

(2.19Db) IF(u, 2) = F(v, DIl < Mo(w1(p1) + w2(p2))llu = VvI|.

Now for anyd € (0, 1) , choosep; andp,, small enough, such that :

(2.19c¢) Mo(wi(e1) + (w2(p2)) <6 < 1,
and
(2.19d) Mo(6 + wo(p2)) < (1 - 0)p1.
Now we can apply the contraction mapping theorem to obtaén th
results o

2.20 Step Length Bound

We can also obtain step length bounds as before. Thus we a{2Ub)
to hold and use it in(Z.19d) to get

Mo(6 + Kop2) < (1 - 60)p1

If we take :

_ (1=6)p1 = Moo
MoKo

then [Z.I9H) holds. Again froti(Z.719¢), usifig(2.15) we rexju
(221b) MO(K]_p]_ + szz) =60<1

(2.21a) P2
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Substituting the value gf; from (ZZTh,b) we get:

(1-6)9-C

— o~ ’
02(0) A BY

where,
A= M3KoKy + B = MoKz, C = M3K;6.

02(0) is sketched in fig—2]2. We see tha{(0) has a maximum & €
(0,1) and a minimum ad, > A/B which are given by :

0, = g{l + (1- B/A - (B?/A%)C)Y?}.
The maximum is thus:
P2max = p2(6-).
We haveC > 0 andA - B# > 0 if 6 < A/B. Hencep, max in this

theorem is less than that in the original implicit functidreorem. We
write:

g =1+ :EL where ¢ = ﬁ,
and
C = M3Ky6 = Dé,
whereD = M. If £ is small say, O< ¢ << 1, then we have the29
expansions:
0. =21+D)+E@A-D)t-ee- ,
2 8
and
_ (1-D)?+3(1-D)?e- 3(1-D)*e? +------
P2max =

(AM2KoKy + 2MoKp — 2MoK,D) — M2 (1~ D)2e + -+ --

Again as before, we can see thathaxis small if Mg is large. Note
thatoo max is always less thap, maxin the implicit function theorem.
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\/

N\
o)y 6\ 1A/B 6,

0

Figure 2.2:

2.22 Other Local Rootfinders

Letg: R — R be a smooth function. We will examine various methods

for finding the roots ofy(x) = 0. In particular, we consider the chord

method, Newton’s method etc. In the chord method, we chooseia

tial estimatexg of the solution and a slope a. Then the line with slope

‘a’ through (xg, g(Xo)) will intersect thex-axis atx;. This is the next ap-
30 proximation to the solution. We continue the process witheplacing

X0, Using the same slopea’‘(See Fig[ZB). More precisely,

a(x1 — Xo) = —9(Xo)

and in general

(X1 — %) = —9(%)
The sequencesy} thus generated, converges to a zg(x) if,

g

max|1 — ‘<l,
a

xeH

whereH is an interval containing both the initial value and a roothef
equation.
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(20, 9(z0)]_—g()
[z1,9(21)]

O /{L‘O I Lo

Figure 2.3:

In the higher dimensional case, we generalize the abovettthge
sequencguy }, form:

Aluy+1 - uy] = =G(w),
whereG : R" —» R" andA is ann x n matrix. In particular if we use:
a =g (Xo) andA = Gy(up),
we get the special Newton method. 31
In Newton'’s method we vary the slope at each iterate and take :
ay = 9g'(x)
Ay = Gy (w).

The Newton-Kantorovich theorem gives conditions undercivitihe
Newton iterate converge.

2.23 Newton-Kantorovich Theorem

Let G : B —» B (B is a Banach spacesatisfy for some U e B and
Py >0
(2.23)

(@) Gy(u°) is nonsingular with||(G%) 1| < s;

(b) IGELUI)G(WO) < o;

(©) 1IGu(U) - GuMIl < llu =i, inforall u,ve B,-(u”)\ {(u))
1- {1-2aBy

By

(d) aBy < % and p; <
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Then the Newton iteratdsy } defined by Newton’s method
Gu(Uu)[UU+1 - Uu] = —G(Uu), u=012,......
with up = W satisfy

(e) uy € Bp(-)(uo).
(2.23)  (f) {uy} converges ta*, a root of G(u) =
0 in Bpa(uo).

In addition u is the is the unique root of G inpaB(uo) where

p5 = (L+ (1 - 2aBy)"%)/By.
Proof. See the referencg 1116] m|

Now we prove a theorem, assuming the existence of a rootow sh
the basic idea of how the above method works.

2.24 Newton Convergence Theorem

LetG: B — B and Qu) = 0 have a root u= u*. For somep,. > Olet G
satisfy

(a) IIGGHW)I < 5.
(224) (b) ”GU(U) — Gu(v)” < )/IIU - V”, fOf a.” u,ve Bp*(u*).

(©) pBy < g

Then for every gic B, (u*) the Newton iterates satisfy

(d) uy € B, (u);

2.24 .
(2.24) (e) lluys1 — |l < aluy — u|%;

where
By 1

azs ————< —.
2(1-p.By) P
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Proof. For anyu € B, (u*) we have the identity :
Gu(U) = Gy + Gy U)[Gu(Y) — Gy(u)])-

Then [Z21a,b,c) imply that:

G WIGU(W) ~ Gulu )l < .y < 5.

Hence, by the Banach lemmi,+ G;1(u*)[Gy(u) — Gy(u")]} is in- 33
vertible and so i€5,(u). From the same lemma we get the estimate :

2.25 Gt B .
(2.25) G Wl < 7=~ =

Now we will prove by induction thatiy € B, (u*),u=0,1,2,....
Supposeyy € B, (u*). Then

Uys1 — U = (Uy - U") = Gy ()[G(uy) - G(u)].
By the mean value resulf{2.6), we have :
G(uy) ~ G(u") = Gy(uy, U (uy — u),
and so:
Uy+1 — U" = Gy (uy)[Gu(uu) — Gy(uy, u”)I(uy — u).

But

1
1Gu(Uy) - Guluy. Ul < f 1Gu(Uy) - Gultuy + (1 )i dt
0

1
<y f 1L - ty(uy — ) dit
0

Y %
= Z{juy — u|l.
Sliuu — Ul
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Hence
lUysg — U] < IIGal(UU)H%IIUU — U,
(2.26) B vy 2
<—F Dy -uwp2,
1-p.By2

by (Z25). Note that

By 1 .
— L < Zand|uy - u'|| < p..
21-p.By) ~ ps

Henceuy.; € B, (u*) and by induction (d) follows. Then (e) fol-

lows from [Z.Z6). i

Note. The convergence here, is quadratic. Thus if
aluy - ull <107
for some positivepy, then
aluysr — U < 10727Yjuy — u*|| foranyr =0,1,2,.......

The choice of the initial iteratey, is important in using Newton'’s
method. It is not uncommon to spend 90% or more of tfferkin
finding a food approximate value of the root. Our study withstmany
ways in which such diiculties can be overcome. Another problem with
Newton’s method can be the time it takes to solve the linestesy for
the new iterate. This occurs, for exampleBift= RN for very largeN,
sayN ~ 10° or larger (when approximating nonlinear P.D.E. problems).
The so calledquasi-Newton methodsare designed to avoid the linear
system problem by some device (for example updating secatitat,
which we are going to describe in the next section).

2.27 Predictor-Solver Methods

LetG : RN xR — RN. At the root (°, 1% of G(u, ) = 0, letG be
nonsingular. Then the implicit function theorem shows tkistence of
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the unique branch of solutions= u(1) in a neighbourhood of®. We
will briefly describe variougpredictor-sovler methodsfor determining

u().

These proceed by using the solutia,(1). to construct a better

approximationug(1) to the actual solutiomi(1). This is the predictor.
After obtaining the initial approximation, we apply an &aéon scheme 35
for which the sequence of iterates converges to the soluii@n This

is the solver.

Various Predictors

() Trivial Predictor : Here we take the initial approximation as (see

(ii)

(Fig.[Z3a)):
Ug(2) = U = u(1%)

i.e. the initial guess al is equal to the solution at’. The error
estimate is given by :

[Iu(2) — uo()l = Ilu(2) — u(,

0 0
< — A—=A7)).
_1_9w0(| )

Hereu() is the actual solution andg is given by [ZID). IG(u, 2)
is Lipshitz continuous i then

Mo
lu(2) — (DIl < ol - 29,

whereKg is the corresponding Lipshitz constant.

Secant-Predictor Here we assume that there are two known solu-
tions °, 2°) and @, A1). Then consider the line segment joining
(U, 29 and (1, %) in the (U, 2) space. Takeip(1) as the point on
this line with giveni-coordinate valud. (See Fig[ZZ1b) i.e.

w0

1
_d N
Up(A) =u +(/l—/l)—/11_/10.

Then 36



32 2. Local continuation methods

Y
Sl - u)

= U (2, AN = A1) = (1= Y, (AL, 20).

u(2) — ug(4) = [u(2) — u(ah)] -

By the mean value formul&(2.6):

1
u(d) — ug(d) = f difu; + (1 - 1)1 — uy(tat + (1 - 292 - b,
0

1 1
- f dt f {Un(S(E + (1= A1) + (1 - 9t + (1 - 1)2%)
0 0

t(a— Y + (1 -t - 29)(1 - aHds

Again we have usdé{2.6). Thus we get:

1U00) ~ o0 < SKal(d ~ A1)+ (4~ 292~ ),

1
= SK(A- -, L<at<n,
where,
Kz = Ko(1) = _max [lup ().
Ae[a0,4]
SinceA® < At < 4, this is an extrapolation.

In the interpolation case, that i9? < 1 < A%, we have :

IU00) ~ (A0l < SKa(2 - 9t - )
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(iii)

(iv)

(um )‘)
(u, )~ "

(@ (b)

Figure 2.4:

Higher-order Predictor (Lagrange): If we know more than two 37
solutions, then we can take higher order approximationsaoext
solution by using order interpolation formulae.

Tangent Predictor (Euler method): In the secant predictor meth-

od we assumed the existence of two solutions and then used the
line segment joining these two solutions. Now we will coesid
only the solution at a single point and use the tangent todhe s

tion curve at that point. (see Fig—R.4). From the implicitdtion
theorem we have:

G(u(2), 1) = 0 for all A € B,,(1°).
Differentiating with respect to, we get:
Gu(u(4), (1) = =Ga(u(a), (1),

and thus
w0 = (2% = —(GY*GY.

Then we take the approximation as :
() = W0 + (1 — 2°)iP.
The error is given by:

) ~ () = S0~ 1 + 0 - 1o)).
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u (to, A)

(u®A°)

)

Figure 2.4: (c)

Solvers Now using predictoug(1), our aim is to construct an iteration
scheme of the form

Au(uys1 —Uy) = -G(uy, 2),U =0,1,2,------ ,

where{Ay} are suitable matrices which assure the convergen¢e of
to a root
(i) Special Newton Method
In the special special Newton methad¥, is given by the constant
operatorG).
(i) Newton’s Method

In Newton's methodAy = GY = Gy(uy, ). One of the impor-
tant advantages of Newton's method is that it can have gtiadra
convergence i.e. the sequencg ) satisfies :

2
luy+1 — Ul < Blluy — 1%,
for some constamg, whereu* is the actual solution.

(iii) Updating-Secant Method

As mentioned above a major disadvantage of Newton’s method i
that we need to solve a linear system with thefoient matrix

G stepU = 0,1,2,....... This costs O3) operations at each
step, whereN is the dimension of the space.
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Now we will introduceUpdating-Secant Method.The idea of this
iteration scheme is to obtain a suitable approxima#ignto GY so that
the system atl + 1) stage can easily be solved if we can solve the
system alU™ stage. FurtheAy.; is to satisfy a relation also satisfied
by GY+1. We will take Ay 1 in the form:

(2.28) Aus1=Au +CyR]),

whereCy andRy are column vectors of dimensidthandAy is anNxN
matrix. In particular we choose:

o, = Yu—AuSu)
v= < Su,SU >’
and
R} =S,
where

Yu = G(xu+1) — G(xu) andSy = Xy+1 — Xu.

Now we have to solve the linear systeluSy = —G(xy) at each
step. But this can be easily achieved using the Shermanmniddorfor-
mula [for more details se& [12]).

2.29 Lemma

Let A be anN x N invertible matrix andu, v € RN. ThenA + uVv' is
nonsingular if and only ifr = 1+ (v, A"tu) # 0, and then the inverse of
(A + uv') is given by

(2.29a) Aa+uw)t=A1- Lt at
a
Using this result andTZ27), the inverseAyf,; is given by
(su = AgYu)SLAG

(2.29b) AL, =At+
vl (su. Aju)

40
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This method uses only BE) arithmetic operations. Naturally, we
can expect a loss in the rate of convergence compared to Newto
method here we get onlsuperlinear convergencastead of quadratic
convergence. i.e.

luys+1 = Ul < aylluy — Ul

where
ay —» 0asU —

This is generally known as a Quasi-Newton method (seelrpf: [9



Chapter 3
Global continuation theory

3.1 Introduction
41

In this section we will discuss some preliminary aspectschvlaire use-
ful in the study ofglobal continuation results We will start with some
definitions regarding the functid® from RM into RN. The Jacobian of
G(X) is:

== @ .
G'(x) = I (X = (Xj (Xa, - --,XM))llsSJél\N/I,

wherex = (x1,...xm)T andG = (g1,...gn)" - G'(X) is anN x M matrix
and its rank must be less than or equal ti mih1).

Definitions. (1) LetG be continuously dferentiable. Let

C = {xe RM: RankG'(x) < min(N, M)}.

The points inC are called critical points d&.

(2) The regular points are the points in the complemef,afenoted
by RM\C.

Note: The domairRM can always be replace by the closure of an
open set irRM.

(3) The image of the s& underG, i.e. G(C) which is a subset &N 42
is the set of critical values d@b.

37
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(4) The complement oB(C) in RN is the set of regular values 6.
i.e. RN\ G(C).

Now we will state and prov8ard’s TheorenfSee [26]).

3.2 Sard’s Theorem
Let Ge CI(RM) n CM-N+L(RM), Then GQC) hasRN - measure zero

Proof. We will prove the result foM = N. The caseM < N is trivial.
In this case there exist a nontrivial null vector®@f. This is precisely
the idea we are going to use in the cdde= N. ForM > N seel[1].

So assumeévl = N. Let Qy be an arbitrary cube i&RN of sideL.
(Therefore vol Qo) = LN). We will show that volume®(C n Qp)) is
zero which implies that the measure®(C) is zero, since is arbitrary.

With ¢ = % let {g;} be the set cubes of sidefor j = 1,2,...nN,
which form a partition 0fQq. i.e.

nN
Qo = U q;-
=1

Assume that eact); contains at least one critical point, say Let
X € gj, then

G(X) = G(X + (x = x}))
= G(x) + G’ (x)(x - X)) + o(¢),
where@ — 0ast¢ — 0.

