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Preface

These notes are based on a series of lectures given at T.I.F.R. Centre,
Bangalore during November and December 1985. The lectures con-
sisted of two parts. In the first part, I presented basic properties of
stochastic flows, specially of Brownian flows. Their relations with lo-
cal characteristics and with stochastic differential equations were central
problems. I intended to show the homeomorphism property of the flows
without using stochastic differential equations. In the second part, as
an application of the first part, I presented various limit theorems for
stochastic flows. These include the following:

(a) Approximation theorems of stochastic differential equations and
stochastic flows due to Bismut, Ikeda - Watanabe, Malliavin,Dow-
ell et al.

(b) Limit theorems for driven processes due to Papanicolaou- Stroock-
Varadhan.

(c) Limit theorems for stochastic ordinary differential equations due to
Khasminskii, Papanicolau - Kohler, Kesten - Papanicolaou et al.

I intended to treat these limit theorems in a unified method.
I would like to thank M.K. Ghosh for his efforts in completing these

notes. Also I wish to express my gratitude to Professor M.S. Raghu-
nathan andT.I .F.R, for giving me this opportunity to visit India. Finally
I would like to thank Ms. Shantha for her typing.

H.Kunita

iii





Contents

0 Introduction 1

1 Brownian Flows 5
1.1 Stochastic Flows with Independent Increments . . . . . . 5
1.2 Local Characteristics. Generator of N-Point Motion . . .8
1.3 Brownian Flow of Homeomorphisms . . . . . . . . . . . 15
1.4 Stochastic Flow of Diffeomorphisms . . . . . . . . . . . 20

2 Stochastic Flows and Stochastic Differential Equations 27
2.1 Non-Brownian Stochastic Flows . . . . . . . . . . . . . 28
2.2 Vector Valued Semimartingales . . . . . . . . . . . . . . 32
2.3 Stochastic Integrals . . . . . . . . . . . . . . . . . . . . 36
2.4 Construction of stochastic...... . . . . . . . . . . . . . . . 40
2.5 Representation of Stochastic Flows by SDES . . . . . . 44
2.6 Inverse Flows and Infinitesimal Generator . . . . . . . . 50
2.7 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . 54

3 Limit Theorems for Stochastic Flows 63
3.1 Weak and Strong Convergence of... . . . . . . . . . . . . 64
3.2 Approximation of Stochastic Differential Equations . . . 68
3.3 The Main Limit Theorem . . . . . . . . . . . . . . . . . 74
3.4 Tightness of (N+M)-Point Processes . . . . . . . . . . . 76
3.5 Weak Convergence of (N+M)-Point processes . . . . . . 82
3.6 Tightness of Sobolev Space-valued Processes . . . . . . 92
3.7 Proof of the Main Theorem . . . . . . . . . . . . . . . . 94

v



vi Contents

3.8 Proof of the Approximation Theorem . . . . . . . . . . 95
3.9 Ergodic Case . . . . . . . . . . . . . . . . . . . . . . . 99
3.10 Mixing Case . . . . . . . . . . . . . . . . . . . . . . . . 105
3.11 Tightness and Weak Convergence of Inverse Flows . . . 116



Chapter 0

Introduction

Let us consider an ordinary differential equation onRd 1

dx
dt
= f (x, t), (0.1)

where f (x, t) is continuous in (x, t) and is Lipschitz continuous inx.
Denote byφs,t(x) the solution of the equation (0.1) starting fromx at
time s, i.e., with initial conditionx(s) = x. It is a well known fact that
φs,t(x) satisfies the following properties:

(a) φs,t(x) is continuous ins, t, x,

(b) φt,u(φs,t(x)) = φs,u(x) for any s, t, u and anyx,

(c) φs,s(x) = x for anys,

(d) the mapφs,t : Rd → Rd is a homeomorphism for anys, t.

The mapφs,t with above properties is called a flow of homeomor-
phisms.

A stochastic flow of homeomorphisms is anRd valued random field
φs,t(x, ω), o ≤ s ≤ t ≤ T, x ∈ Rd defined on a probability space (ΩF,P)
such that, for almost allω, it has the above mentioned properties (a) ∼
(d). In particular, ifφti ,ti+1, i = 0, 1, . . . , n−1 are independent for any 0≤
t0 < t1 < . . . < tn ≤ T, it is called a Brownian flow. An important class

1



2 0. Introduction

of Brownian flows is constructed by solving Ito’s stochasticdifferential
equation

dx(t) =
τ

∑

k=1

Fk(x, t)dBk(t) + F0(x, t)dt, (0.2)

whereFo(x, t), F1(x, t), . . . , Fr (x, t) are continuous in (x, t) and Lipschitz
continuous inx, and (B1(t), · · · , Br(t)) is a standard Brownian motion.
Let φs,t(x, ω) be the solution of the equation under the initial condition
x(s) = x. Then, taking a suitable modification, it defines a Brown-2

ian flow. This fact has been established by many authors, e.g.Elwor-
thy [7], Malliavin [8], Bismut [3], Ikeda - Watanabe [13], Kunita [18]
. However, not all stochastic flows can be constructed by the above
method. In fact, we need an infinite number of independent Brownian
motionsB1(t), B2(t), . . . and functionsFO(x, t), F1(x, t), . . . , or equiva-
lently a Brownian with values inC = C(Rd;Rd), i.e., aC- Brownian mo-
tion. Here, a continuousRd valued random fieldX(s, t), x ∈ Rd, 0 ≤ t ≤
T, is called a C- Brownian motion ifX(x, ti+1)−X(x, ti), i = 0, 1, . . . , n−1
are independent for any 0≤ t0 < t1 . . . < tn ≤ T. Then under a mild
condition any Brownian flow can be obtained by a stochastic differential
equation of the form

DC(t) = X(x(t), dt). (0.3)

This fact is due to Le Jan [23] and Baxendale [1]. See also Fujiwara
- Kunita [8].

The first part of these lectures will be devoted to the study ofthe
basic properties of stochastic flows including the above facts. In Chap-
ter 1 we shall characterize the Brownian flown by means of its local
characteristics:

b(x, t) = lim
1
h

(E[φt,t+h(x)] − x) (0.4)

a(x, y, t) = lim
1
h

(E[φt,t+h(x) − x)(φt,t+h(y) − y)∗],

where∗ is the transpose of the column vector (.).b(x, t) and a(x, y, t)
will be referred to as infinitesimal mean and infinitesimal covariance
respectively. It will be shown that these two objects determine the law
of the Brownian flow.
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In Chapter 2, we shall consider the stochastic differential equation
based on C - valued Brownian motion or more generally C-valued con-
tinuous semimartingaleX(x, t), given in the form (0.3). It will be shown
that the equation has a unique solution if its local characteristics are Lip-
schitz continuous and that the solution defines a stochasticflow. Con- 3

versely, under some conditions the flow can be expressed as a solution
of a suitable stochastic differential equation.

The second part of these notes will be devoted to various limit the-
orems concerning stochastic flows. We shall consider three types of
limit theorems. The first is the approximation theorem for a stochas-
tic differential equation given by (0.2). Letvε(t) = (vε1(t), . . . , vεr (t)),
ε > 0 be a piecewise smooth r dimensional process such thatBε(t) =
∫ t

0 vε(r)dr, ε > 0 converges to a Brownian motionB(t) asε → 0. Con-
sider the stochastic ordinary differential equation

dx
dt
=

r
∑

k=1

Fk(x, t)v
ε
k(t) + Fo(x, t). (0.5)

Let φεs,t(x) be the solution of (0.5) starting fromx at time s. The
question is whether the family of stochastic flowsφε, ε > 0 converges
weakly or strongly to a Brownian flow determined by the stochastic dif-
ferential equation (0.2) ( with some correction term). The problem has
been considered by many authors in several special cases ofvε(t), e.g.,
Bismut [3], Dowell [6], Ikeda - Watanabe [14], Kunita [15], Malliavin
[25].