Using the fact that, ranks’(x)) < N — 1, we will show that for
suficiently small¢, Zi(x) = G’(x})(x — x}) lies in N — 1 dimensional
subspace oRN asx varies. To see this, let! be a unit null vector of
G'(x}). Put

Y0 =x-x =[yl- <yl &>+ <yl g > 8.
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Note that the vectoyl— < yi, &l > &I has no component in thg
direction and hence it lies in @d— 1 dimensional subspace BY. As x
varies oven;, all these vector&Z (x)} lie in the sameN — 1 dimensional
subspace. Sind®’(x!) is independent o%, the measure of the set

(G (9 : xeqy)

is less than or equal t&¢)"-*, whereK is a constant (maximum elon-
gation constant foG on Qp). Hence the volume diG’(x!))y! (x) + o(¢) :
x € q;} is less than or equal t&¢)N-1 x o(¢). Thus

Vol{G(C n Qp)} < nV(CH)No(e)
o(¢)
2
This proves Sard’s theorem for the cdde< N. O

= (N 1LM=2 S 0ase — 0.

3.3 Examples

(1) Consider the example from population dynamics:

G(u, ) = U2 — 1u— .

Take
X1 u
X=|Xo| = |A2].
X3 A3
ThenG(u, ) and its derivative can be written as 44

G(X) = X§ — XoX1 — Xa,
G'(X) = [2x1 — X2, —X1, —1].

Rank G’(X)) = 1, which is the maximum rank. Therefore there
are no critical points for this problem.

(2) DefineG : R? — R by:

G(X) = X2 — xox1 — k wherek is a constant.
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Then
G'(X) = [2X1 = X2, —X1].
and it has the maximum rank 1, exceptxat (0,0) whereG’(X) has
rank zero. This is a critical point and it is the only critigadint. The
critical value isG(0) = —k.
Observe that the solution curves®@fu) = 0 are two disjoint curves
for k # 0. Fork = 0O they are two lines which intersect at the origin,

which is a bifurcation point. See Fig_B.1.

/
/ /
/ T

Figure 3.1:

3.4 Solution sets for Regular Values

45
We study now the solutions @(X) = p, Wherep is a regular value.

3.5 Lemma (Finite Set of Solutions)
Let G: RN — RN with G € CL(Q), for some bounded open etc RN

Let pe RN be aregular value of G such that
G(x) # p for x e 0Q.

Then the set G(p) N Q is finite, where
G(p) = {xe RN : G(x) = p).
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Proof. We give a proof by contradiction. L({;t(,-}‘l?‘;l e G(p)n Q and
assume alk;’s are distinct. Then some subsequencexpf converges

to somex* € Q. By the continuity ofG, we have:
G(X) = p.

This impliesx* ¢ 9Q. However by the implicit function theorem,
there is one and only one solution= x(p) of G(X) = p in some open
neighbourhood ok(p). This is a contradiction, since every neighbour-
hood ofx* contains infinitely may;’s. This complete the proof. O

Next, we will consider the casé : RN*1 — RN and study the
solution setG~(p), if pis a regular value.

3.6 Lemma (Global Solution Paths)

Let G : RN*1 — RN and G € C3(RN*Y). Let p be a regular value 46
for G. Then G1(p) is a Ct, one dimensional manifold. That is each of
its connected components igfdomorphic to a circle or infinite inter-
val. In more detail, each component of¥gp) can be represented by a
differentiable function Xs), s€ R and it satisfies one of the following

(@) IIX(9)ll — oo as|g — oco.
(3.6)  (b) X(9)is asimple closed curve and(s) is periodic.
© GHp) =¢.

Proof. Assume thaG~%(p) # ¢, or else we are done. Lef be such
that:
G(xX®) -p=0.

Consider the equation:
G(X)—p=0.

Sincep is regular value, the Jacobin Gi(x) — p at x° viz. G'(x9),
must have the maximum rank. Therefore, it has a minor of ordé\,
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G
which is nonsingular. Assume thgii x9) is nonsingular. Let
g X155 XN)( ) g
(X, ..xn) = uandxyy1 = A. Thus we have:

F(Ww, 2% =GP, 1% - p=0,
and

is nonsingular. Hence by the implicit function theorem ¢hekists a
unique solutionu = u(A), for all A such thaia — 1% < py(u°, 29). i.e.
there exits a solution are:

Y= (X (XNt1)s - - - XX L) XN 1)

with Xy.1 in some itervalxn. — X, ;1 < p1(xX%). Extend this arc over
a maximal interval (the interval beyond which we cannot edt¢he
solution), sayxy,; < Xn+1 < XX ;.

L 0 0 0 R
TNt1 TNpr P11 Ty Tnpr TP TN

G
At the points, the Jacobia x9) will be singular, other-
. PO, . .3.(X1’--XN)( : " .
wise we can again apply implicit function theorem to obtaia $olution

in a larger interval which will contradict the maximality tife interval.
Now consider the poink® = (x (X8, 1), ... (nOR, ). xR ;). By the
continuity ofG we have:

G(X®) = p.

Again sincep is a regular value, there exists a minor of raNk
which is nonsingular. Assume that this is obtained from tladrix Gy
by removing thej column of the matrix. As before, there exists an are
2
y 1 Sa‘y’

Y2 = (X (X))s - - - Xj—1(X))s Xjs Xjs1(Xj)s - - - X1 (X))}

over a maximal interval. We can continue this procedurefindely.
This family (/') will overlap because the implicit function theorem gives
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a unique curve. Thug/'} form aC? curve. This curve can be globally
parametrized. Suppose it is given by:

I ={X(9); X(s2) = X, 52 < < &)

and 48
G(X(9) = p.

If X(s) is not bounded, then the first part of the theorem follows. So
assume thak(s) is bounded. Then choose a sequefg¢ — oo such
that{X(sj)} — x". By the continuity ofG we get:

G(X) = p.

If the curve is not closeds* will be a limit point and also a solution
of G(x) — p = 0. Sincep is a regular value, we can apply the implicit
function theorem to conclude that the curve has to be cloBeid.closed
curve is simple, because of the uniqueness of the solutitn pience
in the case wherX(s) is bounded, we have a simple closed periodic
solution which proves parbj of the theorem. O

Remark. The main idea in the proof is the change of parameter from
one componeny! to another. This can be used as a practical procedure
for carrying out global continuation; s€e [27].

3.7 Degree Theory

In this section we will assign an integer, called tHegreé to a continu-
ous functionF, defined on an open subgef of RN and a pointp € RN.
This is an important tool in proving fixed point theorems arstence
results for nonlinear problems. The degree of a continuanstion F
over a domain at a poirt has the important property that if it is non -
zero, then there exists a solutionfefx) = p in the given domain. An- 49
other important property is that it depends on the valuebefunction
only on the boundary and not in the interior.
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3.8 Definition

LetF : RN — RN andp e RN satisfy:
(i) F e CYQ), whereQ is an open bounded subsetro¥,
(i) pe F(0Q),

(iii) pis aregular value oF on Q.

Then the degree df onQ for pis defined as:
(3.8) degf.Q.p)= ) Sgn[def(x)].

xe[F-1(p)nQ]

Note. The degree is well defined, since by lemima 35§ p) N Q] is a
finite set and hence the right hand side is a finite sum.

Example.Considerf : R — R such thatf’(X) is continuous ond, b]
andf(a) # p, f(b) # pandf(x) = p has only simple roots ora[ b].
Then

k
f7(x;)
deg(f, (a, b =
gt (a.b), p) ; ol
where{xJ are the consecutive roots @fx) — p = 0 contained in
[ b]. In tlfns particular case, if’(x;) > 0, thenf’(x;,1) < 0 and vice

versa. Therefor f’§x1;| = +1 and-1 alternatively. Hence
i

deg(f7 (a’ b)v p) € {17 Oa _1}

Now if p does not lie betweefi(a) and f(b), then there are either
no roots or an even number of roots for the equafi(x) = pin (a, b).
Hence the degree is zero. In the other case, there will be dnutiber
of roots, say (R+1),k > 0. Thus in the summation if(3.8), the firskj2
terms cancel out and the last termti or —1, depending orf(b) > p
or f(b) < p. Hence we can write:
f(b) - f(a) -

deg(f, (a. b), p)— AE ‘|f(a)—p| '
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Note that in this case the degree depends only on the valuegatof
the boundary pointa andb. This is true in the general case also.
Next we will relax condition (iii) of definitior=318.

3.9 Definition
Let F satisfy (i) and (ii) of [3.B). Then,
(3.9a) degk, Q, p) = degF, Q, 0),

whereq satisfies:

(i) qis aregular value oF,
(i) llg-pll <y = dist (F(0€), p) = infrean [IF(X) — pll.

By Sard’s theorem, the set of all regular valuesFofire dense in
RN. Hence we can find regular values satisfying (B.9b(ii)). oAifsgy,
gz are two regular values satisfying {3 9b(ii)), then theyobel to the
same connected componenfdf \ F(9Q) and hence (for a proof which
is too lengthy to include here see [29]):

degf, Q,q;) = degf, Q, q2).

Therefore the above degree is well defined. We can also relax ¢
dition (i) of definition[3:8 and define the degree for C(Q). 51

(3.9b)

3.10 Definition
AssumeF satisfies:
(i) FeC(Q).

@iy p¢ F(0Q).
Then

(3.10) degF, @, p) = degf, 2, p)
whereF satisfies, using of 3B(ii)):
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(i) F e CLQ),

: = _Y
F—Fllo < 2.
() Il leo < 5

SinceF is continuous, we can approximdkeas closely as desired,
by differentiable functiorF. (Take polynomials, for example). Con-
ditions (i) and (iv) imply thatp /sF(9€Q). Thus deg E,Q, p) is well
defined by definitiod 319. If is another smooth function, satisfying
condition (iv), then by considering the homotopy

G(x,t) = tF(X) + (1 — )F(X)

and using the homotopy invariance property of the degreefimition
B8 (which we prove next), it follows that

degF, Q, p) = degfF, Q, p).

Thus definition 310 is independent of the choiceFof Thus the
degree is well defined even for a functibne C(Q2).

3.11 Theorem (Homotopy Invariance of the Degree)
Let G: RN*1 — RN, Q bounded open set ikN and pe RN satisfy
() G e C(Qx[0,1]),
(b) G(u,2) # p ondoQ x [0, 1],
(3.11) (¢) G(u,0) = Fo(u), G(u, 1) = Fa(u),
(d) p is aregular value fo6 on _
Q x[0,1] and for Fg andF1 onQ.
ThendegG(., 1), Q, p) is independent of € [0, 1]. In particular,
degFo, Q, p) = degFi, 2, p).

Proof. The proof uses lemnfa_3.5. We will prove

degFo, 2, p) = degF1, 2, p).
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The case for anyl € (0, 1) is included. Since is a regular value,
we have: B
(Fo'(p) N Q) = (u),

and B
(Fo'(p) N Q) = {uj},

where {u’} and{ujl} are finite sets by lemmi@az3.5. Again, sinpés a
regular value{G~1(p)n(Qx[0, 1))} is a finite collection of arcs, denoted
by {I'i(s)}. Let us parametrize arfy(s) as ((s), A(s)), wheres denotes
the arc length. Om'(s) we have:

G(s) = G(u(s), 4(9) = p.
Differentiating with respect tg we get : 53
Gu(S) - U(S) + G,(9)A(s) = 0.
Sincesis the arc length, we have:
u' (9)U(s) + A(9)A(s) = 1.

These two equations together can be written as:

(3.12a) AlS) (,l;((;))) B (2)

where
_|Gu(s) Ga(s)
A(S)_[UT(S) zZs).]

We shall show tha#\(s) is nhonsingular od’(s). First observe that
at each point ofi'(s), there is a unique tangent to the path. The matrix
[Gu(9), Ga(9)] has rankN, sincepis a regular value. Thus the null space
of this matrix is one dimensional. Let is be spanned by théovéé, n}.
Since (j, 1) is also a null vector, we have:

(U(s), A(9)) = c1(£, ), for somecy # 0.
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Now if A(s) is singular, then it must have a nontrivial null vector of
the formc,(&, i) for ¢, # 0. Since

ASE) =0,
n
the last equation gives:
ciC2(i€l” +1%) = 0.

54 This implies that; ¢, = 0, a contradiction. HencA(s) is nonsingu-
lar.
Now apply Cramer’s rule to solve the above systemii@) to get:

(3.12b) g = 2 deefﬁlz(s?

Note that onl['(s), detA(s) # 0. The above result shows thafs)
and detG,(s) change sign simultaneously.

We have by[(318)

degFo, 2. p) = ) sgn(deFy(uf),

)

degFo. 2, p) = Y sgn(def(uh)).

{ul)

Observe that the ard¥s) can be classified into four flerent types

() arcs joining two points fronﬁuio}
(ii) arcs joining two points fromu’j}
(i) arcs joining a pointui0 toa pointujl

(iv) arcs with no end points.
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We shall use the arcs of type (i), (ii) and (iii) to relate thmee two
degrees.

RN

Figure 3.2:

In case (i),A(s) has diferent signs at the end points, since alorsg
the I'(s), A(s) changes sign an odd number of times. HenceGigs)
has diferent signs at the end points. Therefore no contributioretp d
(Fo, Q, p) results from points. Similar result is true for case (ii)b-O
viously there is no contribution to the degree from the kijase. So
the only contribution comes from case (iii). Here note théd) and
hence deG(s) have the same sign at both the end points, beca{sje
changes sign an even number of times. This shows that:

degFo. 2, p) = degFi1. 2, p)
O

The theorem is true for the other two definitions of degree.dis-
deed when these definitions have been justified, our abowd gices
the desired result with the hypothesis relaxed to contisunappings
and without the restrictio . (3111d).

Some Important Properties of the Degree

(1) f,g:Q — RN be such that:
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(i) f(x) =g(x) for all x € 99;
(i) (%), g0 € C(Q);
(iii) f(x) # pforall x € 9Q;

Then
deg(f, 2, p) = deg@, 2, p).

(2) If p, g are close to each other, say,
Ip—dll <y = dist(f(92), p).

Then
deg(fo, 2, p) = deg(f1, 2, ).

(3) Letf,qg: Q — RN be continuous ang ¢ f(0Q)Ug(0Q). Let f and
g satisfy
sup| () - g0l < 3.
X€0Q

Then
deg(f, 2, p) = deg@, 2, p).

(4) Homotopy invariance property.

(5) (Excision) IfK is a closed set containedéhandp ¢ f(K)U f(0Q),
then

deg(f, Q. p) = deg(f, Q\K, p).

(6) Letp ¢ f(Q), then
deg(f,Q, p) = 0.

(7) If deg(f, 2, p) # O, thenf(x) = p has a solution 2. (For refer-
ence, See [[26]129])
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Application 1. Fixed points and roots

3.13 Brouwer Fixed Point Theorem

Let F: RN — RN satisfy:

(@) Fe C(ﬁ), Q is a convex open bounded subseRdf
(b) F(Q) c Q.

Then Hu) = u for some e Q. 57

(3.13)

Proof. Take any point € Q. Define
G(u,2) = Au-F()) +(1-2)(u-a).
We shall thaiG, a homotopy betweeru(- F(u)) and {1 — a), does
not vanish orvQ x [0, 1].
If G(u, ) =0, then we have :
u=AF@u) +(1-a
By 3I3b) we getF(u) € Q. Sincea € Q, by convexityu € Q for
A € [0, 1]. ThereforeG(u, 2) # 0 ondQx][0, 1]. So homotopy invariance
theorem implies that:
degli - F(u),Q,0) = degli - a,Q,0)
= [Sgndet{l }]u=a
=1
Henceu — F(u) = 0 has a solution 6 O

Note.If F € Cz(ﬁ) the above proof is constructive. That is we can find
arbitrarily good approximations to the fixed point by corgiign. To
do this we consider:

GU D) =Au-Fu)+(1-Du-a=0

and follow the path(s) from (u(0), 2(0)) = (a,0), to U(Se), A(SF)) =
(F(u(sr)),1). If 0is not a regular value, we can takarbitrarily small
and a regular value. Then we can construct solutionsi feiF(u) = 6.
It can be shown that 0 is a regular value for almosaad| Q. 58

Another result on global existence of a solution is given as:
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3.14 Theorem

LetFe C(ﬁ), whereQ is open inRN and satisfy, for someyxe Q:
(3.14) < X=X, F(X) >> 0 for all x € 9Q.
Then Hx) = 0 for some xQ.
Proof. Consider the homotopy
GX D) =Af(X)+ (L - AD)(X—X%p),0<a< L.

It is easy to prove thab(x, 1) # 0 ondQ and for all 0< A < 1. For
if not, taking the inner product withx(— xg), we get:

< X=X, F(X) > +(1 - )x— xql|> = 0.
If x € 0Q then this gives a contradiction by (3114). Herggx, 1) # 0
for x e 9Q and 0< A < 1. Therefore

Application II. Periodic solutions of O.D.E.

We shall use the Brouwer theorem to show the existence obgieri
solutions of systems of ordinaryftirential equations.

3.15 Periodic Solution Theorem

Let f(t,y) : RxRN — RN satisfy for some B 0 and some convex open
QcR"

(@) feC(0,T] xQ). _
(b) f(t+T,y)= f(t,y)forallye Q
(©) lIf(ty) — f(t, )l < Klix -yl for all
XxyeQ0<t<T,K>0.
(d) f(t,y) is directed inta for all
y € 0Q andtc[0, T],

(3.15)
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i.e. forallye 0Q,y+ef(t,y) € Q, for all £ > 0 syficiently small. Then
the equation

dy
(3.15€) 5= f(t,y)

has periodic solutions(y) with period T and {t) € Q, for all t.

Proof. Pick anyu € Q and solve the initial value problem :

dy
a - f(t’y)s
y(0) = u.

Let the unique solution in the interval,[0] be denoted by(t, u).
Theny(t, u) € Q for all t > 0. Otherwise, let; be the first time it crosses
the boundary of2. That isy(t;,u) € 9Q, t1 > 0, y(t,u) € Q, for all
0<t<t;and,

y(t1, U) = f(ta, y).

But condition [31bd) says thdit;,y) is directed intaQ which is
not possible. Now considé¥(u) = y)(T, u), for usQ; this F satisfies all
the hypothesis of the Brouwer fixed point Theorem. Hence we:ha

Y(T,u) = u, for someusQ.

i.e. we have a periodic solution passing through O 60

Application Ill. Bifurcation by degree theory
Definition. Let G : RN x R — RN beC?. Consider the problem:
(3.16) G(u, ) = 0.

Given a smooth path (or arc) of solutions, say,

[ ={(u(d),4) : da < A < Ap},
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a point (%, 2% e I'is said to be a bifurcation point fof {3]16) if every
ball B,(u®, %) c RN*2, of radiusp > 0, contains solutions of{3.16) not
onT.

The following theorem shows that if the sign of d&t(u(1), A)
changes at some point alohg then it is a bifurcation point. This is
an important result in testing for bifurcation.

3.17 Theorem (Bifurcation Test)

LetT be a smooth solution arc of3.18) parametrized byl. Let det
Gu(u(x), 2) change sign at® € (14, Ap). Then(u(1%)2°) is a bifurcation
point of (3.18).

Proof. We prove by contradiction. Assume that,
(0, 2% = (u(2°)2°),

is not a bifurcation point. Hence there exists a ball of ragiuwhich
does not contain any root df (3116) other on thelar€hoosey, 6 > 0
small enough so that the cylinder:

Cps = 1(U2) 1 ue Ky(u®), 1 € [2° - 6,2°+ d]),

where,
K, (W) = fue RN : |ju—u¥ < n).

is such that :

(i) Cys C B,(W, 29).

(i) G(u, ) # 0, for all (u, 2) € 9K, x [2° = 6, 2° + 6]}
(i) u(2° £ 6) € K, (uO).

(iv) det Gy(u(1), 1) does not change sing in the interval® ¢ ¢, 2°)
and @9, 2° + ¢).
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We can easily choosgandsé so that (i) is satisfied. Since the ball
B, (P, 29 contains no roots other than on the &rand detG,(u(1), 1)
changes sing at® and is continuous we can shriak(if necessary) so
that (i), (i) and (iv) are satisfied (see FIg_B.3).

u
Be I11

. . ° A
N—6 )\ A° =4

Figure 3.3:

Applying the homotopy theorem to the functi@(., 2° — 6) and 62
G(., 2° + ), we get:

degG(., 1° - 6), K, (), 0) = degG(., 1° + 6), K,,(u°), 0).
But
degG(., 1° - 6), K, (u°), 0) = Sgn ded5,(u(2° - ), 2° - 6),
and
degG(., 2° + 6), K, (u°), 0) = Sgn ded5,(u(2° + 6), 2° + 6).

This is a contradiction, because @t(u(1), A) has diferent signs at
(u(2° + 6), (1° - 6) and U(2° + ), 2° + 5). O

Note.HereA® € (14, Ap) is an interior point of the interval. We cannot
apply this theorem ifig is a boundary point. See Flg._B.4.
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ry

(u®5A%)

P gl
o

Figure 3.4:

Example.Let
G(u, 1) = Au— Au =0,

whereA is annx n symmetric matrixd € R-T' = {(0, 1) : —o0 < A < 0}
is the trivial path of solutions. We have:

detGy(u, 1) = det(A - Al), = Pn(4),
where pr(1) is a polynomial in1 of degreen. Note thatp,(1) changes
sign at eigenvalues of odd multiplicity. Therefore evemgesivalue of
odd multiplicity corresponds to a bifurcation point. We patpredict
anything (using the above theorem) about the bifurcatiaigenvalues
of even multiplicity.
3.18 Global Homotopies and Newton’s Method
To solve

(3.19) F(u) = 0,

whereF : RN — RN is a smooth function we consider faf € R, the
homotopy:

(3.20) G(u,t) = F(u) — e F°) = 0.
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Herea > 0 and 0< t < o0, so that wher — oo, solutionu = u(t) of
B20), if it exists for allt > 0, must approach a solution I (3119). i.e.

lim u(t) = u" e F~1(0).
Differentiating [3.19) we get:
(3.21a) F’(u)(slj—ltJ +aF(u) = 0.

The solution of this nonlinear fierential equation together with thes4
initial condition:

(3.21b) u(0) = L°
gives the homotopy patli(t) from W to a solution of [3.119)
u = tIim u(t),

providedu(t) exists on [Qoo)
If we use Euler's method ofi{3.21a), to approximate this pagiget
the sequenc@V} defined by :

F )Vt — W] + eAty FUY) = 0,

WhereAtU =tys+1 —tu.

If we take Aty = At (uniform spacing) and = (At)~?, this gives
Newton’s method to approximate a root B (3.19) startindwhiie initial
guesal’. Such a path does not exist always. BUgifu*) is nonsingular
and||lu®—u*|| is suficiently small, it does exist. IF’(u) is singular along
the path defined by (3.2lla), the method need not convergs.iSbne
of the basic diiculties in devising global Newton methods.

A key to devising global Newton methods is to give up the monet
convergence implied by (3.P0) (i.e. each componenEajoes to 0
monotonically int) and consider more general homotopies by allowing
a = a(u) in @ZI&). Branin[l2] and Smal&130] used these techniques
The former used/(u) of the form: 65

a(u) = Sgndef’(u),
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and the latter used
Sgrw(u) = SgndefF’(U).

Smale shows the F(u) satisfies the boundary conditiois(3.22) (see
below) for some bounded open €etc RN, then for almost alll=oQ,
the homotopy path defined Hy (3.21a) and (3121b) is such that:

lim u(t) = u',
whereF(u*) = 0 and 0 < t; < o. Note that with such choices
for a(u), the corresponding schemes need not always proceed in the
‘Newton direction’, viz.-F’(u)] *F(u), but frequently go in just thep-
positedirection. The change in direction occurs whenever theklano
detF’(u(t)) changes sign . Hence the singular matriegsl) on the path
u(t) cause no dficulties in the proof of Smale’s result. But there practi-
cal difficulties in computing near such points, where “small stepsstm
be taken. We shall indicate in theorEm=3.24 how thefdities can be
avoided in principle, by using afilerent homotopy, namely the one ap-
pearing in[(3:24a) below. To prove the theorem, we need t@nimg

3.22 Boundary conditions (Smale)

Let Q c RN be and open bounded set with smooth connected boundary
Q. LetF : RN — RN be inCY(Q) and satisfy:

(&) F’(u) is nonsingular for all € 9Q, and
(b;) [F’(u)]~1F(u) is directed out of2,
(3.22) forallue 9Q, or
(b-) [F’(u)]"tF(u) is directed inta, for all
ue 0Q.

Supposas* is an isolated (i.eF’(u*) is nonsingular) root oF (u) =
0, then the boundary condition§s{3.22) are satisfied on theBau*)
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provided the radiug is suficiently small. Condition[[3:22a) follows
from :

F’(u) = F'(u") + O(u — ux), for all u e B,(u"),

and the Banach lemma, provigeis suficiently small. To show (b),
use Taylor expansion:

F(u) = F(u) + F/(u*) - (u—ux) + O((u — u"))?
SinceF(u*) = 0 andF’(u*) is nonsingular, usind(3.P2a) we get
F/(u)tF/(u*) = (u— ux) + O((u — u*)?).
The right hand side is directed out Bf(u*) for p sufficiently small
and so b, ) holds.
We consider the equation
G(u, 2) = F(u(9) - A(IF () = O,

for some fixedu®. The smooth homotopy pati(s), A(S)} must satisfy
the diferential equation:

(3.23a) F’(u)u — AF (W) = 0,
In addition we impose the arclength condition: 67
(3.23b) Nu(s)I? + A(9)? = 1.

This has the ffect of makings the arc length parameter along the
path Q(s), A(9). If A(s") = 0 at some poins = s* on the path, then
u(s) = u* is a root of [3IP). Further several roots may be obtained, if
A(s) vanishes several times on a path.

We shall show that if Smale’s boundary conditiohs (B.22)satis-
fied then for aimost all® € 4Q, the initial data ¢(0), 1(0)) = (u°, 1) and
BZ34,b) define a path on whidlis) vanishes an odd numbers of times.
(seellZD]). The main Theorem is as follows:
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3.24 Theorem

LetF: Q — RN be Cand satisfy the boundary conditiof@22) Then
for any P € 9Q for which 0 is a regular value of:

(3.24a) G(u, ) = F(u) — AF ()
there is a G solution(u(s), A(s)) of the system:
(b) F'(u)u(s) - AYF (L) =0,
(©) U+ = 1,
over0Q < s< s, starting at:
(3.24d) ((0), 2(0)) = (\°, 1),
and terminating afu(sg), A(sr)) where:
(e) u(sk) € 9Q, A(sF) < 0,and

(3.24) |A(se)l < L =max|f(x) | /min]lf(y)Il.
XeQ yeoQ

For an odd number of pointg;se (0, sg),
(3.24f) Alsy) =0 and F(u(sy)) =0.

_______

U usr). Asr)

RN

Figure 3.5:
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Proof. In RN+1, we consider the cylindeék = Q x [-L, L], whereL is
defined as in[(3.24d). See FIg.18.5. Then for any fixed= 9Q, we
haveG(u,1) # 0 on the bases df : 1 = +L andu € Q. But on the
cylindrical surface oK there is at least one solution ¢f{3:P4a), Viz. at
(u,2) = (W, 1). Now 0 is a regular value and

0G(u, 1)

) ey = F&). -F

By assumption[{3.22a)’(u°) is nonsingular. Hence there isGt
arcI'(s) = [u(s), A(s)] which satisfies[[3.24a,b,d). Takirgas the ar-
clength, we obtain{3.24c) also. Choose the signu@)(1(0)) so that 69
I'(s) € K for s> 0; that isti(0) atu® points intoQ. Continuity alondg(s)
determines the orientation of the tangents]; A(s)) satisfying [3.24c)
in the interior ofK. Sincel is so large tha® does not vanish far| = L,
the pathr’(s) for s > 0 cannot meet the baseskf The pathl’(s) can-
not terminate in the interior since if it had an interior gainust lie on
I'. Then the implicit function theorem gives a contradictismce 0 is
a regular value. ThuE(s) must meet the cylindrical surface &f for
somes = s¢ > 0. Since the tangenti($:), A(sr)) to I'(s) at s cannot
point intoK, it follows thatu(sg) cannot point intd at u(sg) € 9Q.

Multiplying (8:Z4b) byA(s) and using[(3.24a):
A(9).F’ (U)u(s) — A(S)F(u(s) = 0 onT.

F’(u) is nonsingular ati = u® andu = u(sg). Therefore at points, we
have:

A(U(S) = AY(F"(U(9))Fu(9)
Note that1(0) andA(sg) are not zero, sinck’(u(s)) is nonsingular

for s = 0 andsg. Now using the boundary conditiof (3122b), We can
deduce that

(3.25) @@ <
A(0) A(sr)
Both /1(0)% and /l(sp)% point out of (or into)Q2. But u(0)

points intoQ andu(sg) does not, sd(3.25) follows.
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Now we will show that1(0)A(se) > 0 which impliesi(0)A(sg) < 0. 70
Hencel(sg) < 0 and so the theorem follows. We have:

Gy-U+G,-1=0
U+ =1,
and from [312a,b):
. detF’(u(s))
AS) = ———.
S detA(s)
Now w® andu(sg) aredQ. By assumption[3.22&5! (u(s)) is non-
singular for allu € 6Q. SincedQ is connected, dét’(u(s)) has the same
sign ats = 0 ands = Sg. Also A(s) is nonsingular all alondf’, as we

had seen in the proof of theordm 3.11. Hen(@) andA(se) have the
same sign and the proof is complete m|



Chapter 4

Practical procedures in
computing paths

4.1 Introduction
71

We will consider the problem either in uniform formulatid¢hTa) or in

formulation [4.Ib):

(4.1a) G(x) = pwhereG : RN*! — RN:
(4.1b) G(u,2) = Pwhere,G : RN xR — RN,

Definition. (a) A pathl’ = {x(s) : X(s) € Q,G(x(9)) = pforall se I}is
said to be regular if Ran®&(x(s)) = N for all ssI(Q c RN+1).

(b) A pathl’ = {(u(s), A(9)) : u(s) € 2, G(u(s), A(s)) = pforall sel}is
regular if Rank (5u(s), G,(s)] = N for all se I(1 c RN).

Lemma 4.2. Rank[Gy, G,] = N if and only if either

(4.2) () Gyis nonsingular,
or
(4.2) (i) (a) dimN(gu) = 1,

(b) G, ¢ RangeGy) = R(Gy).

63
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Proof. If (i) is true, then Rank@,, G,] = N. In the other casé&;, is not
a linear combination of columns @, and sinceN(G,) has dimension
1, (N - 1) columns ofG,, are linearly independent and herféeolumns 72
of [Gy, G,] are linearly independent.