The second limit theorem we shall be concerned with is that byPa-
panicolaou Stroock-Varadhan [29]. Consider the followingsystem of
stochastic differential equations

dxε(t) =
1
ε

F(xε(t), zε(t))dt +G(xε(t), zε(t))dt +
p

∑

j=1

σ j(x
ε(t), zε(t))dβ j (t)

dz∈(t) =
1

ε2
F̃(xε(t), zε(t))dt +

1
ε

q
∑

j=1

σ j(x
ε(t), zε(t))dβ̃ j (t),

where (β1(t), . . . , βp(t)) and (̃β1(t), . . . , β̃q(t)) are independent Brown-
ian motions,F,G, F̃, σ, σ̃ are bounded smooth functions with bounded
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derivatives. The processeszε(t), ε > 0(called the driving processes) do
not converge. However, under suitable conditions on the coefficients,4

the processesxε(t), ε > 0(the driven processes) can converge weakly to
a diffusion process.

The third one is concerned with the stochastic ordinary differential
equation

dx
dt
= ε f (x, t, ω) + ε2g(x, t, ω),

where f , g are random velocity fields satisfying suitable strong mixing
conditions andE[ f ] = 0. The stochastic flowsφεs,t determined by the
above equation converge to the trivial flowφ0

s,t(x) ≡ x. Khasminskii
[16], Papanicolaou - Kohlet [28], Borodin [5], Kesten- Papanicolaou
[15] et al have shown that after changing the scale of time, the processes
ψεt = φ

ε
0,t/ε2, ε > 0 converge weakly to a diffusion process.

In Chapter 3 we shall present a general limit theorem so that the
above mentioned cases can be handled together.



Chapter 1

Brownian Flows

This chapter consists of four sections. In Section 1.1 we define stochas- 5

tic flows of measurable maps. If a stochastic flow of measurable maps
continuous int, has independent increments, we call it a Brownian flow.
We then describe its N- point motion and show that it is a Markov pro-
cess. Finally we show that given a consistent family of transition proba-
bilities, we can construct a stochastic flow with independent increments
whose N-point motion will have the same family of transitionprobabil-
ities. In Section 1.2, we introduce the notion of local characteristics of
a Brownian flow which are essentially the infinitesimal mean and co-
variance of the flow. We then show the existence of a Brownian flow
with prescribed local characteristics. In Section 1.3, we study Brownian
flow of homeomorphisms. We show that if the local characteristics of
a Brownian flow satisfy certain Lipschitz conditions, then it becomes a
flow of homeomorphisms. In Section 1.4 we establish the diffeomor-
phism property of a Brownian flow under some smoothness Assump-
tions on its local characteristics.

1.1 Stochastic Flows with Independent Increments

Let (Ω, F,P) be a probability space. LetT > 0 be fixed. For 0≤ s≤ t ≤
T, x ∈ Rd, let φs,t(x, ω) be anRd valued random field such that for each
fixed s, t, s ≤ t, φs,t(., ω) is a measurable map fromRd into Rd. Let M

5



6 1. Brownian Flows

denote the totality of measurable maps fromRd into Rd. Thenφs,t can
be regarded as an M - valued process.

Definition 1.1.1. φs,t is called a stochastic flow of measurable maps if

(i) φs,t(x, .) is continuous in probability w.r.t(s, t, x),

(ii) φs,s = identity map a.s.for each S ,

(iii) φs,u = φt,uoφs,t a.s. for each s< t < u.

whereo stands for the composition of maps. By a stochastic flow6

we will always mean a stochastic flow of measurable maps. Let 0≤
t0 < t1 < . . . < tn ≤ T, xi ∈ Rd, 0 ≤ i ≤ n − 1 be arbitrary. If
φti ,ti+1(xi), i = 0, 1, . . . , n − 1 are independent random variables for any
such{ti , xi}, thenφs,t is called a stochastic flow with independent incre-
ments. Further, ifφs,t(x, ω) is continuous int a.s. for eachs, x thenφs,t

is called a Brownian flow (of measurable maps).
Letφs,t be a stochastic flow with independent increments. Letx(N) =

(x1, x2, . . . , xN) ∈ RNd where eachxi ∈ Rd. Setφs,t(x(N)) = (φs,t(x1),
φs,t(x2), . . . , φs,t(xN)). For fixeds, x(N), φs,t(x(N)) is anRNd valued pro-
cess. We claim that it is a Markov process with transition probability

P(N)
s,t (x(N),E) = P(φs,t(x

(N)) ∈ E). (1.1.1)

Indeed, let

T(N)
s,t f (x(N)) =

∫

f (y(N))P(N)
s,t (x(N), dy(N)) (1.1.2)

wheref : RNd→ R is a bounded measurable map. LetFs,t = σ(φu,v(x) :
s ≤ u ≤ v ≤ t, x ∈ Rd). Note thatφs,u = φt,uoφs,t and the independent
increment property ofφs,t implies thatφt,u is independent ofFs,t. Now

E
[

f
(

φs,u(x(N))|Fs,t

)]

= E
[

f
(

φt,u(y(N))
)]

y(N)
= φs,t(x

(N))

= T(N)
t,u f (φs,t(x

(N)).

From the above property, we see that7



1.1. Stochastic Flows with Independent Increments 7

T(N)
s,t f = T(N)

s,t oT(N)
t,u f . (1.1.3)

If f is bounded and continuous, thenT(N)
s,t f ((x(N)) is a continuous

function of s, t, (x(N)).

Remark 1.1.2.The family
{

P(N)
s,t (x(N), .)

}

N=1,2,...
defined by (1.1.1) of

transition probabilities is consistent in the following sense. SupposeM
andN are two positive integers andN > M. Let 1≤ i1 < i2 < · · · ≤ N
be positive integers,{xil · · · , xiM } a subset of{x1, . . . , xN} andE1, . . . ,EN

Bo rel sets inRd such thatEk = R
d if KM

< {i1, . . . , iM}. Then

P(N)
s,t (x1, . . . , xN,E1 x . . . xEN) = P(M)

s,t (xi1, . . . , xiM ,Ei1 x . . . xEiM ).
(1.1.4)

Proposition 1.1.3. Let
{

P(N)
s,t (x(N), .)N = 1, 2, . . .

}

be a family of transi-
tion probabilities satisfying the consistency condition(1.1.4). Assume
that the corresponding T(N)

s,t f (x(N)) is continuous in(s, t, x(N)) for any
bounded continuous function f . Then there is a stochastic flow of mea-
surable maps with independent increment whose N-point process has
the transition probability

{

P(N)
s,t (x(N), .

)

}.

Proof. Let 0 ≤ t1 < t2 < · · · < tn ≤ T. Then by Kolmogorov consis-
tency theorem, there existn independent random fieldsξi , i = 1, 2, · · · n
s.t. the law of (ξi(x1)), . . . , ξi(xN)) coincides withP(N)

ti ,ti+1
(x(N), .) for any

x(N) ∈ RNd. SinceT(1)
s,t f (x) is continuousw.r.t x for all bounded contin-

uous f , we can pick a version of{ξi(x)} s.t x→ ξi(x) is measurable. For
ti ≤ t j , define

ξti .,t j =















identity if i = j

ξ j−1oξ j−2o · · · oξi if i < j.