Conversely, let Rank3,, G,] = N. Then either (i) holds or not. If
it does we are done. If not, then d¥{G,) = 1 or else we cannot have
Rank [Gy, G,] = N. But then we must also ha®, £R(G,). Hence the
lemma m]

Lemma 4.3. LetI be a regular path of@.Ia) Then there exists an open
tube Tr c Q such that p is a regular value for G on-BndI’ C Tr.

Proof. Take any poini € I, then there exists a minor matrix of rahk
sayM(x) of Gy(x(9)), such that deM(x) # 0. Recall that

N
detM(x) = [ [kj(9)

j=1

where{kj(s)} are all ten eigenvalues of the matf&(x). Also {k;(s)}
are smooth functions arkj(s) # 0 for j = 1,...N. Hence there will
exists a neighbourhood of(s) in which the eigenvalues do not van-
ish. Therefore in this neighbourhood, the minor is nondaing. Such
neighbourhoods exist at each pointiband so the tub&r can be con-
structed m|

Definition. A point (u(s), A(s)) onT is said to be simple limit point (or
simple fold) if (ii a,b) of lemmd&Z]2 holds.

We have or":
(4.42) G(u(s), 4(9)) - p=0,
so that:
(4.4b) Gu(9)U(9) + G(9)A(s) = 0.

Note that at a fold poins = &, () = 0 because
Ga(s") ¢ R(Gu(S)-



4.1. Introduction 65

Henceu(s®) € N(Gy(s") at a fold point. Since difl(GQ) = 1 at
simple fold point (°, 1°), we can take:

N(GJ) = span{¢},

and
N(GJT) = span{y}.

From [4.4b) we have:
GO+ GOA° + GO Pl + 2G8,1PA° + GY,1°2° = 0.

Multiplying throughout byy" and using the fact that € R(GD) if
and only ifyT¢ = 0, we get:

Y GO + ¢TGP0 =0,

asA(so) = 0 at a fold point. Sinc&? ¢ R(GY), we have:

w'GY#0,
and so N
wTGS
But u(s®) = ¢ for some scalaw. Hence: 74
/l(So) 2 lvl’TGOU(p(p
- I,Z/TGO '
—yTGY . . .
If % # 0, then we say thawf, 1°) is a simple quadratic
A

fold. We similarly define a ‘fold of ordem’ if A® (%) = 0 for all
k=1,...m-1anda™(s") # 0.

Usual methods of computing paths fail at a fold point. So is th
section we present an algorithm for computing paths, thes amt fail
at simple fold point.
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4.5 Pseudoarclength Continuation

We already mentioned that at fold points on a regular pattytbigs
method fails during natural parameter continuation. Thénngea in
pseudoarclength continuation is to drop the natural pat@@agon by
A and use some other parameterization. Consider the equation

(4.6) G(u, ) = 0,

whereG : RN x R — RN. If (U, 1°) is any point on a regular path and
(U, 29) is the unit tangent to the path, then we adjoin[ial(4.6) theasc
normalization:

4.7) N(U, L, AS) = 0 (u— ) + 1% - 1% -AS =0

This is the equation of a plane, which is perpendicular taahgent
(0, 2°) at a distancers from (W%, 1°) (see Fig[Z1). This plane will
intersect the curvE if Asand the curvature df are not too large. Thatis
we solve (4.6) and (4.7) simultaneously fafg), A(s)). Using Newton’s
method this leads to the linear system:

Gy GYl[aw] [cY
AY| T |INY

w20
HereG/ = G,u",aY), GY = Gu(u”, 1Y), and the iterates are
w*l =Y + AwY anda¥+1 =AY + AQY.

(4.8) [

I (@°, 3°)

Figure 4.1:
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We will give practical procedures for solving the systdoBj4on
a regular path. Recall that on such a p&hmay be nonsingular or
singular but the N + 1) order coéicient matrix should be nonsingular.
One proof of the nonsingular of the deient matrices in[{418) can be
based on the following result (seél [7]).

Lemma 4.9. Let B be a Banach space and let the linear operator 76
BxRY — BxRY have the form:

Ao|A Bl here A:B— B,B:RY - B,
~|C* D) C*:B—>RY,D:RY - RY.

(i) If Ais nonsingular therd is nonsingular if and only if:

(4.9a) D - C*A™!B is nonsingular.

(i) If Ais singular with
(4.9b) dimN(A) = CodimR(A) = u,
thenA is nonsingular if and only if:

(c2) dimR(B) = u. (c2)R(B) [ |R(A) =0,

9
(4.9¢) (cs) dimR(C") = u, (c))N(A) [ |N(C") = 0.

(iii) If Ais singular withdim N(A) > u, thenA is singular

Here C* denotes the adjoin df. In our analysis we use only the
casess = 1 andB = RN. Then the condition§{Z.Pc) reduce to

(4.10) B ¢ R(A) andC' ¢ R(AT).
whereA' is the transpose ok.

Note. Instead of using the earlier mentioned normalization (4vé)can
use other relation. One obvious generalizatiorofl (4.7) is:

N=6l® (U= +(1-6)2°1-1°-As=0,0<6<1:
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77
Another type of normalization is:

N(U, 4, ) = allu(s) — u()I? + (1 = 0)|A(s) — A - (s— )2 = 0.

Alternatively if we know nearby pointohisay ats= sjands=s 3
then we can use:

N9 = [%] (U9 - u(s0)
A(S0) — A(s-1) _
+(1-0) T o5, (A() = A%0)) — (s— %) =

This employs a scant rather a tangent. We call all of the above
pseudo arclength normalizations. For a references| sgd193.

4.11 Bordering Algorithm

We write the cofficient matrix of [4.B) in the form:
~ A b
(4.12) A= [cT d

where,A is anN x N matrix, b, c € RN andd € R. Then we consider
the linear system:

(4.13) A =(9).

wherex, g € R" andé, y € R.
AssumeA andA are nonsingular. Then solve the linear systems:

(4.14a) Ay=hb; Az=g.

Form the solution of[{Z13) as:

_ T
(4.14b) = g_ =X =2y
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Note thatd — cTy = d — c" A b is the Schur complement &fin A.
Henced - cTy # 0 if A nonsingular. Thus iA andA are nonsingular,
then the bordering algorithm is valid.

Alternatively we may also write the system (4.13) as:

AXx+ bé =g,
c'x+dé=y.

To solve this, we can proceed by first eliminatiidgf d # O to get:

_l o 1
f—d(y C X).

Then forx we have:

(A- %bcT)x —g- gb.
Note that A — %bcT) is a rank 1 modification oA. Hence from
the ‘Sherman-Morrison’ formula (see lemima2.29 in Chaptew? can
easily determine the inverse oA (- EbcT), once we know the inverse
of A. In other words we can easily solve the linear system with the

codficient matrix @A — %bcT). But this procedure requiredi # 0 while
the bordering algorithm does not. The nonsingularityAds required
by both.

Now we will consider the case whéhis singular and\ is nonsingu-
lar. This occurs at simple points on solution paths (seetemqu@.2,ii). 79
That is we assume:

(i) N(A) = span{d},
(4.15a) (i) be¢ R(A)
(i) c' ¢ R(AT).
These are precisely conditioiST4.10) and are equivalent to

(4.15b) Y'b#oandc'® %0,
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where¢ andy are nontrivial solutions of :
(4.15c¢) Ap=0 and ATy =0.
We write the systen{{4.13) as :
AC) = ).

wherexo, g € RN andép, U € R. That is:

Axg + =0,
(4.16) ’ X +bé =9
C X +déo =7,
Multiplying the first equation by ", we get:
¥'g
4.17 = —.
(4.17a) o /b
Hence
(4.17b) Axg=0-— @b € R(A).
yTb
All solutions xg of @I7B) have the form:

wherex, is any particular solution of{4.1¥b) ads obtained by sub-
stituting the value ok into the second equation df{4]16) to get:

Y- déo - c’ Xp
Hence
3 c"xp y — déo
(4.17¢) Xo = [xp - ) ¢] +( s )¢.

Hence the unique solution di_(4116) is given by (4]17a,c).eVal-
uate this solution we need the vectarsy, X, and the inner products
w7, ¥'b, cT¢ andcT x,.

The operational count to obtain these vectors is only oneriprod-
uct more than the count required by the Bordering Algoritfiinus the
solution g, &o) requires only two inner products more. We will show
how ¢ andy can be obtained with half of a back solve each and hence a
total of one back solve.
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Left and Right Null Vectors of A:

Assume that\; is anN x N matrix satisfying[[Z.19a) so that ranky() =
N — 1. The with row and column interchanges determined by some
permutation matrices sal,andQ, the transformed matrix,

(4.18a) A= PAQ,

has anLU factorization:

L ol[U
(4.18b) A_LUz[gT 1H<3T o]

Herel andU are lower and upper triangular matrices, respectivesy,
of order N — 1) x (N — 1) with:

1 U -
1 O U2z

[ ]
Il
P
(=
Il
o

1 UN-1,N-1

Moreover:0, G, £ € RN-1. Of course in actual calculations we do not
get the exact zero element in the final diagonal positiob ofirst we
discuss the null vectors and the we will discuss the inexaxtbfization.

Sincel is nonsingular,A¢ = 0 if and only if Ug¢ = 0. So with
é € RN"Tande € R, we seeks in the form

-1

(4.19a) ¢=a($), a# 0.

It follows because of the nonsingularity bf that is uniquely de-
termined by

In other words:

SinceU is in triangular form, we obtaig and hencep with only 82
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one half of a back solve (for a system of ordér 1). Similarly, the
nonsingularity olJ implies thatATy = 0 if and only if LTy = ﬁ(f)l) for
B € R. Thus we find that all nontrivial left null vectors are giveyr b

(4.19) w=($), 540,

-1

andy € RN-1 is uniquely determined by:
LTy = ¢,

b = (l:T)—lf”.

Again s and hencey are obtained with half of a back solve.

Almost Singular A

We already mentioned that in calculations we do not obtagnetkact
factorization, but rather an approximation of the form:

~

L 8\ (U @
(420) A—Aa—l-aug—(g'r 1)(61— 8).

The quantitye will be an approximation to zero. If we use full
pivoting to determine the permutation matrideandQ in @18&), then
under appropriate conditions @q we can bound: by C107 for t digit
arithmetic whereC is a constant. The error analysis of Wilkinsénl[32]
can also be used to estimate the magnitude of

The basic assumptions that we make about the algorithm oggst t
the form [£2D) and the error growth allowed, are summarlaedhe
requirement that in the singular cae{4]15a):

Ujj

max < 1

j<N

In actual computations some precise relation must be usea if
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are to declare that we are in the singular case. With patritratipg in
columns, one reasonable test is:

&

> 107

ii

Uj-1j-1

min
j<N

UN-1,N-1

Of course the factor Z0may vary from case to case. A better theory
is needed here.

Now we use the factorizatio {4120) and apply the BorderitgpA
rithm to solve [4.IB). So consider

(4.21) a)Ay.=b, (b)Az =g,

with

b 8
b = s =
[bN] J [gw

Now using¢ andy obtained from[{4.19a,b) with = 3 = 1, we can
easily see that:

. (1-1h Th
@ye =|C 70+ £

(4.2 Ot T
7= 9+ L0

Now form (as in [4.14b))
y-e(L0) - 2w g)(c"9)

d-e"(LU)to- 2(uTh)(cT¢)’
(b) X = [(L U)_lég - é:sb)

(a) Ee =
(4.23)

+ 21079 - &bl

We must compare the solutidn{4123) with the exact solutisritfe 84
singular casd{4.1Va,c). To do this, identify the particatdutionx, as:

L [<£0)-1<@—506)]
p= 0 :
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Now we can expand{4.R3) abouit 0 to obtain the results :
e =60+ 0(‘9),
Xe = Xo + 0(e).

In more detail we have :

_elv= c(LU)1g) - W g)(c9)

&(d - €T(LU)-1h) - (¥Tb)(cT¢)’
_ ey - € (LU)g)
- s(d-¢T(LU)th) - (¥Tb)(CcT )

Ee

B (¥ g)(c¢)
e(d-¢ET(LU) D) - (¥To)(CT )’
= @+0(s)—§ + 0(
= U = &0+ 0@).

Thus ase — 0, the first term of the right hand side &f{4.23b) con-
verges toxp. Also :

y"g.s(d - e"(L0)*h) — s(y - ET(LU) "Gy b
e(d - €T(LU) D) (¥ Tb)(c¢)

Tl 2|

= (4"b)

e|d - &7(L0)"b] - (4Tb)(cT¢)

_ —dég+y—cxp

s ¢+ 0(e).
Hence
Xe = Xg + 0(e).
85 Note that in the calculation the significant ters@ " g)(v " b)(c" ¢)
cancelled each other. Hetg, xo are the exact exact solutions when
e=0.

Thus we find that the Bordering Algorithm can be used to solve
@13) wheneve is nonsingular. IfA happens to be singular, then
results of some accuracy will be obtained only if a reasanabloting
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strategy is used. Even in this case some accuracy loss mazpbeted
due to the cancellation of significant digits that occursamfing x as
in @14B). This cancellation is exactly analogous to thece#lation of

1 . . . o
the — terms inx, of @Z3b). If in the course of the calculations it is

recosgnized that we are at a limit point then the sing@atgorithm can
be used and a more accurate numerical solution will resulivaextra
significant digits are lost (seg117] for more details). Wé give some
numerical examples in the last chapter, in which we have tisedbove
algorithm and they have performed well.

The Tangent Vectors

We will briefly describe how to compute the tangent vectafs {9).
They must satisfy :

(@) Goi° + G52° = 0,

(4.24) Y 2
(b) [ + 12°? = 1.

First we consider regular points, whegg is nonsingular. We find
¢o. from:

(4.25) Gigo = —-GS.
Then set: 86
(4.26) WP =ap and lg=a

wherea is determined fronm{Z.24b) as :
+1

VI+IolP

The sign of a is chosen so that the orientation of the pathés pr
served. More precisely, ifi(1, 1_1) is the preceding tangent vector then
we require

(4.27) a=

T :0, 5 50
U + 414" > 0.
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Thus we choose the sign &f ‘'so that

a[UI1¢O + /.l—l] > 0.

Choosing the sign of a is very important in numerical caliotes.
If we do not choose the sign of a properly, either we will gaptred in
the iterations at some point or it will reverse the directiomd hence it
will compute the same path already computed.

Another important point to recall in actual calculationghat the
quantity||Uj|? is usually meant to approximate sotnenorm of the con-
tinuous formulation of the problem. Thus the net spacing,tsanust
be used to form for example :

J

112 dp- 2
2 =" i

=1

Here u; represent the components wfand the underlying contin-
uous problem is assumed formulated over a domaiR9n If this is
not done the arclength definitigfil|2 + A2 is biased too much in the
u-subspace and is not very significant.

We return to the case of a simple fold at whi@f) is singular. The
analysis of the case of almost singukar(@20)-{Z4.2R), shows that we
get in this case for the solution df{4125), by setting

_[do] o _9].
(4.28a) o_[wo], GFH’
The result :
_J7a)\
do =0y g+ (=225,

(4.28b)

Using these results (4.28) in(4126) ahd{4.27) we find thahdeed
get the tangent to within 6J.



Chapter 5

Singular Points and
Bifurcation

5.1 Introduction
88

First consider the problem in the uniform formulation, viz .
(5.2) G(X)=p.

In this formulation we will consider paths which contain cuiar
points and give methods to jump over such points. This iresuaifur-
cation points in the general case.

5.3 Definition

A point X(so9) on a (smooth) solution path di-($.2) say,
Tab = {X(9 : X(9) e RN, G(X)(9) =p, peRN, a<s<h

is a simple singular point i§ € (a, b) and RankG,(X(sy)) = N — 1.

Note that heres may be any parameter, it need not be arclength.
SinceGy is anN x (N + 1) matrix, at a simple singular poidX(sy), Gx
has two independent null vectors, s&y, and ®, in RIN+D. Without
loss of generality we can require

(I);F(Dj:&j; i,j=1,2,

77



89

78 5. Singular Points and Bifurcation

thus introducing an orthogonal system of co-ordinate Nf@x (X(So))}.
Now G)T((X(so)) isan (N + 1) x N matrix of rankN — 1, so that,

N {GX(X(s0))} = spariy).

for some nontrivialy € RN,

Tangents tol gy

From [5.2), it follows that:
Gx(X(9)X(s) = 0.
Hence ats = 55, X(s0) has the form :
X(%0) = ady + B2, a.BER.
Differentiating again we have :
Gx(9X(9) + Gxx(9X(9X(9) = O.

Now multiplying by " and evaluating as = s, the first terms
vanishes and we have:

YT Gxx(S0)X(S0)X(s0) = 0.
Substituting forX(so), we get :
(5.4a) a1102 + 21208 + apB> = 0.
Herea;;'s are given by:
(5.4b) aij = ¢ Gxx(S0)¢idj.

Since[5.4Rh) is a quadratic equation, it follows that theés@oe gov-
erned by the discriminant:

>0, two real roots
(5.4c) A =al,—ajap{=0, one real roat
<0, norealroot
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Sincel'y is a smooth solution path, it has at least one nontrivial
tangent at each point dry,. Hence the cas& < 0 is not possible. So
the following lemma holds.

Lemma 5.5. At a simple singular point §&;) on a smooth solution path
I'an eitherA > 0or A =0.

If A > 0, then there exist two nontrivial tangents at a singulan{oi
This suggests that bifurcation occurs at that point. Alggives us an
idea for constructing solution paths and switching ovemflane branch
to another.

As in the earlier chapter, we adjoin some scalar hormatinati

N(X, s) =0,

to the equation:
G(X) =0,

whereX € RN*1, s e R to obtain the augmented system fr@&h*? —
RN+1:

(5.6) F(X.9) = [N%(X)s)] 0,
Using the normalization
(5.6b) N(X 9) = X' (s0)(X = X(0)) = (- %),
we get:
(5.60) Fx(X(9) = [Gjﬁpfs(;»].

Fx isan (N + 1) x (N + 1) matrix. In the previous chapter we provedi
that at a simple limit point, the augmented system is nonsamgusing
the normalization in[{5.8b)). AlthougByx has a two dimensional null
space, we will show thaEx has only one dimensional null space at a
simple singular point.
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Lemma 5.7. dim N{Fx(X(s0)} = 1 at a simple singular point §&;) on
a solution pathgp,.

Proof. We use the notatioRx(X(s)) = Fx(S) and suppose

Fx(so)¢ = 0.
Then the firstN equations are:
Gx(s0)¢ =0,

which implies that for somey, a1€R:
¢ = ap®1 + a1D».
The last equation is :
XT(s0)¢ = 0,

which implies by the orthogonality @b, and®,:

aag + BBo = 0.
That is:
ag:Bo=-PF:a.
This shows that there is, upto a scalar factor, only one ragtor of
Fx(s0). This completes the proof of the lemma. m|

We recall that:
N+1

detFx(so) = | [ ni(=),
j=1

wheren;(sp) are eigenvalues d¥x(sp). SinceFx(sp) has a one dimen-
sional null space at least one of the eigenvalues is zero.sélaze only
one is zero. i.e. zero is an algebraically simple eigengldssume that
M(so) = 0 andnj(sg) # O for j = 2,...N + 1. Now consider deEx(X)
for || X — X(sp) I small and let the corresponding eigenvalues {§X).
Suppose

Vxm(X)Ix=x(s) # O.
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Then we can apply the implicit function theorem to show théx) =
0 on a smooth manifold/ of dimensionN. Thus defFx = 0 on M. If
the solution path is transversal i, i.e. the tangent at the point of in-
tersection makes an acute angle with the normal to the mdnitoen
the path crossell. So the sign of ddtx(X(s)) changes along the path.
Then theoreni3:17 allows us to conclude that the point ofgeteion
is a bifurcation point.

Now we compute the angle between the tang€s) toI'gp at s =
S and the normal to the above manifdifl at s = s, viz.Vxni(X(so)).
Let ¢(X(9)) denote the eigenvector correspondingni@X(s)). Then 93

Fx(9)P(X(s)) = n1(X(s)D(X(s))

Differentiating this expression and evaluating atsy, wheren; (X(s)) =
0, yields . _ .
FxxX® + FxOxX =< Vny, X > ©

Let
N{Fls=s) = Span(¥}.
Then taking innerproduct with,

<Y, Fxde) >=<Vny, X >< YO0 >.

To evaluate the required angieVvn;, X >, we need to findd and¥.
Lemmd®k.y shows
® = f01 — a®s

Also we have
Y= (9,0, ¥eNGHX())
and hence using the notations of (%.4a,b,c,),

< W, FxxX® > =< ¥, Gyx(a®1 + BD2)(BD1 — ady) >
= afagy + (6% - @®)agz — ofag

= (6% - 0’2)(311% +a1) = (8% - a®)YA
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Since afs = &, zero is an algebraically simple eigenvalud-@{ X(s)),
<Y, o>%£0.

94
Thus we deduce that the required angle is not zew i 0 and
hence the poins = 55 on the solution path is a bifurcation point.
By choosing the basis vectors fhl{Gx(X(sp))} suitably, the above
computation can be simplified considerably. For exampldaking

N{Gx(X(s0))} = span{®y, X},

we get
<V, FxxX® >= ap»

This is done in detail in the bifurcation theorem below.

5.8 Bifurcation Theorem
Let X0 = X(s9) be a simple singular point on a smooth solution path
Fap={X=X(5) eRN*L, G(X(9)=p,peRN, si<s<s)

LetA > 0and 0 be an algebraically simple eigenvalue &f{R(sy))
(defined as in5.4¢) and (5.68) respectively). Then %is a bifurcation
point onI5p

Proof. Consider the system:

F(X 9 = [N(%(X)S)] 0

Heresis the parameter used to defifig,, We will show thatF has
a bifurcation ats = 5o which in turn will prove thatG has a bifurcation
ats = 5. Consider the normalization:

N(X, 8) = X(s0)"[X = X(s0)] - t(9)
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wheret(s) is the distance betweeX(sy) and the projection oK(s) onto
the tangent td 'y at X(sp). See FiglLl1L.

RN+1

So

Figure 5.1:

With the indicated normalizatior¥(s) is a solution ofF(x, s) = 0.

We have :
GX(SO)]
X(s0)"

At a singular pointGyx has a two dimensional null space and the
tangent vectorX(sy), is in N{Gx(s)}. HenceX(so) = a®; + Sd,, for
somea, B € R. We choose the basis vectabg and @, of N{Gx(sp)}
such thatr = 0,8 = 1. We also proved thatl{Gx(sy)} has dimension 96
one and hence by the choiceXfs)) = ®, we must have:

Fx(X(9)) = [

Fx{X(s0)}®1 =0
Now consider the eigenvalue problem:
Fx(X(s)®(s) = n(s)d().

At s = 5, one of the eigenvalues is zero, says) = 0 and so
®(s0) = ®1. Fx has aleft null vecto® ™ which is given by?™ = (¥7, 0)
where'?" is a left null vector ofGY. Now we can easily show that:

PTR xP1P2 _ an
YT, Yo,

n(so) =
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Sincea = 0,8 = 1 is a root of the equation:
a.]_laz + 2a12CL’,3 + a22,82 =0

we must have:
ap=0
SinceA > 0, this implies thaty, # 0. Hencen(sy) # 0. Therefore
detFyx changes sign & = 9. So by theoreriz3 1 F and hencés has
a bifurcation atX(sp). m|

Note. This theorem gives conditions under which a point on thetgwiu
path is a bifurcation point. But we do not obtain two smootrizhes of
solution. This can be done using the Lyapunov-Schmidt ntettinich
we are not going to discuss here (Refér [4]][26]).

Now consider the parameter formulation of the problem:
(5.9) G(u,2) =0

5.10 Definition

A point (U(sp), A(sp)) on a solution patliyy, is a simple singular point if
and only if Ranky(s0), Ga(s0)] = N - 1.

At a simple singular point, since Ran|(s),G,(s)] = N - 1,
N{Gy(sp)} has dimension either one or two. If it is one thBp(sy) €
R(Gy) and if it is two, thenG,(s9) ¢ R(Gy). Conversely, if either
N{Gu(s0)} has dimension one ar@,(s) € R(G,) or N(Gy(sy)) has di-
mension two an,(s) ¢ R(Gy), then (I(sp), A(sp)) is a simple singular
point. So we have proven:

Lemma 5.11. The point(u(sp), A(S)) is a simple singular point if and
only if either:

(i) dimN{Gu(s0)} = 1,

(5.11a) '_
(i) Ga(so) € R(GY).

or:

(5.11b) (i) dimN{Gy(so)} = 2,

(ii) Ga(so) € R(Gu).
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This case[(5.11b) is similar to the case we discussed in tifierom
formulation, sinceN(Gy(sp)) has two independent null vectors and was
can proceed as above. Now consider the dase{5.11a) and let

N{Gu(s0)} = span{®},
N{G{ (o)} = span{¥}.
From [B.ITh(ii)), the equation:
Gu(s0)¢o = —Ga(so)s

has a solution and it can be made unique by requiring ghap = O.
Note that the tangent vector is

(1)

Then we have for some, 8 € R:
A(s0) = B, U(S0) = g + o
where:
X(s0) = a®y + S0,
1= (g). @2 =(1").

From [59) with (1, 2) = (u(s), A(s)), we get on dierentiating twice
and settings = So:

GAip + G2 + (G2 ol + 2G2,Updo + GY,00) = O.
Multipling by ¥T, we get,
(5.12a) a11a? + 2a1008 + axB® = 0,
where now:

a11 = V' Guu(So)p
(5.12b) a;p = \I’T[Guu(s())¢0 + Gui(so)l¢
ap2 = ¥ [Guu(S0)dodo + 2Gua(So)bo + Gaa(o)]-
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99
Again if A > 0, (&12Zh) has two real roots andAf= 0, it has one
real root. It can be shown that> 0, then each rootf, 8*) of (.12Z&,b)
generates a smooth solution anédj, A(9)) for sandsy of the form:

u(s) = Up + (S — So)[a(9)go + B(S¢a] + (S — S0)2V(9),
A(S) = Ao + (s— s0)(9),

where,
¥Ty(s) =0,
a(s0) = a”,
B(so) =B
For details se€[7]. This result is well known in other forng&ee
5], [26].

5.13 Continuation Past Simple Singular Points

LetTap = {X(9) : X(5) € RN*1, G(X(9)) = 0, 54 < S < S} be a smooth
path. Assume that & = 5 € (Sa, &), the pointX(sy) is an isolated
simple singular point, that is rank @x(X(s)) = N in the intervals
[Sa, S0) and (&, ] and the rank isN — 1 ats = .

100 Let

G(X)

N(X, 9)| ~ o

F(X, 9 = [

where, _
N(X 9) = X' (8)[X = X(S)] = (- Sa).
We try to construct a solution using the Newton iterationhodt:

(@) Au(s) = Fx(Xu(9), 9),
(5.14) (b) Au(9[Xu+1(s) — Xu(9)] = -F(Xu(9). 9),
Uu=012,...,

with the initial estimateXy(s) as:

Xo(9) = X(Sa) + (5— Sa)X(s0).
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To assure convergence, we have to show Xaé$) is in an appro-
priate domain of convergence. Recall the Newton-Kantafothheorem
ZZ3: we get convergence under the assumptions that, foe samsy
in (Sa, Sp):

(@) F(X(s).9) =0,

(b) IFHX (), 9l < B(S),

(©) IIFx(X, 9)=Fx(Y, 9)ll < y(9IX=Y]|, forall X, Y € B,)(X(9)). p(s) >
0,

2
(d) p(s) < M

Of course as — s, ||F;(1(X(s), )|l — oo. But in the case simple bi-
Mo

— S|
Mo > 0, s # S (See[[6]). This shows that there is a full conical neigh-

bourhood, with positive semiangle about the solution ameuthh X(sy), 101
and vertex atX(sp), in which Fx(Y, s) is nonsingular. See Figufe’b.2.
Note that the tangerX(s,) departs from one cone at the poiftand
penetrates aB the other cone. We have already seen that for all initial
values within this conical neighbourhood, the iteratesveaye.Hence
this allows us to continue our procedure without any trowttlthe sin-
gular point. The poink(sy) can be determined by a bisection procedure
with s = sandsy < s < Sys1, forU = 1,2, 3,... Each new tan-
gent line through the new solutioX(sy) will have smaller chord lying
outside the cone. In the limit the tangent throl{s,) the bifurcation
point, is entirely contained within the cone (locally). Tiireal configu-
ration or a close approximation to it, gives one of the badtneues for
computing the bifurcation branch by merely switching thegent to be
used in the normalization. See Figlirel5.3. We will discute lia this
chapter how to find the new tangent

for some

furcation point, it can be shown thm;(l(X(s), 9l < S
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t t } S
Sa So Sp
Figure 5.2:
Xa(to) Xa(t)
RN+1 v
Xl (So)
“\ Xl(S)
S
Figure 5.3:
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5.15 Properties at Folds and Bifurcation Points on

Paths

For the parameter formulation

(5.16) G, 1) = p,
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we consider the eigenvalue problem:

(@) Gu(s)e(s) = n(s)e(9),
(®.17) (b) (P = 1.

along a solution path of(5.1L6):
Fap = {(U(9), A(5)) : G(U(S), A(s)) = P, Sa < S< %}

Note that at an algebraically simple eigenvalgies) andn(s) areC®
functions ifG is C*. Assume that the problem has a simple limit poinb3
or a simple singular point of typ€{5d1a)at $ € (Sa, S). Then we
have:

N{G/ (s0)} = spariy},
N{Gu(so)} = sparig),

for somey, ¢ € RN, SinceGy(so) is singular and the null space is
spanned by, we must have, for somi@(s), n(s)}:

N(so) = 0,4(S) = ¢

Now differentiating [5.117a) twice and multiplying gy and setting
s= S, we get:

(5.18) YT [Guu(S0)U(S0)¢ + Gua(S0)A(S0)8] = M(so)y " &.

Observe that if the eigenvalue is algebraically simple ih&p # 0.
So in this case we can solve fofsy). We use this in the proof of the
following lemma.

Lemma 5.19. Let (u(sy), A(S0)) be a simple quadratic fold ohg,. As-
sume that () = 0 is an algebraically simple eigenvalue of,Gp).
Thenn(sy) # 0 anddetG,(sy) changes sigh at s 5.