Denote the law ofξti ,t j , ti ≤ t j by {Qt1··· ,tn. Then {Qt1,...,tn(x)} is a
consistent family of probability measures as the parameters vary over
0 ≤ t1 < t2 < · · · < tn ≤ T, x ∈ Rd. Therefore, by Kolmogorov 8

consistency theorem, there exists a random fieldφs,t(x, ω) such that the
joint law of {φti ,t j (xk), 1 ≤ i ≤ j ≤ n, k = 1, . . . ,N} coincides with
{ξti ,t j (xk), 1 ≤ i ≤ j ≤ n, k = 1, 2, . . . ,N}. Again the continuity of
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T(1)
s,t f (x) w.r.t.s, t, x allows us to pick a version such the maps, t, x →

φs,t(x, ω) is measurable a.s Thisφs,t(x, ω) clearly satisfies (i) and (ii) of
Defn. 1.1.1 (iii) being an easy consequence of (1.1.3) above. Thus it is
the required stochastic flow. �

Remark 1.1.4.In view of the above propositions there is a one to one
correspondence between stochastic flows with independent increments
and a consistent family of transition probabilities whose corresponding
family of semigroups satisfies a certain continuity criterion.

1.2 Local Characteristics. Generator of N-Point
Motion

Let φs,t(s, ω) be a Brownian flow. We make the following assumptions:

Assumption 1. φs,t(x, .) is square integrable and the following limits
exist:

(i) lim
h→0

1
h

E[φt,t+h(x) − x]

Denote the above limit by b(x, t). Then b(x, t) = (b1(x, t), . . . ,
bd(x, t)) is anRd vector.

(ii) lim
h→0

1
h

E[(φt,t+h(x) − x)(φt,t+h(y) − y)∗]

where x∗ stands for the transpose of x∈ Rd. Denote the above
limit by a(x, y, t). Then a(x, y, t) = (ai j (x, y, t)) is a d× d matrix.

The pair (a, b) is called the local characteristics of the flowφs,t.
Clearly the matrix a(x, y, t) = (ai j (x, y, t)) satisfies the following proper-
ties:

(i) Symmetry: ai j (x, y, t) = ai j (y, x, t) for any x, y, t9

(ii) Nonnegative definiteness:
∑

i, j,p,q
ai j (xp, xq, t)ξi

px jiq ≥ 0 for any (x1,

. . . , xN) andξp = (ξ1
p, . . . ξ

d
p), p = 1, 2, . . . ,N.
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Assumption 2. There exists a constant K independent of x, s, t such that

|E[φs,t(x) − x]| ≤ K(1+ |x|)(t − s), (1.2.1)

|E[φs,t(x) − x)(φs,t(y) − y)∗]| ≤ K(1+ |x|)|(1+ |y|)(t − s). (1.2.2)

Remark 1.2.1.Assumption 2 is technical in nature but it is not very
restrictive. It will naturally be satisfied in most of the interesting cases.

Remark 1.2.2.It follows from (A1) and (A2) that

|b(x, t)| ≤ K(1+ |x|), (1.2.3)

|a(x, y, t)| ≤ K(1+ |x|)(1+ |y|). (1.2.4)

Note that the first norm is a usual vector norm and the second one is
a matrix norm.

Let Ms,t(x) be defined as follows:

Ms,t(x) = φs,t(x) − x−
∫ t

s
b(φs,r (x), r)dr. (1.2.5)

Lemma 1.2.3. For each s, x,Ms,t(x), t ∈ [s,T] is a continuous L2-
martingale and

< Mi
s,t(x),M j

s,t(y) >=
∫ t

s
ai j (φs,r (x), φs,r (y), r)dr (1.2.6)

where< ., . > stand for quadratic variation process.

Proof. Set
ms,t(x) = E[φs,t(x)]. (1.2.7)

�

Then

∂

∂t
ms,t(x) = lim

h→0

1
h

[(ms,t+h(x)ms,t(x)]

= lim
h→0

1
h

E[(mt,t+h(φs,t(x)) − φs,t(x))]. (1.2.8)
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10

Now
1
h
|mt,t+h(φs,t(x)) − φs,t(x)| ≤ K(1+ |φs,t(x)|)

SinceK(1 + |φs,t(x)|) is integrable, we can change the order of lim and
E in (1.2.8). Hence we get

∂

∂t
|ms,t(x) = E[b(φs,t(x), t)]for allt ≥ s.

Therefore

ms,t(x) − x =
∫ t

s
E[b(φs,r (x), r)]dr (1.2.9)

Hence
E[Ms,t(x)] = 0.

Note that fors< t < u,

Ms,u(x) = Ms,t(x) + Mt,u(x)(φs,t(x)).

Therefore

E[Ms,u(x)|Fs,t] = Ms,t(x) + E[Mt,u(y)]y=φs,t (x)

= Ms,t(x)

This proves the first assertion. We will now establish (1.2.6). Define

Vs,t(x, y) = E[Ms,t(x)(Ms,t(y))∗]. (1.2.10)

Then11

Vs,t+h(x, y) − Vs,t(x, y) = E[(Ms,t+h(x) − Ms,t(x))(Ms,t+h(y) − Ms,t(y))∗].

Therefore

1
h

[Vs,t+h(x, y) − Vs,t(x, y)] =
1
h

E[(Mt,t+h(φs,t(x))(Mt,t+h(φs,t(y)))∗]

=
1
h

E[(Vt,t+h(φs,t(x), φs,t(y))]. (1.2.11)
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Letting h→ 0 in (1.2.11), we get

∂

∂t
Vs,t(x, y) = E[a(φs,t(x), φs,t(y), t)].

Therefore

Vs,t(x, y) =
∫ t

s
E[a(φs,r (x), φs,r (y), r)]dr. (1.2.12)

Set

Ns,t(x, y) = Ms,t(x)Ms,t(y)∗ −
∫ t

s
a(φs,r (x), φs,r (y), r) dr. (1.2.13)

Then (1.2.12) implies

E[Ns,t(x, y)] = 0.

Let s< t < u. Then a simple computation yields

Ns,u(x, y) = Ns,t(x, y) + Nt,u(φs,t(x), φs,t(y))

+ Ms,t(x)Mt,u(φs,t(y)) + Ms,t(y)Mt,u(φs,t(x)).

Hence
E[Ns,u(x, y)|Fs,t] = Ns,t(x, y).

Thus Ns,t(x, y) is a martingale. This completes the proof of the
lemma.

12

Remark 1.2.4.b(x, t) anda(x, y, t) are often referred to as the infinitesi-
mal mean and covariance respectively of the flow.

Let xk ∈ Rd, k = 1, 2, . . . ,N, xk = (x1
k, . . . , x

d
k). We define a differen-

tial operatorL(N)
t as follows:

L(N)
t f (x(N)) =

1
2

∑

i, j,k,ℓ

ai j (xk, xℓ, t)
∂2 f

∂xi
k∂x j

ℓ

(x(N))

+
∑

i,k

bi(xk, t)
∂ f

∂xi
k

(x(N)). (1.2.14)
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L(N)
t is elliptic operator which may be degenerate. It is the infinitesimal

generator ofT(N)
s,t , which is the semigroup of N-point process. This fact

will follow from the following theorem.

Theorem 1.2.5. Let f be a C2 function onRNd such that f and its
derivatives have polynomial growth. Then the following holds for any
s, t, x(N):

T(N)
s,t f (x(N)) − f (x(N)) =

∫ t

s
T(N)

s,r L(N)
r f (x(N))dr. (1.2.15)

In particular

lim
h→0

1
h

(

T(N)
t,t+h f − f

)

= L(N)
t f . (1.2.16)

Proof. The proof is essentially based on Ito’s formula. It follows from
Lemma 1.2.3 that for fixed (s, x), φs,t(x) is a continuous semimartingale
with the following decomposition:

φs,t(x) = x+ Ms,t(x) +
∫ t

s
b(φs,r (x), r)dr. (1.2.17)

�

By Ito’s formula, we have

f (φs,t(x
(N))) − f (x(N)) −

∫ t

s
L(N)

r f (φs,r(x
(N))) dr

=
∑

k,i

∫ t

s

∂ f

∂xi
k

(φs,r (x
(N)))dMi

s,r (xk). (1.2.18)

Claim: φs,t(x) has finite moments of all orders. Granting the claim,13

the above is a zero mean martingale. Then taking expectation, we get

T(N)
s,t f (x(N)) − f (x(N)) −

∫ t

s
T(N)

s,r L(N)
s,r f (x(N))dr = 0,

which proves the theorem. So it remains to substantiate the claim which
we do in the following lemma.
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Lemma 1.2.6. φs,t(x) has finite moments of any order. Further, for any
p real andε > 0, there is a positive constant C= C(p, ε) such that

E(ε + |φs,t(x)|2)p ≤ C(ε + |x|2)p (1.2.19)

for any s, t, x.

Proof. Defineg(x) = ε + |x|2 and f (x) = g(x)P. Let Lr = L(1)
r . We shall

apply Ito’s formula to the 1− point process. We have

Lr f = 2pg(x)p−1
∑

i

bi(x, t)xi + pg(x)p−1
∑

i

aii (x, x, t)

+ 2p(p− 1)g(x)p−2
∑

i, j

ai j (x, x, t)xi x j . �

Using the estimates (1.2.3) and (1.2.4), we have|Lr f (x)| ≤ C′ f (x),
whereC′ is a constant independent ofx, r. Now for anyn, define the
stopping time

τn = τn(x, s) =















inf {t > s : |φs,t(x)| ≥ n}
∞ if the above set is empty.

Let the stopped processφs,tΛτn be denoted bỹφs,t. Then f (φ̃s,t(x)) −
∫ t

s
Lr f φ̃s,rdr is a martingale. Therefore

E[ f ˜(φs,t(x))] = f (x) +
∫ t

S
E[Lr f (φ̃s,r (x))]dr

≤ f (x) +C′
∫ t

S
E[ f (φ̃s,r (x))]dr.

14

Hence by Gronwall’s inequality, we have

E[ f (φ̃s,t(x))] ≤ f (x)eC′(t−s).

In the above inequality, the right hand side is independent of n; so
letting n ↑ ∞, we get

E[ f (φs,t(x))] ≤ f (x)eC′(t−s).

Thus
E[ε + |φs,t(x)|2]p ≤ C(ε + |x|2)P.
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Remark 1.2.7.(i) For each positive integerk, 1 ≤ k ≤ N, define

Lk
t =

1
2

∑

i, j

ai j (xk, xk, t)
∂2

∂xi
k∂x j

k

+
∑

i

bi(xk, t)
∂

∂xi
k

. (1.2.20)

Lk
t is the generator of 1−point process. Then the following is easily

verified:

L(N)
t f =

N
∑

k=1

L(N)
t f +

∑

k,ℓ

1
2

∑

i, j

ai j (xk, xℓ, t)
∂2

∂xi
k∂x j

ℓ

. (1.2.21)

The second term in (1.2.21) could be regarded as the interaction
betweenφs,t(xk) andφs,t(xℓ). Thus the generator of theN−point is the
sum of the generators of the 1− point motions together with the cross
- interaction. If no interaction exists then the second termwill cease to
exist andφs,t(x1), φs,t(x2), . . . would move independently.

(ii) The family of operators{L(N)
t ,N = 1, 2, . . .} is consistent in the

following sense: LetM,N be two positive integers andN > M. Let15

1 ≤ i i < i2 < . . . < iM ≤ N, {x11, . . . , xiM } a subset of{x1, . . . , xN}. Let f
be a function ofRNd depending only on (xi1, . . . , xiM ). Then

L(N)
t f (x1, . . . , xN) = L(M)

t f (x11, . . . xiM ), (1.2.22)

which is an obvious consequence of the Remark 1.1.2. We conclude
this section by showing the existence of a Brownian flow with given
local characteristics.

Theorem 1.2.8.Let b(x, t) be anRd-valued bounded continuous func-
tion and a(x, y, t) and d× d-matrix valued bounded continuous function
which is nonnegative definite and symmetric(ai j (x, y, t)) = (ai j (y, x, t)).
Suppose a and b are twice spatially differentiable and their derivatives
are bounded. Then there is a Brownian flow with local characteristics
(a, b). Further, the law of the flow unique.

Proof. We defineL(N)
t as before. By Oleinik’s theorem (Stroock - Varad-

han [31]) there exists a uniqueT(N)
s,t such that

T(N)
s,t f (x(N)) = f (x(N)) +

t
∫

s

T(N)
s,t L(N)

r f (x(N))dr. �
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The consistency of the family
{

T(N)
s,t ,N = 1, 2, · · ·

}

follows from that

of {L(N)
t ,N = 1, 2, . . . }. By virtue of Proposition 1.1.3 there exists a

stochastic flow with independent incrementsφ(x)
s,t whose N-point pro-

cess has the same semigroup asT(N)
s,t . SinceT(N)

s,t defines a diffusion
semigroup, it follows thatφs,t(x) is continuous int a.s for eachs, x.
Henceφs,t is a Brownian flow.

Remark 1.2.9.Under the condition of the above theorem, the law of
the Brownian flow is determined by the 2−points motions. Indeed, let
{

T(N)
s,t ,N = 1, 2, · · ·

}

and
{

T̃(N)
s,t ,N = 1, 2, · · ·

}

be consistent families of16

semigroups with generators
{

L(N)
t ,N = 1, 2, . . .

}

and
{

L̃(N)
t ,N = 1, 2, . . .

}

respectively. IfT(2)
s,t = T̃(2)

s,t thenT(N)
s,t , T̃(N)

s,t for anyN ≥ 2. This follows
from the above theorem because the generator depends only onthe local
characteristics andL(2)

t = L̃(2)
t impliesL(N)

t = L̃(N)
t ,N = 1, 2, . . .

1.3 Brownian Flow of Homeomorphisms

Definition 1.3.1. Let φs,t(x) be a Braownian flow of measurable maps.
Thenφs,t(x) is said to be a Brownian flow of homeomorphisms if

(i) φs,t(x) is continuous in (s, t, x) a.s

(ii) φs,t(., ω) : Rd → Rd is a homeomorphism for anys< t a.s. Further
if

(iii) φs,t(., ω) : Rd → Rd is aCk-diffeomorphism for anys< t a.s., then
φs,t is called a Brownian flow ofCk-diffeomorphisms.

Apart from assumptions 1 and 2, we will impose a Lipschitz condi-
tion on the local characteristics (a, b).

Assumption 3. There exists a constant L such that

|b(x, t) − b(y, t) ≤ L|x− y|, (1.3.1)

|a(x, x, t) − 2a(x, y, t) + a(y, y, t)| ≤ L|x− y|.2 (1.3.2)
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We will see in the next theorem that Assumption 3 makes a Brown-
ian flow a flow of homeomorphisms.

Theorem 1.3.2. Let φs,t be a Brownian flow satisfying(A1) ∼ (A3).
Then it is a Brownian flow of homeomorphisms. More precisely there
exists a version ofφs,t which is a Brownian flow of homeomorphisms.