Proof. At a fold point,

As0) = 0, U(s0) = ¢.
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Hence we have: 104

;
v Gu(s0)od |

n(so) = nr

>

becausel(sy) = ””TG“T”—SE’W # 0 and this implies thay " Gyy(so)¢¢ # 0.
Also if nj(s) are the eigenvalues Gy(s), then,

N
detGy(9) = | (9.
j=1

Without loss of generality, assume that :
N(so) = N1(So), Nj(so) #0¥j =2,...N.

Since thenj(s) are continuoushy(s) changes sing & = sy and all
othernj(s), for j = 2,... N do not change sign in a neighbourhood of
so. Hence the lemma follows O

Lemma 5.20. Let (u(sp), A(Sp)) be a simple bifurcation points on a
smooth pati 'y, and n(sy) = 0 be an algebraically simple eigenvalue
of Gy(sp). Let the discriminant\ of equation (5.12a) be positive. Then
n(s) # 0 and detGy(s) changes sign at = s on one or both the
branches through the bifurcation poifii(sp), A(s0)) for which A(so #
0).

See figureEhl4 a,b,c. The lemma states that the case shogibi@dt
is not possible, sincé(sy) vanishes on both the branches. In [igl 5.4a,
A(so) # 0 on both the branches, but in flg.5.4{sy) # 0 onT, and
A(s0) =0onl_
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]RN+1 RNJrl

_ . Mso) =21
Als,) # 0 N(s0) # 0

r_ r,

t S t
So So

(@) (b)

RN+L .
Aso) =0 A(sp) =0

%,
©

Figure 5.4:
105

Proof. Let (a;,8+) and @_,B_) be the roots of the quadratic equation
G123). At the bifurcation poing, andj_ givesA(sy) corresponding
to each one of the branches. Thereford(i) = 0 along one of the
branches, then one ¢f,, 5 sayB, = 0. Thena, cannot be zero.
Hence from equatiol (5. 1Ra), we have

a1=0

SinceA > 0, a;p # 0. A_Iso boths, andB_ cannot vanish together.
Thus at least for one branclfsy) # 0. Now for the nonvanishing,

ady1 + fag2 Zﬂ\/K # 0.

From [5.I8), we have 106
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. ad]] +ﬂa12
n(s) = ——=—#0.
YT
Then detGy(s) changes sign as in the previous lemma. m|

Remark. In the case of simple limit points and simple singular points
for which (&2ITh) holdsN{Gy(s)} has dimension one. The only dif-
ference between these two types of points is that in the piitt case
G, ¢ R(Gy) and in the other cagg; € R(G,). Hence ify"G,(s) = 0,

a bifurcation is &ected and iy "G, (so) # 0, afold is effected.

5.21 Exchange of Stability

The solutions of[{5.16) are the steady states of the timertze prob-

lems of the form :
(5.22) % =G(U, Q) - p.

Given an arc of solutiongu(s), A(s)} of (&1I8), it is required to de-
termine the stability of each point as a steady statd_of j5.28 use
linearized stability theory we seek solutions [of ($.22)Ha form:

A=24(9
(5.23) U(t, s) = u(s) + e exptx(s)}¢(s)
lle(ll = 1.

ExpandingG(U(t, s), A(9)) aboute = 0, we get:

(5.24a) % = G(U(9), A(9)) + eGu(U(9), A(9)) expitx(9)}p(s) + O(?).

107 But from (&.238), we have :
(5.24b) %—Ltj = &n(s) exptx(9)}¢(9).

Equatingl[5:24a) an@{5.24b), sinGéu(s), A(s)) = 0, it follows that:
n(s)g(s) = Gu(u(s), 4(s))p(s) + 0(e).
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Hence we are led to the eigenvalue problem :

(@) Gu(u(s), A()¢(s) = n(s)e(s),
(5.25) (b) l4(Sl = 1.

If all eigenvaluesn = n(s) of (&.28) have Rea{(s)) < 0 for a given
s, we say thatu(s) is linearly stable. If at least one eigenvalue has
Re((s)) > 0, thenu(s) is linearly unstable. If all the eigenvalue have
Re((s)) < 0, with at least one equality holding, we say tlés) is
neutrally stable.

Suppose §(s), A(sp)) is a limit point as in lemm&5.19, them(s)
changes sign as it crosses the paint 5. Hence if a smooth path of
solutions has a simple quadratic foldsat s as in lemmd 5.9 and
solutions fors > 5 (or s < g) are stable then they are unstable for
s < g (or s > g9). Hence there is a change of stability = .
Note that here we are not claiming that any branch of solatisistable
or not. We are only proving that if the solution branch is ktedt one
side, then it is unstable on the other side. We cannot evetiubam the
converse.

Similarly at a bifurcation point as in lemnia’5l2@,s)) # O there 108
and det5,(s) changes sign at= s on one or both the branches through
the bifurcation point for whichi(s)) # 0. Hence here also there may
be an exchange of stability on one or both the branches thrtlug
bifurcation point. Again here observe that we are not prgeny branch
of solutions is stable. But we do know that both arcs of onehef t
branches cannot be stable.

5.26 Switching Branches at Bifurcation Points

Bifurcation points are solutions at which two or more braxbf solu-
tions of

(5.27) G(u, 1) —p=0

intersect nontangentially. In this section we considenblaswitching
only at simple bifurcation points. For more details seé [19]
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Method I: An obvious way to determine branches bifurcatingu8f {°)
is to determine the two distinct roots ¢f(5.12a) and use thedeter-
mine the distinct tangent vector in :

(5.28) U= ag¢ + Bo, A = B.

Then we can use our pseudoarclength continuation method-to d
termine the dferent branches of solutions. If we know one branch of
solutionsTap, then we know the tangentud'1°), to the curvely, at
(u°, 29 and this determines one root I {5.Jl2a). Hence we can deter-
mine the other tangent easily. Also note that in finding thieias of
the codiicientsa;; of (&1Z&) we need the derivatives,, G2, andG?,.

But we can use the following approximation to these quastitvhich
avoids the need for determining the second derivatives. of

= ST (G + £, %) — Gy, 1O,
&

= app + 0(e),
1
aj, =~y {[Gu(L” + &0, ) - Gu(U’, )9,
+ [G/l(uo + 8¢’ /10) - G/l (UO’ /10)]}’
= a1z + 0(e)

25, = U7 (G + oo, 1) - G, o
+ 2[G(W + e¢ho, %) — G(u°, 2°)]
+[Ga(P, 2% + &) — G, (P, A0)]),
= apy + 0(g).
Hereg, v andgg are nontrivial solutions of

G =0 GJy=0 Glo=-G% ¢ ¢o=0.

Method II: In this method we assume that one branch through the bi-
furcation point has been determined. Then the tang&gs)(1(sp)) can
also be assumed to be known on this branch. The idea is to skek s
tions on some subset parallel to the tangent but displacedtfe bifur-
cation point in a direction normal to the tangent but in a gpeplane.
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This method avoids the need to evaluate thefmentsa;j, i, j = 1,2.
Refore [19].

The solution branchuy(s), 41(9)) has a tangent in the direction given1o
by (528). An orthogonal to this tangent in the plane sparine(, 0)
and o, 1) is given by [5.2B) but witly, 8 replaced by:

& = B(L+ ligoll®). B = —aligll>

Then we seek solutions in the form :
Uz = Uy(So) + &(Bo + Gp1) + V.,
A2 = A1(S0) + £B + 7.
These are to satisfy:

G(uz, 12) = p,
N(Uz, 22) = (Beg +&¢" v+ = .

We use Newton’s method to solMe(5.29b) foe RN andn € R
with the initial estimate\p, o) = (0,0). Heree much be taken dii-

ciently large so that the scheme does not returuitsq), 11(S)) as the
solution.

(5.29a)

(5.29b)

Method Il (Lyapunov-Schmidt): Another way to determine a branch
bifurcating from a known branchu(s), A(s)) at s = s is to apply a
constructive existence theory, aslinl[22]. We seek the dafied branch
in the form :

u=u(o)+e(@+Vv), ¢'v=0

(5.30a) 2= 0y(0),

Then we have:
(5.30b) Gov - %G(ul(o-) +&(¢ + V), 11(0)), ¥ v=0.

111
To ensure that the right hand side isR(GY), we try picko = s
such thah(s &,Vv) = 0, where,

YTIGV - 2G(UL(9) + &g + V), 11(9)]. & # O,

(5:300) his.&.v) = {M[Gﬂv = G(ur(9), 1(9)(¢ +V)]; & = 0.
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It follows thath(sp, 0,0) = 0 and
h2 = hy(s0,0,0) = =y T [GY ln (o) + GIA1(0)]

Then if hY # 0 the implicit function theorem gives the function
s = o(g,v) and then it can be shown th&f (5.B0b) has a unique solu-
tion v = v(e) for || sufficiently small, using the contraction mapping
theorem.

The main dificulty in applying this method is in solvinys, &, V) =
0 for sat eachv = vy. If course ifA occurs linearly in the problem
and it is used as the parametgrthen this is easy. But in the case,
modifications must be introduced. Séeé [8], [8]. This methad also
been used for bifurcation from the trivial branch. See [31].

Method IV: Here we use a technique based on a modification of the
Crandall and RabinowitZ [5] proof of bifurcation. Thus weskesolu-
tions of the form[[5.30a) and define

(@g(v, s €) = sG(Ui(9) +e(p + V), (9) if &£#0
(5.31) Gu(uy(S). (9@ +V) if £=0
(BN(v,s,€) =y v.
Note that
9(0,%,0)=0, N(0,5,0)=0
and
AO _ a(g’ N) _ [GS BO]
T v, 9 logo WT O
where,

B” = [Gluti(s0) + GJda(s0)| .

If yTB® £ 0, the by the lemmBE4.9° is nonsingular. Now the
implicit function theorem shows that :

9(v.s.€) =0,

(-32) N(v,s &) = 0.
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has a smooth solutionv(), p(¢)) for eachle| < g and using this so-
lution in (&31a) yields the bifurcating branch of solusonn solving
(E32) we never use = 0 so that even when applying Newton’s method,
second derivatives need not be computed.

Method V (Perturbed Bifurcation) : Observe that at a bifurcation
point 2, 19, p is not a regular value foB. Since the set of all reg-
ular values is dense, the idea of this method is to pendayp + 7q,

ge RN, |lgl = 1,7 # 0, so thatp + 7q is a regular value foG. Con-
sider the two smooth branches of solutions through thedation point 113
(U, 29. If we delete a small neighbourhood af(1°), we obtain 4
different branches of solutions, sBy, I', I's, I's. Then consider the
perturbed problem :

(5.33) G(u, ) =p+1q qeRN, |ql=1 7=#0.

Assumingp + 7q is a regular value, this has no bifurcation dnd
i = 1,2,3,4 will simply be perturbed and will yield smooth nearby
branches of solutions of (5.83). These branches can be cathi: 3
ways. See Fig§.H3.5a,b,c.

Case (i) : Here if we are starting from a solution @h, we will get a
perturbed solution oh; and then we can continue alofgto I which
is the perturbed branch o%. Similarly fromT, we will obtainI, and
I} [Fig. B.8a].

Case (i) : In a similar manner we can handle this case also (seEFlg.5.5b

Case (iii) : In the cases (i) and (ii) we can determine the other branches
without any dificulty. Our claim is that the case (iii) doesn’t happen.
To see this we have to study further about fold following whige are
going to describe in the next section. There we will consildeproblem
E33) as a two parameten, () problem and will give an algorithm to
obtain a fold .
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(@) (b)

©

Figure 5.5:
114

5.27 Multi Parameter Problems (Fold Following)

115
We recall the two examples described in the introductoryptgraon

population dynamics. We examined the steady state sotutbn

¢ o
a— é‘: +/1§+T,
¢ 3
i E7+ A6+ T,

that is the solution of:
(1) -&+x+1=0,
(2 -+a+7=0,
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Example 1.-&% + A6 + 7 = 0.

We note that in theA, r) plane there is a curve across which the
number of solutions change. This curve is a fold. See thdisalgur-
face sketched in fig_11.4.

Example 2.-&3+ ¢+t =0,

In Fig.[L.8 we show a curve in tha,(r) plane which has a cusp at
the origin; as {, 7) crosses this curve the number of solutions changes.
Look at the solution surface in Fig_1]12. This curve is a foidthe
solution surface.

Hence determining a fold is very important. Other interesfphe-
nomena may occur along the folds. The solutions lie eithehedeft
of the fold curve or to the right of the fold curve. In the lattase,
(Fig.[5:8a) the fold point is known as a hyperbolic point amdhie for-
mer case (Fid.Bl6b) it is called an elliptic point. Suppdeefold point 116
is at (o, A0, T0). In the elliptic case it > ¢ we have no solution and on
the other hand if < 7o, we obtain a closed loop of solutions. A closed
loop of solutions is known as an ‘isola’. In the second casedmnges
from to we get diferent branches of solutions. For a unified theory of
perturbed bifurcation and isola formation seel [21].

A A

l / FOLD _ Fowp
ISOLAE ( >/

7o To
(a) hyperbolic pt (b) elliptic pt

~S——
S

—

Figure 5.6:

Now lett = g and assume that there is a simple quadratic fold with
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respect tal at (Ug, Ag). We haveG(ug, Ao, 79) = p and

(8) N(GY) = span{go}, for somegq # O,
(b) G2 ¢ R(GY) ={veRN 1 ylv=0].

(5.35)
Herey is a nontrivial solution of:
(5.35) (©)GY w0 =0,
117 and at a simple quadratic fold:
(5.35) (d)a = y§ Goudodo # 0.
Now consider the extended system:

G(U, /1’ T) - p
l//TGU(ua /1’ T)
y'GY-1

Fi(u,y.A,7) = =0.

HereFy : R2N*2 s R2N+*1 This system can be written as:

(5.36) @F(U,7) =0,
where
u
(5.36) bU = |y
A

andF = F;. Note that (lp, Yo, Ao, T0) iS @ solution of this system. We
use another formulation:

F(u7 /1’ T) - p
(5.37a) Fo(u,,4,7) =| Gu(u,A.7)¢ | =0,
Tgp-1
where( is such that
(5.37b) T = 1.
118 This can also be written in the fori{5136) with = F,. In this

letter case, we have the following theorem
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Theorem 5.38. At a simple quadratic foldug.Ag, 70):

G2 0 GO
oF u A
FO=—— =|G®o GY G2 o
U a(u’ q)v /l) (up,®o,10) UB 519 U/(I)
is nonsingular.
p
Proof. AssumeFJ® = 0, for somed = |q| € R*N+!
r
That is
(a) GYp+rGY=0,
(5.39) (b) G @op +Giq+ G dor =0,

(c) £ =0.

Multiplying (B-39a) byy,) and using[2.35 b,c), we get= 0. Hence
GIp = 0. This shows thap = a®y, for somea € R. So [5.3Bb) implies
that

a/lﬁgGBud)oq)o =aa=0.