The proof of the above theorem is based on several estimates which17

we will derive in the following lemmas. In these lemmas (A1), (A2), (A3)
will be assumed.

Lemma 1.3.3. For any real p, there is a positive constant C= C(p)
such that for anyε > 0, x, y, ∈ Rd

E(ε + |φs,t(x) − φs,t(y)|2)p ≤ C(ε + |x− y|2)P. (1.3.3)

Proof. Setg(x, y) = ε + |x− y|2 and f (x, y) = g(x, y)p. A simple compu-
tation yields

L(2)
t f (x, y) = 2pg(x, y)p−1















∑

i

(bi(x, t) − bi(y, t))(xi − yi)















+ pg(x, y)p−2



















∑

i, j

(g(x, y))δi j + 2(p− 1)(xi − yi)(x j − y j))

× (ai j (x, x, t) − 2ai j (x, y, t) + ai j (y, y, t))



















. �

Using the estimates (1.2.3), (1.2.4) and (1.3.1), (1.3.2),we can find
a constsntC′ such that

|L(2)
t f (x, y)| ≤ C′ f (x, y).

Now, by Ito’s formula,

E[ f (φs,t(x), φs,t(y))] = f (x, y) +

t
∫

s

E[L(2)
r f (φs,t(x), φs,t(y))]dr
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≤ f (x, y) +C′
t

∫

s

E[ f (φs,r (x), φs,r (y))]dr.

By Gronwall’s inequality, we have

E[ f (φs,t(x), φs,t(y))] ≤ eC′(t−s)
f (x,y) .

Hence there exists a constantC such that

E(ε + |φs,t(x) − φs,t(y)|2)p ≤ C(ε + |x− y|2)p.

18
Lemma 1.3.4. For any positive integer p there exists a constant C=
C(p) such that for any xo ∈ Rd, we have

E|φs,t(xo) − xo|2p ≤ C|t − s|p(1+ |xo|)2p. (1.3.4)

Proof. Fix a pointxo ∈ Rd and setg(x) = |x− xo|2, f (x) = g(x)p. Then as
before, using (1.2.3), (1.2.4), (1.3.1) and (1.3.2) we can find constants
C1,C2,C3 such that

|Lt f (x)| ≤ C1 f (x) +C2g(x)p−1/2(1+ |xo|) +C3g(x)p−1(1+ |xo|)2. �

Therefore using Ito’s formula, we have

E[ f (φs,t(xo))] ≤ f (xo) +C1

t
∫

s

E[ f (φs,r (xo))]dr

+C2

t
∫

s

E[g(φs,t(xo))p−1/2]dr (1+ |xo|)

+C3

t
∫

s

E[g(φs,t(xo))p−1]dr (1+ |xo|)2.

Applying Gronwall’s inequality, we have
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E[ f (φs,t(xo))] ≤ C4(1+ |xo|)
t

∫

s

E[g(φs,r (xo))p−1/2]dr +C5(1+ |xo|)2

t
∫

s

E[g(φs,r (xo))p−1]dr. (1.3.5)

Now for p =
1
2
, 1, the estimate (1.3.4) follows from (A2). Us-

ing (1.3.5), the same estimate follows forp = 1
1
2

. Again using (1.3.5),

we get (1.3.4) forp = 2. Proceeding inductively, we conclude the result
for any p.

Remark 1.3.5.If p is a positive integer there exists a constantC = C(p)
such that for anyxo, yo ∈ Rd

E|φs,t(xo) − xo − (φs,t(yo) − yo)|2p ≤ C|t − s|p|xo − yo|2p. (1.3.6)

Setg(x, y) = |(x, xo) − (y − yo)|2, f (x, y) = g(x, y)p. Then we can19

show that

|L(2)
t f | ≤ C1 f +C2gp− 1

2 |xo − yo| +C3gp−1|xo − yo|2.

The rest to the proof is similar to that of lamma 1.3.4.

Lemma 1.3.6. Let p be a positive integer. Then there exists a constant
C = C(p) such that

E|φs,t(x) − φs′,t′(x
′)|2p

≤ C
{

|x− x′|2p + (1+ |x| + |x′|)2p(|t − t′|p + |s− s′|p)
}

(1.3.7)

holds for any s≤ t, s′ ≤ t′ and x, x′εRd.

Proof. We consider the cases′ ≤ s ≤ t ≤ t′ only. The other case will
follow similarly. �

We split the proof in various steps
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(a) s= s′ andx = x′.

E|φs,t(x) − φs,t(x)|2p = E|φs,t(x) − φt,t′ , φs,t(x))|2p

=

∫

E[|y− φt,t′ (y)|2p]P(φs,t(x)εdy)

≤ C1|t − t′|p
∫

(1+ |y|)2pP(φs,t(x)εdy)

[using Lemma 1.3.4]

= C1|t − t′|pE(1+ φs,t
s,t|)2p

≤ C2|t − t′|p(1+ |x|)2p

(b) s= s′, x , x′.

E|φs,t(x) − φs,t(x
′)|2p ≤ 22p

{

E|φs,t(x) − φs,t′(x
′)|2p + E|φs,t′ (x) − φs,t′(x

′)|2p
}

≤ C3

{

|t − t′|p(1+ |x|)2p + |x− x′|2p
}

.

[using lemma 1.3.3]

(c) E|φs,t(x) − φs′,t′(x′)|2p = E|φs,t(x) − φs,t′(φs′,s(x′))|2p

=

∫

E|φs,t(x) − φs,t′(y)|2p)P(φs′,s(x
′)εdy)

≤ C3

∫

{

|t − t′|p(1+ |x|)2p + |x− y|2p
}

P(φs′,s(x
′)εdy)

= C3

{

|t − t′|p(1+ |x|)2p + E|x− φs′,sx
′|2p

}

≤ C3

{

|t − t′|p(1+ |x|)2p
}

+C4|x− x′|2p +C5|s− s′|p(1+ |x′|)2p

≤ C6

{

(|t − t′|p + |s− s′|p)(1+ |x| + |x′|)2p + |x− x′|2p
}

.

20

We shall now state without proof a criterion for the continuity of
random fields which is a generalization of the wellknown Kolmogorov’s
criterion for the continuity of stochastic processes.
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Theorem 1.3.7(Kolmogorov -Totoki). Let {x(λ), λ ∈ Λ} be a random
field whereΛ is bounded rectangular inRn. Suppose there exist positive
constantsα, β,K such that

E|X(λ) − X(µ)|α ≤ K|x− y|n+β, (1.3.8)

then{X(λ), λ ∈,Λ} has a continuous modification.

For the proof of the above theorem, see Kunita [18].

Proof of theorem 1.3.2.Let p > 2(d + 2). Then by Theorem 1.3.7,
φs,t(x) has a continuous modification. Thereforeφs,t(., ω) : Rd → Rd is
a continuous map for anys< t a.s. For negativep we have

E[|φs,t(x) − φs,t(x)|2p] ≤ C|x− y|2p

E[1 + |φs,t(x)|2p] ≤ C(1+ |x|)2p.

These two will imply thatφs,t(., ω) is a homeomorphism. The proof is21

exactly the same as in Kunita [18]. We omit the details.

1.4 Stochastic Flow of Diffeomorphisms

In this section, we will see that if the local characteristics (a, b) of a
Brownian flow are smooth and their derivatives bounded then the flow
becomes a flow of diffeomorphisms. We will make this precise in the
next theorem. Before that, we will add a few words about notations. For
a multiindexα = (α1, α2, . . . , αd), whereαi ∈ N, i = 1, 2, . . . , d, |α| =
α1 + α2 + · · · + αd

Dα = Dα
x = (

∂

∂x1
)α1 . . . . . . (

∂

∂xd
)αd .