So that by[[5:35d)y and hencep = 0. This impliesGJq = 0. Hence
q = Sd for somes € R. But by [5:39c) we g’ @y = 0. Hence by
(.37B),8 andq =0 o

Now we can apply the implicit function theorem to obtain

u=u(r)
D = D(7)
A= A1)

for |t — 6| < 6, for somes > 0. The arc (1), A(1),7) € RN*%, r € 119
(to — 6,70 + 8) is part of the fold curve. We can also use some other
parametrizations, to to obtain the solution in the form:

u=u(s
D = D(9
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A=A(9)
7 =1(9).

Now we will show how to use the Bordering Algorithm to find the
Newton iterates applied to soNe{5.87a). The linear systasthe form:

g
(5.40) LX =|~
Y
Here
A b
L=Fu=|o ol X e RN*2 ge RN y eR,
where
A= [g i] with A = GO, B = G2 .
First solve:
Av = b,b,veRN,
Aw=0,0 weRN
120
Then form;
y-clw
£=—75
and
X=w-—¢&V

Note that the system:

o= la A=)

can easily be solved as follows:

A
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First solve
Ay = y1,
and then
Ay> = y2 — Byr.
Hence it follows that the systerh (5]40) can be solved by sglvi
four systems the same dtieient matrixA. So we need do only orleJ

decomposition ofA and then four backsolves. See the Réf.] [33] and
also [15].

5.41 Paths of Periodic Solutions and Hopf Bifurca-
tion
121
In this section we will discuss the periodic solutions of gystem of
ODE depending on a parameter:
dy

(5.42) 5 = 0.

First we will briefly describe Poincare’s method for contagperi-
odic solution branches and then we discuss Hopf bifurcatféa do not
give a detailed description of these things. A good refezeioc Hopf
bifurcation is [25].

We seek periodic solutions df{5]42). Supposefer A° that y (t)

~0
satisfies[[5.42) ang (t+T°) = y(t), for someT® > 0 and for allt. Then
~0 ~0
y (t) is a periodic solution (5.42). Since this system is autooasn for

o
anyo, the translation ofy (t). viz.
~0

y(t) = }{) (t+0),

is also a periodic solution. We seek periodic solution whénpertubed
from A°
Substitutingy (t) in (&42) and diterentiating we get:
~0

Y0 =y 0. 150
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Let
Aoft) = [, (Y (0. ).

Then we can write

d .
g~ A1y =0

. . d o o
Hence the linearised operat%ﬁ — Ao(t) has a nontrivial periodic

solutions y(t). In the case of nonautonomous system this is not in gen-

<0
eral true. Then we have to assume thty, 1) is periodic, with period
T(1). Then in general the linearized problem does not have waitr
periodic solution and the continuation incan be done yielding solu-
tions with periodT (1). In our case[(5.42)f has all possible periods in
t.
Consider the periodic solutiog (t) of (5.42). Att = tg = 0, y(0)
~0 ~0

is some arbitrary point ilRN and letx ¢ RN be the plane which is
perpendicular to the tangeny,(0) atyp(0). That is:
<0

r=(EeRY: YO (- yO)=0)

Consider any poinferr in some small neighbourhood of(0) and
~ ~0
look at the solution curve of (5.12) passing through thismpéi Sup-

pose the curve intersects this planafter sometime, then this point of
intersection is the image gfunder the poincare map. For the existence

of Poincare map see |_25].~From the definition it is clear thatderiodic
solution of [5.4R) corresponds to the fixed points of the Baie map.
Consider the initial value problem:

(@) ¥ = 10D
(5.43) (b) y(0)= ¢ € BN,

Lety = y(t, &, 2) be the solution of[(5:33), fo(1) € B,(y(0), 2°)
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for somep > 0. The problem thus reduced to: figcndT such that :

@) y(T.&4)-£=0,

(544 5 YOle- y©O)] -0

These areN + 1) equations irN + 1 unknowns. Observe that at=

2%, we have the solutiot® = y(0), T = T°. We expect solutions foF
~ ~0

nearTC. We can apply the implicit function theorem if the Jacobi&n o
(5.44) with respect tag( T) is nonsingular. The Jacobian &P(T°, A°)

is given by:

YT.6D)—¢

-] [(°-1) YO
YO~ y(O)

y(OT 0

0

9. T)

=A

HereY? = Y(TO, &0, 10), whereY satisfies :

@ & - Ao®Y=0,

(5.45) (b) Y(0)=1.

All solutions of%’ — Ap(t)v = 0 are the form:
V(D) = Y(OC. ¢ € RN,
and the solution is periodic if and only if:
WU%—H{=0

Already we know thaty (t) is a nontrivial periodic solution. Hence
~0

Y(T9 has an eigenvalue unity. Now we will assume that 1 is a simple
eigenvalue oY (T?). Under this hypothesis, we will prove that: 124

Lemma 5.21. A is nonsingular.
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Proof. SupposeA[g] = 0. Then

z

(5.47a) VU%—H§=4¥®)

Multiplying throughout byY(T®) —1, since ¥(T®%) —1) y (0) = 0, we
get: 0
(5.47b) M(T%-1]%¢=0.

This shows that it # 0, then 1 is not a simple eigenvalue. Thus we
must havez = 0. Now the second equation gives:

y()'¢=0.
~0 ~
But [Y(T®) — 1]¢ = 0 implies that? is a multiple of y(0). i.e.
~ ~ ~0
y(0)T y(0) = 0. Hence we must have= 0. Thus the proof is complete
~0 (0]

We can solve the initial value problein (5143) numericallyeThain
difficulty in applying such numerical method is that the numética
jectory will blown up if the continuous orbit is not stablevés in the
stable case there may exist unstable orbits arbitrarily teeatable or-
bits and these cause trouble. In many cases of course thostiah”
method works fine.

We can write the equatiofi{5144) in the form:

(5.48) G(u,2) =0,
whereu = (¢, T). Here also we can do all the analysis of folds, bifurca-

tions, stability etc. as before. We can also compute patkelafions of
(&.48) and hence paths of periodic solutions[of (5.42).

We can formulate the continuous problems as follows, aftalirsy
time by the periodT:

H_T f(y. 4)
(5.49) Gy().& T, YD -¢ =0.
I MONGESY)
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HereG : Bx RN xR?2 - R x RN x RN x R. Now
[&-TALY] 0 fy.)

_ 96 _ 0 Yoo y (@)
wen o yor o

~0

HereA(t, 2) = fy(y(t), 2). As is lemma it can be shown that

4G

———y=y(t
ay.en! = %Y
£=y(0)

~ ~0

T=T°

is nonsingular if 1 is a simple eigenvalue dt.Y
We consider finite dierence approximations t6{5149). We use a

uniform net (but this can easily be changed):

tj:Jh, hzm,

whereM is the number of partitions of the unit time interval. 126

to 21 tj_]_ tj tm

Letu;j be an approximation to(t;). We can approximat€ (5.49) as:

Uj—uj-1—Th f(%(Uj + Uj_l),/l)
G"WU", T, 1) = .

) Up — UN
&0’ (uy — &9
This is a system oMN + N + 1 equations inMN + N + 1 un-

knowns. Here again we can apply the implicit function theote ob-
tain U"(2), T(Q)) if his suficiently small. Here again there may exists
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folds, bifurcations (Hopf bifurcation) etc. Hopf bifurdan is the bifur-
cation of periodic solution orbit steady state solutiongfeR [14] and
[L0] for details.

Look at the steady states ¢f (5l42). i.e. solutiong(@f 1) = 0. Let
I'o = {y(1)} be a solution branch. Eigenvalues of the linearized problem
about states determine the stability of these orbits asisofuiof [5.42).
So consider the eigenvalue problem:

AD$(A) = n(A)p(2)

Here A(1) = fy(y(2),1). SinceA(1) is real, the eigenvalues will
occur as complex conjugate pairs. Assumél) = a(d) + i8(1) and
n2(1) = a(2) —iB(1). We know that at fold points, some real eigenvalues
change sign. Also if the real part of any eigenvalue changgs there
may be a change of stability. We examine the case of the evabenin
fact two complex eigenvalues changing sign of the real [@otassume
a(4g) = 0, a(o) # 0 andB(1p) # 0. Then theHopf bifurcation theorem
[see [25]] states that a periodic solution branch bifuredtem I'y at
A= Ag. Let

#(2) = a(2) + ib(1).
Substituting this in??), we get:

Aa= aa- b,

5.51
( ) Ab=ab+ pa

At Hopf bifurcation, we haver(1g) = 0. Then look at the system
(5.52a) for the unknownsy/(a, b, 5, 1).

f(y. 4)
(5.52a) fy(y, )a+Bb| = 0.

f,(y, )b — pa

This is a system of [§ equations in Bl + 2 unknowns. So we add
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two normalizations to obtain a system oN3 2) equations, viz:

RI\)
fy(y, A)a + gb
(5.52b) fy(y, )b - pa | = 0.
a'la+b'b-1
[ Ta-1

128
The choice of the unit vectarneed only satisfyTa(1g) = 1.
Here also we can apply numerical schemes to directly conmirtegs
of Hopf bifurcation. In the next chapter we will give some exaes in
which we employed various schemes that are discussed irrehi®ps
chapter. O






Chapter 6
Numerical Examples

6.1 Introduction
129

We present here in some detail, a few worked-out examplesisbo
how the techniques discussed in the lectures are actuajijoged. Un-
fortunately we do not show all the procedures, but it showldbe dif-
ficult for the interested reader to try out the missing ones. € path
following via Euler-Newton continuation in both the natural parameter
formulation and in the Pseudoarclength variant. Folds mcemvented
by switching from the natural parameter to Pseudoarclemdjiin spe-
cific tests tell us to do so. Then we switch back after the falg been
traversed. We jump over bifurcation points easily and ind®eist con-
tinuously test to see if we must return to locate the folds iturta-
tion points. We also locate the singular points accurately switch
branches at the bifurcation points. Multiparameter pnoisieare also
treated.

The basic logic of our code is illustrated by a simple flow die.
The numerical schemes employed are given. Details of the tesed
and some indication of how they performed are given belowyv- Se
eral problems have been solved and we show graphs of solodithrs
for some of these problems. Some actual computer listingeofer-
gence data, steplength changes, accurate location ofdaltiifurca-
tion points are included with explanation.

111
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6.2 Problems and Dfference Schemes

Due to limitations of computing power available for thesstgewe con-
sider only O.D.E. problems. They are of the form:

2
(6.3) Lu= % + p(x)%’( = f(ux 4,7, in (0, L)

subject to two point boundary conditions of the form:

(8) Bou = 6o u(0) + ro (0 = .
(6.4) ax
(b) BLU =0L U(L) +IL &(L) =9.

The nonlinearities were of the semilinear form. No concalptlif-
ficulties occur if they are allowed to be quasilinear, ifés in the form
du . , .
f (u, ax X, A, T). We use uniform grids of spacing
L
6.5a h=—,
(6.52) N

to define the netpointsj ) as :
(6.5b) X0=0,X4+1=Xj+h,j=01...N-1

The usual centred fierence scheme is employed, sometimes mod-
ified if singular codficients occun(l.e. (p(X) = —) or improved to get
a

fourth order accuracy ip(x) = 0. If eitherrg # 0 orr # 0, we intro-

duce exterior points at_;-_, andxn.1 = L + h respectively. Denoting
the discrete approximation te{x;) by u; and using the finite dierence
operators:

uj — _ Yinr — U

Diuj = ———; D_uj = T’; Dou;j = h

Our basic dference approximation t6.(6.3) &t is given by:

(6.6) Lnuj = D.D_uj + p(X)Douj = f(uj,xj,4,7);j=0,1,...N.
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The boundary condition§{6.4) are approximated as:

(a) Bju = goUo + roDolo = %o,

6.7) 0
(b) BluL = quun + r Doun = s,

The scheme in[{@l6) fof = 0 and [&¥a) both involver_;1. This
quantity is then eliminated using the two equations to get i@tation
betweenug andu;. A similar treatment usind(8.6) at= N and [6&.¥b)
eliminatesun,1 and retains one equation iy andun_;. The system
thus reduced consists df + 1 equations in as many unknowasg j =
0,...N. If rp = 0 and (or)r. = 0, we do not imposd(8.6) for = 0
and (or)j = N. The corresponding elimination need not be done and we
again getN + 1 equations in the same number of unknowns. We could
also eliminataug and (or)uy. In this case we not bother to do that in our
description here.

The diference scheme i {6.6).(b.7) has second order accuracy. If
the continuous probleni(86.3).(6.4) has an isolated salutig (say, for
fixed A, 7) and if p(X) and f are smooth, then it is known that, for suf-
ficiently smallh, the discrete probleni{8.6L(6.7) has a unique solution
{uj} in some sphere iRN*! about{ug(xj)} and further it satisfies:

lluo(X}) — ujll = O(h?).

Similar results also apply to the entire solution branchie6d), 132
(&3) containing simple fold and bifurcation points. Howethere may
be some degradation of accuracy at these special poirgss ttiscussed
more thoroughly in the expanded version of these notes.

If p(x) = 0, we can easily get fourth order accurate, three point
schemes, using Collatz’s device as follows. Taylor exparssgive:

d?u h? d*u
D+D_U(Xj) = W(XJ) + 1—2d—X4(XJ) + O(h4)
Sinceu(x) satisfies:
d?u

W = f(U(X), X, /l, T),
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we have: "
D, D_f(u(x;), xjA,7) = %(Xj) +0(?).

and thus we get:

h? d?u 4
D.D_u(xj) - 1—2D+D_f(u(xj), Xj,A,7) = W(Xj) + 0(h™).

Thus in place of[{&]6) we use, whea(x) = 0 :
1 .
(6.8) LhUj = D+D_Uj - l_z(fj+l + 1ij + fj_l), ] = 0,1,...N.
Here we have used the abbreviations:
fj = f(uj, x5, 4, 7).

We can employ this device even when we have the mixed boundary
conditions [G¥). That is even whep # 0 and (or)r. # 0. This does
133 not seem to have been stressed before, so we indicate tlils.d&tmin
Taylor expansions give:

du h? d3u
DQU(XJ') = &(XJ) + 1_2d_X3

Here the factoh?/12 occurs because we ufg to approximate

d/dxand 23! = 12. Previously this factor came/2. In any event now

d?u d?’U(Xj)
D)= ge

() + 0.

+0(h).

Using [&.3) withp(x) = 0 atx = xj, in the above, we get

h? du ’
Dou(x;j) = l—zDof(u(xj),xj,/l, T) = &(xj) + 0(h?).

With x; = xo, andx; = xn, we replacel(8l7) by :
- h?

(a) Byuo = gouo + roDo(Up — 1—2fo) = S,
2

(6.9) h
(b) Blun = gLun + qun + rDo(uy — 5™ =S,
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Now (6.9a) and[{6l8), foj = 0, both contain non-zero multiples
2

h . - :
of (u-1 — — f_1) which can be eliminated between these two equations.
A similar treatment with[{8]9b) an@{6.8) fgr= N eliminates (n1 —
h? : . . . .
1—2fN+1). The result is agailN + 1 equations in the basic unknowas
j =0,1,...N and the tridiagonal structure of the system is retained [see
the equation (6.10) below]. Of courserf = 0 and (or)r. = 0, we
need not bother with the above procedurg at 0 and (or)j = n. So
in either of those cases, we need not imp@sd (6.8) fer 0 and (or)
: . . Lo h?
j = N respectively. Even if the elimination ofi(; — —f_1) etc. are not

performed we get enhanced accuracy, but the system stustapt as 134
elegant.

In the case of singular céicients, (i.e:p(x) = m,o <a<l)we
modify the scheme as follows. Fpr= 0 we replacel(Gl6) by:

(m+ l)D+D_Uo =fo, ifa=1,

and
D,D_ug=foif0 <a <1

These follow fromu(0) = 0 and hence :
(m+ Dux(0), if a=1,

lim (uxx + mu)—
x>0 x0T e (0), if 0<a<l

We get only second order accuracy but the error expansigr=ad
proceeds in power df?.
All the difference schemes we have described can now be incorpo-
rated into the general form:
gj(uj_l, Uj, Ujs1, 4, T) = ajUj_1 + Bjuj + yjUji1 — &j fj_l
(6.10a) ~Bifi - %fjs1-6;=0,0< j<N.
Of course we always have :

(6.10b) ag=a0=yN=Yn=0,
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and hence :

(6.100) Jo = go(UO, up, A, T); ON = gN(UN—la Un, A, T).

The system (6.10) is our finite dimensional problem which we c
write in the vector form:

Jo
Guid)=| <o
ON

Thus our general finite dimensional problem is frii® to RN+,
Note that it is a nonlinear three term recursion, terminattejd= 0 and
j = N with two term relations.

Of paramount importance are the derivative$sokith respect tay,
A andr. The j™ row of the Jacobian matriG, is given by theN + 1

vector:
% =(0,...0,aj,bj,c;,0,...0),j=0,...N.
au ’ s Ay My L]y Yy s s
ThusG, is a tridiagonal matrix withb; on the diagonala; andc;
are below and above the diagonal respectively. In standatedions for

such matrices we have;:
(6.11) Gu(u, 4,7) = [&, b}, i1} -

Differentiating[[6.10a) we get that :

99 .
= E = aj - aj(fu)j-1,
(6.12) bj = 29; = Bj - Bi(fu);
: i au; i ~Pilluj

R -¥i(fu)j+1.0< j < N.

The tridiagonal form of [6J1) becomes clear frof_(6]110b)
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and [6.1R). Here we use the obvious notation :

of
(fu)j = %(Uj, Xj, 4, 7).

The A andr derivatives are not sparse; we have :

where,
duj = —&j(fa)j-1 - Bj(f); - #j(f)j+1,0< j < N.

A similar set of relations defing..
To complete the detailed specification of any of our problewes
need only to give:

(6.14) L, p(x), f(u,x 2,7), (do,ro, S0), (0L, L, SL)-

When these are given, we examip), ro andr,_ to find out which
of the schemes we have described is to be employed. Thenrk&ots
(6.15) @}.85,7j. @B}, 9;,6)), 0<j<N

are determined. Now only the net spacing or integ@f (€.5a) need be
given. We give the cd#cients of [6Ib) in table | for some of the most37
basic cases to be tested.

6.16 Algorithm and Tests

The following are the main steps for computing the solutisanich
starting from a known initial solutioruf, 2°).

Step |. Determination of the unit tangent to the path, ¥ig, 1)
Step Il. Choice of :
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() the tangent direction;
(ii) steplengtha, along the path;

(i) continuation method; natural parameter- (p) or pseudoarclength
(p-a).

Step lll. Construction of the initial iterate : either fon (p) :
u® = W + Au;
orfor(p-a):

u® = 1° + AL,
AW = 2° 4 An

Step IV. Newton’s iteration to findqu) of (6u, 62).

Step V.Computation of the relation error;

If error < &, then one step is completed and then go to $tép
determine the next solution. If not, then updat ¢r (u, 1) and go to
Step IV.

The steps in the algorithm are explained in more detail irflthe-
chart. No we explain step Il, where certain tests are usedakerthe
various choices mentioned.

The unit tangenty; 1) is determined only up to its sign. The choice
of the sign is crucial in order to avoid going backwards otiggttrapped
between two points. If the tangent at the previous solutod, 1°)
then we choose the sign fou,(l), so as to make the inner product
(P, 2°), (1, 2)) positive.

The choice of the steplength is more delicate as it depends ap
number of parameters. If the steplength is too large, we mauire too
many Newton iterations to converge (or indeed divergenceocaur).

It the steplength is too small we may require too many stepsitapute
the entire solution path. Thus in either case the compultaltigficiency
is reduced. At each point on the branch, we allow the stefieng
to vary with Ug, the number of iterations required to converge at the
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previous step. We fit a decreasing exponential curve inAh®g)-plane
and choosex according to this function. Specifically, we use

Anew = O(UF)Aqid,

where
oU) = 2057,

Naturally other choices fat(U) can be used.

The choice of the method depends on whether we are near dasingag
point or not. Most often we can pass over simple bifurcatioim{s even
with natural parameter continuation. Thus théidulty arises mainly
near the folds. Since = 0 at the fold, it seems reasonable to switch
over to pseudoarclength continuation whehis small enough. Once
the fold is crossed ovel| increases again and we switch back using the
same test.

In pseudoarclength continuation, twofférent types of bordering
algorithm can be used depending on whether the m@&yixs nearly
singular or not. To do this we need a test to determir@®yiis “suffi-
ciently” singular. For that we look at tHelU decomposition fo, and
test the diagonal elements;;, of U as follows:

UNN
UN-1,N-1

Ujj
Uj-1,j-1

Min
1<j<N-1

> M

>

where M is a constant depending on the number of poMtsIf the

test is passed, we can use the bordering algorithm in thelsingase.
Otherwise the usual bordering algorithm is used. In mostadations,
however, the singular bordering algorithm is invoked onlyew great
accuracy is sought.

6.17 Numerical Examples

The algorithm was used to compute the solution branchesirfgsle
nonlinearities in double precision with an error toleranté.E-8.
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Example 1.We consider the following nonlinear O.D.E.

+uW+1=0in(0,1),

n-1ju
W+LTJL

(6.18)
u(0)=0;ul)=0,n>2
140

A difference scheme, as described in the earlier section was used
with twenty points. The cdécients are as listed in case (5) of table-
I, with the additional assumptiog. = 0 andq, = 1. Starting from the
trivial solution at1 = 0, the branch was computed beyond two folds. Ta-
ble Il gives the convergence data for the first few steps.dddtiat near
the turning point, pseudoarclength continuation is optadbiut later
natural parameter continuation. The sign of the determiichanges
indicating the crossing of a singular point, a turning pdinthis case.
Fig.[&1 plots, fom = 2, normu = (/] w()u(0) ) sgn U’ (1)) versus
4, showing the two folds.

After a certain number of iterations, the continuation apged and
the program proceeds to the location of singular pointsrtiStafrom
the stored value ofx 1), just before the determinant changed sign, using
a bisection method, the fold is located accurately. In tloénity of the
fold, the singular bordering algorithm (refer sectibn.B.for the case
of almost singular A) is used and the method converges walbl€eTl|
gives the convergence pattern near the first folchfer2.

Example 2.Here we consider a two parameter problem:

—u' = - Au+pu in(0,1)

(6.19) u(0)=u(1)=0

141 Foru = 0, the simple bifurcation points along the trivial branck
2

. d
0 are at1 = Aj whereq; are the eigenvalues @i?} on (0 1). We use

the perturbed bifurcation approach, (Method V in sedii@@®f chapter
B) to get the branch bifurcating from the trivial branchiat Here we
useu to perturb the problem (refeL {5133) whergwas used in a similar
role.) In fig.[E2, we plot normu = (4/Umax) sgn (/(0)) versust. The
difference scheme used is an in case 1 of table - | Nith 20.
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Starting from
(u, 2, 1) =(0,0,0).

continuation inu is done up tu = &, keepingl fixed at 0. Then keeping
u = g, fixed, a1 continuation is done till the solutions arefciently
large. These solutions are indicated in [Eigl 6.2 by two duodies: upper
one foru = .1 and lower on fop = —.1. Now to switch fromu = ¢ back
tou = 0, we do au-continuation. Then keeping = 0 fixed, continuing
in A, we get the branch bifurcating from,(@,). This branch is indicated
by the dotted line in Fid. 6l 2.

Example 3.The following nonlinear ODE is the one dimensional ver-

sion of [&I8) (l,en=1):

U +ud+1=0in(01)

(6.20) u(©)=u(l)=0

Starting from the trivial solutiony, 1) = (0, 0), the branch is con-
tinued till | A |> 16. Two singular points are found and they are located
accurately all ~ 1.1 andA ~ —8.07 using a bisection method as in42
example-1 Table-IV shows the Patten near the second simpjuilat.

Once a good approximation to the singular point is obtairted,
right and left null vectorsb andy of G, are computed as indicated in
Chapter IV. At the first singular point; v, G, >~ 120. This shows that
is must be a fold point. At the second singular point where —8.10,
we find that< ¢, G, >~ 1E — 4. (See table-IV and also the remark
after lemmal{5.20) in chaptEl 5). This is indeed a bifurcapoint. The
branch switching is done using method Il of Chapler 5, takg to use
alarge step size. This gives one part of the second branciersteg the
direction, we get the other part of the second branch, kafimg from
the original one.

The bifurcating diagram is given in Fig_6.3. Here noumactually
stands for $gnu(0))umax. The branch | represents symmetric solution
which are positive till the bifurcating point. After the bittation point,
the branch develops two nodes near each end. The branchrdé-rep
sents non-symmetric solutions bifurcating from branchhe Bolutions
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in the upper branch have a node near the right end and thdse liovter
branch near the left end.

143 Table -1
Case (1) Case (2) Case (3) Case (4) Case (5)
m
px)=0  p(x) =0 p(x) =0 p(x) £ 0 PO = —
ro=0=r. r1o=0=r_ rg#0r.#0 ro#0,r.#0 rh=1,=0
QG=0=r_
4th order  2nd order 4th order 2nd order 2nd order
accuracy  accuracy accuracy accuracy accuracy
2 29 2 200 PoYo 2
== _-—,=_-7 = 1
Po G %o e h R oh 1, M+
2 2 2
Bo 0 0 5/6 1 1
y 1/6 0 0
2% S, 2
8o S S h A (f; = Po) 0
1 p 1 m
i yn 1k -p/2h YR = = -5
o U b / ® 2h 2~ 2jhe
B; -2/ -2/h? -2/h? -2/h? -2/h?
Yi 1/h?  1/h*+ pj/2h 1/h? 1/h? + pj/2h 1/h? + m/2jh?
@ 1/12 0 112 0 0
B;  5/6 1 5/6 1 1
¥i 1/12 0 112 0 0
an 0 0 2/h? 2/h? 2/h?
2 2q 2 200 paOC 2 q,1
Pu G a B Th @ nh on ®onht™
an 0 1/6 0 0
By O 0 5/6 1 1
o _2_SL _i(g + P )
N S S rh r'h N S
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Flow Chart 144

Read (20, Ao)

Fix parameters

!

MAIN STEP

COMPUTATION OF INITIAL TANGENT

Solve G (1) = —G%\; Normalize (1, \) to get unit tangent vector

!

FIXING THE TANGENT
Choose (u,)\) $0 that < i, Ao > +AoA > 0. (_®

Choose natural parameter or arclength continuation
depending on whether [A| > 0.5 or [A| < 0.5.

CHOICE OF STEPSIZE A

Choose stepsize depending on the number of iterations
taken to converge in the previous step and the size of |A|.

CONSTRUCTION OF STARTING POINT

ARCLENGTH NATURAL

{ul = U, + A

. = u, + A%
A= A+ AA }oru1 Uo + AU

'
ITERATION TO FIND 3 @
THE NEIGHBOURING SOLUTION

®
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ARCLENGTH ﬁ))) NATURAL

‘ Y
SOLVE SOLVE
Gt GM [ou] _ [-GM(u,N) . .
o A| [0 T | =N"(u,\) GM(6 u) = =G (u, \).
up = uy +0u; Ay = Ay +0A up = uj + ou

COMPUTE THE RELATIVE ERROR

< u, du > +(5N)? < ou, ou >
or
< Ugy Up > +A2 < Oy, Uy >

145
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TABLE - Il 146
MAIN METHOD ITERATION STEPLENGTH ERROR A SIGN OF THE
STEP USED A OBTAINED DETERMINANT
1 (p-8) 1 E-3
0.5 023 +1
nonsingular 2 .B-10
2 (p.a) 1 E-1
nonsingular 2 o4 E-5 045 +1
3 SE-13
3 (p-2) 1 E-3
nonsingular 2 D 2E-3 0.003 -1
3 OQE-11
4 1 SE-1
2 BE-2
(n.p) 1357 -1.35 -1
3 2E-4
4 -8
5 1 JAE-1
2 BE-4
(n.p) 1357 —2.71 -1
3 AE-7

4 5E - 15
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147 TABLE - 1l
MAIN BORDERING ITERATION ERROR Pl LAST SING OF THE
STEP ALGORITHM OBTAINED PIVOT DETERMINANT
TYPE

1 NS 1 .2E-4
0.45085 -4621 -1

(nonsingular) 2 E-11

2 NS 1 E-5
0.45275 663 +1

2 AE - 14

3 NS 1 E-9
0.452495 -1648 -1

2 .2E-16

4 NS 1 E-6
0.452721 -84.73 -1

2 AE - 15

5 NS 1 E-6
0.45276 -2279 -1

2 2E-14

6 NS 1 E-5
0.452761 17.51 +1

2 2E-14

7 S 1 FE-6
0.452762 -3.6 -1

(singular) 2 E-12

8 S 1 E-5
0.452762 6.7 +1

2 2E-11

9 S 1 .E-5
0.452762  1.485 +1

10 S 1 .E-5
0.452762 -1.073 -1
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TABLE - IV

127

MAIN ITERATION ERROR

A

LAST SINGOFTHE <VY,G, >

STEP OBTAINED PIVOT DETERMINANT

1 JE-4

2E-8 -8643 -319 -1 -23
2 JE-5

BE-11 -8223 -84 -1 -5
3 E-7

SE-13 -8014 -3.7 +1 -.26
4 E-6

B8E-12 -8118 -24 -1 -.17
5 JAE-6

2E-12 -8.066 -67 +1 -.047
6 E-6

AE-12  -8.092 —-.86 -1 —-.061
7 E-6

3E-12 -8.0792 -.096 -1 —-.0068
8 E-6

3E-12 -8.0727 -.284 +1 -.02
9 E-6

3E-12 -8076 -.094 +1 —-.0067
10 E-6

3E-12 -8.07759 -.001 -1 —.00008

148
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B

—-1.01
—1.04

—5.04+
—7.01+
—9.04

-11.04

- —

1 1
T T T T T T T
-4.0-3.5-3.0 2.5—2.0—-1.5-1.0 —0.5 0

T T T T 1
.0 05 1.0 1.5 20 25

LAMBDA
Figure 6.1:
149

4 T NORM u

34

9 L "perturbed"

solution (1 = 0.1)

1 —

0 4
-1+ / trivial

=-0.1

: (h 0-1) solution(p = 0)

—3 4+ 4
/" bifurcating
—4 T solution (u = 0)
— 5 —
[l [l [l [l )\1‘| |
T T T T T 1
0 2 4 6 8 10 12
LAMBDA
Figure 6.2:
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I NORM u
Solution Symmetric 207
without — solutions
symmetry
1 I I I
—-16 —14

II

LAMBDA

Figure 6.3:

|
Do
S
|
T
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