Theorem 1.4.1.Let φs,t be a Brownian flow with local characteristics
(a, b) satisfying (A1), (A2), (A3). Assume further a(x, y, t) and b(x, t)
are k-times continuously differentiable in x and y and DαxDβ

ya(x, y, t),Dα
x

b(x, t), |α| ≤ k, |β| ≤ k are bounded. Thenφs,t(., ω) : Rd → Rd is Ck−1

diffeomorphism for any s< t a.s.
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We will prove the above theorem fork = 2. For higherk, the proof
if similar. The proof is based on the following lemmas.

Lemma 1.4.2. Let e be a unit vector inR, y(, 0) a real number. Set

ηs,t(x, y) =
1
y

(φs,t(x+ ye) − φs,t(x)).

Then, for any positive integerp, there exists a constantC = C(p)
such that

E|ηs,t(x, y) − ηs′,t′(x
′, y′)|2p ≤ C

{

|x− x′|2p + |y− y′|2p

+ (1+ |x| + |x′| + |y| + |y′|)2p × (|t − t′|p + |s− s′|p)
}

. (1.4.1)

22
Lemma 1.4.3. For (x1, x2, x3, x4) ∈ R4d, set

g(x1, x2, x3, x4) =
1
y

(x1 − x2) −
1
y′
, (x3 − x4)

where y, y′ are fixed nonzero real number. Set f= |g|2p, where p is a
positive integer. Then there exist constants Ci = Ci(p), i = 1, 2 such that

|L(4)
t f (x1, x2, x3, x4)| ≤ C1 f (x1, x2, x3, x4)

+C2(|x1 − x3| + |x2 − x4|)2p
(

1+ |
1
y′
, (x3 − x4)|2p

)

. (1.4.2)

Proof of Lemma 1.4.3.We shall consider the cased = 1 for simplicity.
The timet will be dropped froma(x, y, t) andb(x, t) since it is fixed. A
simple computation yields

L( f )
t f (x1, x2, x3, x4) = 2p

{

1
y

(b(x1) − b(x2)) − 1
y′
, (b(x3) − b(x4))

}

|g(x1, x2, x3, x4)|2p−1x signg(x1, x2, x3, x4)

+ p(2p− 1)

[

1

y2
{a(x1, x2) − 2a(x1, x2) + a(x2, x2)}

]

−
2

yy′
, {a(x1, x3) − a(x1, x4) + a(x2, x3) − a(x2, x4)}
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+
2

y′2
{a(x3, x3) − 2a(x3, x4) + a(x4, x4)}]g(x1, x2, x3, x4)|2p−2

= I1 + I2, say (1.4.3)

Using mean value theorem the first tern is written as23

1
2p

I I =











































1
∫

0

b(x1 + θ(x2 − x1))dθ





















1
y

(x1 − x2)

−









































1
∫

0

b′(x3 + θ(x4 − x3))dθ





















1
y′

(x3 − x4)











































× |g|2p−1 signg

=





















1
∫

0

b′(x1 + θ(x2 − x1))dθ





















|g|2p +

1
∫

0

{

b′(x1 + θ(x2 − x1))

−b′(x3, θ(x4 − x3))
}

dθx
1
y′

(x3 − x4)|g|2p−1 signg.

Using mean value theorem once again, we can find positive con-
stantsC3,C4 such that

|i1| ≤ C3|g|2p +C4(|x1 − x3| + |x2 − x4|)|
1
y′

(x3, x4)||g|2p−1.

Using the inequalityab ≤ aα

α
+

bβ

β
whereα, β ≥ 1, α−1 + β−1 = 1,

we get

|I1| ≤ C5|g|2p +C6(|x1 − x3| + |x2 − x4|)2p|
1
y′

(x3, x4)|2p. (1.4.4)

We next estimateI2. Note the relation

a(xi , xk) − a(xi , xm) + a(x j , xk) − a(x j , xm)

=

∫ ∫

a′′(xi + θ(a(x j − xi), xk + τ(xm− xk))θOdτ.(xi − x j)(xk − xm).
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wherea′′(x, y) =
∂2

∂x∂y
a(x, y).

Set

ξik(θ, τ) = a′′((xi + θ(x j − xi), xk + τ(xm − xk)),

W1 =
1
y

(x1 − x2),W3 =
1
y′

(x3 − x4).

Then we have

I2

p(2p− 1)
=























1
∫

0

1
∫

0

(ξ11(θ, τ))W2
1 − 2ξ13(θ, τ)W1W3

+ ξ33(θ, τ)W
2
3)dθdτ























|g|2p−2

=























1
∫

0

1
∫

0

ξ11(θ, τ)dθdτ























|g|2p +























1
∫

0

1
∫

0

(ξ11(θ, τ))

− ξ13(θ, τ) − ξ31(θ, τ) − ξ33(θ, τ))dθdτ























|g|2p−2|W3|2

+























1
∫

0

1
∫

0

(2ξ11(θ, τ)) − ξ13(θ, τ) − ξ31(θ, τ)dθdτ























|g|2p−2|gW3|2.

Here, the relation
∫ ∫

ξ13(θ, τ)dθdτ =
∫ ∫

ξ13(θ, τ)dθdτ in used.
The first term in the above is bounded byC9|g|2p. Again by using 24

mean value theorem, the second term is bounded byC10(|x1 − x3| +
|x2− x4|)2|g|2p−2|W3|2. The third term is bounded byC11(|x1− x3|+ |x2−
x4|)2|g|2p−2|W3|.Therefore, we have

|I2| ≤ C9 f +C10(|x1 − x3| + |x2 − x4|)2|g|2p−2

+C11(|x1 − x3| + |x2 − x4|)|g|2p−1|
1
y′

(x3 − x4)|

≤ C12 f +C13(|x1 − x3| + |x2 − x4|)2p
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+C14(|x1 − x3| + |x2 − x4|)2p|
1
y′

(x3 − x4)|2p. (1.4.5)

Finally, using the estimates (1.1.4) and (1.4.5) in (1.4.3), we obtain
the desired result.

Proof of Lemma 1.4.2.In view of the notation of Lemma 1.4.3

f (φs,t(x+ ye), φs,t(x), φs′,t(x
′ + y′e), φs′,t(x

′))

= |ηs,t(x, y) − ηs′,t′(x
′, y′)|2p.

We split the proof in two steps.
(a) t = t′, s′ < s.
Applying Ito’s formula, we get

E[ f (φs,t(x+ ye), φs,t(x), φs′,t(x
′ + y′e), φs′,t(x)))]

= E[ f ((x+ ye, x, φs′,s(x
′ + y′e), φs,′s(x

′)))]

+ E





















t
∫

0

L(4)
r f (φs,r (x, ye), φs,r (x), φs′,r(x

′ + y′e), φs,r(x
′))dr





















.

Therefore using Lemma 1.4.3,25

E[|ηs,t(x, y) − ηs′,t(x′, y′)|2p] ≤ E[|e− ηs′,s(x′, y′)|2p]

+C1

t
∫

s

E[ηs,r(x, y) − ηs′,r (x′, y′)|2p]dr

+C2

t
∫

s

E[(|φs,r(x+ ye) − φs′,r (x′, y′e)|

+ |φs,r(x) − φs′,r (x′)|)2p.(1+ |ηs′,r x
′, y′)|)2p]dr.

Consider the first term on the right hand side. Since

ηs,′s(x
′, y′) − e=

1
y′
{φs′,s(x

′ + y′e) − φs′,s(x
′) − y′e},
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using (1.3.6), we get

E|ηs′,s(x
′, y′) − e|2p ≤ C|s− s′|p.

Applying Schwarz’s inequality and (1.3.7), the third term can be
dominated byC′{|x− x|2p+ |y− y|2p+ (1+ |x|+ |x′|+ |y+ |y′|)2p|s− s′|p}.
We then apply Gronwall’s inequality to get the desired estimate.

(b) s′ < s< t′ < t.
Using the flow property, we have

E|ηs,t(x, y) − ηs,t(x, y)|2p] =
∫

E

[

|
1
y

(φt′ ,t(z1) − φt′,t(z2) − z1 + z2)|2p
]

× P(φs,t′(x+ ye)εdz′1, φs,t′(x)εdz2)

≤ C|t − t′|p 1

|y|2p

∫

|z1 − z2|2pP(φs,t′(x+ ye)εdz1, φs,t(x)εdz2)

= C|t − t′|p
1

|y|2p
E|φs,t′ (x+ ye) − φs,t′(x)|2p

≤ C′|t − t′|P.

Now combining this estimate and the estimate in (a), we get the 26

required inequality.

Proof of theorem 1.4.1.Applying Theorem 1.3.7,ηs,t(x, y) has a con-
tinuous extension aty = 0, i.e

lim
y→0

1
y

(φs,t(x+ yei) − φs,t(x)) =
∂

∂xi
φs,t(x)

exists for alls, t, x and for eachi = 1, 2, . . ., whereei = (0, . . . , 1, 0, . . . ,
0)1, being at theith place, and is continuous in (s, t, x). Henceφs,t(x) is
continuously differentiable.

Claim: φs,tis a diffeomorphism.
In view of the fact thatφs,t is a homeomorphism, it suffices to show

that the Jacobain matrix∂φs,t(x) is nonsingular. Consider the mapRd ×
R

d2 → Rd × Rd2

(x, z1, . . . , zd)→ (φs,t(x), ∂φs,t(x)z1, . . . , ∂φs,t(x)zd). (1.4.6)
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We claim that the above is a Brownian flow. Indeed fors< t < u

∂φs,u(x) = ∂φt,u(φs,t(x))∂φs,t(x),

whence the flow property follows. Therefore (1.4.6) defines aBrownian
flow of homeomorphisms. Thus the map∂φs,t(x) is 1-1 and therefore
∂φs,t(x) is nonsingular.



Chapter 2

Stochastic Flows and
Stochastic Differential
Equations

This Chapter deals with the interplay between stochastic flows and stoc- 27

hastic differential equation. In section 2.1 we study non-Brownian stoc-
hastic flows.Under certain assumptions we establish the homeomorphi-
sm and diffeomorphism properties of such flows. In section 3.2 we
defineC = C((R)d;Rd)- valued semimartingales and their local char-
acteristics. At the end of the this section we obtain a representation
result for a C-valued Brownian motion. In section 2.3 we define the
stochastic integrals of progressively measurable processes with respect
to C-semimartingales, which is essentially a generalization of the usual
stochastic integrals. In section 2.4 we introduce the concept of the solu-
tion of a stochastic differential equation in this setup and then show that
the solution defines a stochastic flow. In the next section we take up the
converse problem and obtain the representation of a stochastic flow by
anS DE. In section 2.6 we discuss the inverse flows and backward in-
finitesimal generators. The Chapter ends with an appendix where we de-
scribe generalized Ito formula, Stratonovich integrals and Stratonovich
stochastic differential equations.

27
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2.1 Non-Brownian Stochastic Flows

Let (Ω, F) be a standard measurable space andP a probability measure
defined on it. Letφs,t(x, ω) be a stochastic flow of measurable maps
which is continuous int. Let Ft denote the (right) continuous natural
filtration of the flow i.eFt =

⋂

ε>0σ(φu,v(.) : 0 ≤ u ≤ v ≤ t + ε). As in
Chapter 1 we will make three assumptions on the flow.

Assumption 1. φs,tx, . is square integrable and the following limits
exit:

lim
h→0

1
h

E[φt,t+h(x) − x)|Ft](ω) = b(x, t, ω), say, a,s for each t

lim
h→0

1
h

E[(φt,t+h(x) − x)(φt,t+h(y) − y)∗|Ft]ω = a(x, y, t, ω)

say, a.s. for each t.

28

In the above expressions the conditional expectation is computed
with respect to a version of the regular conditional distribution which
does exist by the stipulation on the measurable space. We further assume
that b(x, t, ω) anda(x, y, t, ω) are jointly measurable and progressively
measurable for eachx (respectivelyx andy).

Definition 2.1.1. The pair(a, b) is called the local characteristics of the
flowφs,t.

Remark 2.1.2.If φs,t is a Brownian flow thenφt,t+h(x) is independent of
Ft and thereforea(x, y, t) andb(x, t) do not depend onω. So in that case
a andb coincide with the local characteristics of the Brownian flow. We
show later that if the local characteristicsa, b do not depend onω then
φs,t is a Brownian flow.

Assumption 2. There exists a positive constant K (independent ofω)
such that

|E[φs, t(x) − x|Fs]| ≤ K(| + |x|)|t − s|, (2.1.1)

|E[(φs,t(x) − x)(φs,t(y) − y)∗|Fs]| ≤ K(1+ |x|)(1+ |y|)|t − s|. (2.1.2)
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These two inequalities imply

|b(x, t, ω)| ≤ K(1+ |x|), (2.1.3)

|a(x, y, t, ω)| ≤ K(1+ |x|)(1+ |y|). (2.1.4)

Lemma 2.1.3. For each s, x

Ms,t(x) = φs,t(x) − x−
∫ t

s
b(φs,r (x), r)dr, t ≥ s (2.1.5)

is an L2-martingale and 29

< Mi
s,t(x),M j

s,t(y) >=

t
∫

s

ai j (φs,r(x), φs,r (y), r)dr. (2.1.6)

Proof. The proof is the same as that of lemma 1.2.3. Set

ms,tx, ω = E[φs,t(x)|Fs](ω). �

For s< t < u, we have

E[φs,t(x)|Fs] =
∫

φs,u(x, ω′)pt(ω, dω
′)

=

∫

φt,u(φs,t(x, ω
′), ω′)pt(ω, dω

′)

wherept(ω, dω′) is a regular conditional distribution givenFt. Now for
fixed s, t, ω

pt(ω, {ω′ : φs,t(x, ω
′) = φs,t(x, ω)}) = 1 a.a.ω.

Therefore

E[φs,u(x)|Ft] =
∫

φt,u(φs,t(x, ω))pt(ω, dω
′)

= mt,u(φs,t(x, ω), ω).

Hence
ms,u(x, ω) = E[mt,u(φs,t(x))|Fs]
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So

1
h

[ms,t+h(x, ω) −ms,t(x, ω)] =
1
h

E[mt,t+h(φs,t(x)) − φs,t(x)|Fs].

Letting h→ 0, we get

∂

∂t
ms,t(x, ω) = E[b(φs,t(x), t)|Fs].

Thus30

ms,t(x) − x = E





















t
∫

s

b(φs,r (x), r)dr|Fs





















.

Then proceeding as in Lemma 1.2.3 we conclude thatMs,t is a mar-
tingale. For the second assertion set

Vs,t(x, y, ω) = E[Ms,t(x)Ms,t(y)∗|Fs].

We can show similarly that

Vs,t(x, y, ω) = E





















t
∫

s

a(φs,r (x), φs,r (y), r)dr|F2





















(ω).

Again proceeding the same way we prove that

Ms,t(x)Ms,t(y)∗ −
t

∫

s

a(φs,r (x), φs,r(y), r)dr

is a martingale. The proof is complete.

Let x(N) = (x1, . . . , xN) ∈ RNd.

Define

(L(N)
t f )(x(N), ω) =

1
2

∑

i, j,k,ℓ

ai j (xk, xℓ, t, ω)
∂2 f

∂xi
k∂x j

ℓ

(x(N))

+
∑

k,i

bi (xk, t, ω)
∂ f

∂xi
k

(x(N)). (2.1.7)

in this caseL(N)
t is a random differential operator.
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Theorem 2.1.4. φs,t(x) has finite moments of any order and if f is a
C2-function, f and its derivatives are of polynomial growth, then

f (φs,t(x1), . . . , φs,t(xN)) −
t

∫

s

(L(N)
r f )(φs,r (x1), . . . , φs,r(xN))dr (2.1.8)

is a martingale.

The proof is similar to that of Theorem 1.2.5 and hence it is omitted. 31

Now we make our assumption which is essentially a Lipschitz con-
dition on the local characteristics.

Assumption 3. There exists a constant L (independent of t, ω) such that

|b(x, t, ω) − b(y, t, ω)| ≤ L|x− y|, (2.1.8)

|a(x, x, t, ω) − 2a(x, y, t, ω)| + a(y, y, t, ω)| < L|x− y|2. (2.1.9)

Theorem 2.1.5.Letφs,t be a continuous stochastic flow of measurable
maps satisfying(A1) ∼ (A3). Then it admits a modification which is a
stochastic flow of homeomorphisms.

Proof. The proof of this theorem also goes along the lines of Theo-
rem 1.3.2. Using Ito’s formula and Gronwall’s inequality the following
estimates can be derived:

(i) For any realp andε > 0 there exists a constantC = C(p) > 0 such
that for anyt, x

E[(ε + |φs,t(x))|2)p|Fs] ≥ C(ε + |x|2)pa.s. (2.1.10)

(ii) For real p andε > 0 there existsC = C(p) such that

E[(ε + |φs,t(x) − φs,t(y)|2)p|Fs] ≥ C(ε + |x− y|2)p (2.1.11)

holds for allt, x a.s

(iii) For any positive integerp there existsC = C(p) such that

E[|φs,t(xo) − xo|2p|Fs] ≤ C|t − s|p(1+ |xo|2)p (2.1.12)

holds for anyxo ∈ R a.s
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Using (2.1.10), (2.1.11), (2.1.12) we can show that 32

E[|φs,t(x)−φs′ ,t′(x
′)|2p] ≤ C(|x−x′|2p+(1+ |x|+ |x′ |)2p.(|t−t′|p+ |s−s′ |p))

(2.1.13)
Indeed, consider the cases= s′, x = x′, t < t′.

E
[

|φs,t(x) − φs,t′(x)|2p
]

= E
[

|φs,t′(x) − φt,t′ (φs,t(x))|2p
]

= E
{

E[|φs,t(x) − φt,t′ (φs,t(x))|2p|Ft]
}

= E
{

E[|y− φt,t′(y)|2p|Ft]y=φs,t (x)

}

≤ C|t − t′|pE
{

1+ |φs,t(x)|2)p
}

≤ C′|t − t′|p(1+ |x|2)p.

The rest of the proof is exactly similar to that of Theorem 1.3.2. We
therefore omit the details. �

Remark 2.1.6.Assuming suitable smoothness conditions on (a, b) and
boundedness of their derivatives we can establish the diffeomorphism
property of the flow exactly the same way as we did in Chapter 1.

2.2 Vector Valued Semimartingales

Let (Ω, F) be a standard measurable space andP a probability mea-
sure defined on it. Let there be given a filtration{Ft}, o ≤ t ≤ T.
Let X(x, tω), x ∈ Rd, t ∈ [O,T] be a sample continuousRd-valued
random field. We assume that for eachx, t it is Ft-measurable. Let
C = C(Rd;Rd) endowed with compact uniform topology.

Definition 2.2.1. X(x, t) is called a C-valued martingale if it is anRd-
valued martingale for each x. It is called a Ck-valued martingale if
Dα

xX(x, t) is a C-valued martingale for any|α| ≤ k. Let X(x, t) be a33

continuous random field which admits the following decomposition.

X(x, t) = X(x, o) + Y(x, t) + V(x, t)
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whereY(x, t) is aC-valued martingale,V(x, t) a process of bounded vari-
ation for eachx andY(x, o) = 0,V(x, 0) = 0. ThenX(x, t) is called aC-
valued semimartingale. IfY(x, t) is aCk-martingale andDα

xV(x, t), |α| ≤
k is of bounded variation then it is called aCk-semimartingale.

Next we will define the local characteristics of anRd-valued semi-
martingale. Here we shall dispense with the continuity condition. Let
X(x, t) be anRd-valued semimartingale with parameterx ∈ Rd such that

X(x, t) = Y(x, t) + V(x, t)

where for eachx,Y(x, t) is a martingale andV(x, t) a process of bounded
variation. Assume that there existd-vector valued processβ(x, t, ω) with
parameterx andd×d-matrix valued processα(x, y, t, ω) with parameters
x, y such thatβ andα are progressively measurable w.r.t.{Ft} and

V(x, t) =
∫ t

o
β(x, r)dr,

< Y(x, t),Y(y, t)∗ > =
∫ t

o
α(x, y, r)dr.

Then the pair (α, β) is called the local characteristics of the semi-
martingaleX(x, t).

Remark 2.2.2.The above definition of local characteristics differs from
that of a flow. Indeed, ifφs,t is a stochastic flow as described in sec-
tion 2.1, then

φs,t(x) = x+ Ms,t(x) +
∫ t

s
b(φs,r (x), r)dr.

Here φs,t(x) is a semimartingale,Ms,t(x) its martingale part and34
∫ t

s
b(φs,r (x), r)dr is the bounded variation part. In this case

β(x, t) = b(φs,t(x), t),

α(x, y, t) = a(φs,t(x), φs,t(y), t).

We shall always assume thatα andβ are integrable,

i.e., E[
∫ t

o
|α(x, y, r)|dr] < ∞, E[

∫ t

o
|β(x, r)|dr] < ∞.
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ThusY becomes anL2- martingale.

Proposition 2.2.3. Let {Y(x, t), x ∈ Rd} be a family of continuousRd-
valued semimartingales with local characteristics(α, β). Suppose that
α andβ are Lipschitz continuous and|α(|(0, 0, t)|, |β(0, t)| are bounded,
then Y(x, t) has a modification as continuous C-semimartingale. Fur-
ther if α andβ are k-times differentiable in each x, y and there exists K
such that

|Dα
xDβ

yα(x, y, t)| ≤ K, |Dβ
x(x, t)| ≤ K, |α| ≤ k, |β| ≤ k,

then Y(x, t) has a modification as Ck−1-semimartingale.

Proof. Using Burkholder’s inequality, one can show that

E[|Y(x, t) − Y(x′, t′)|p] ≤ C(|t − t′|p/2 + |x− x′|p).

Now using Kolmogorov’s theorem one can complete the proof. �

Definition 2.2.4. Let X(x, t) be a C-valued process continuous in t. It is
called a C-Brownian motion if for0 ≤ t0 < t1 < · · · < tn ≤ T,X0,Xti+1 −
Xti = 0, 1, . . . , n− 1, are independent.

35
Remark 2.2.5.For (x1, . . . , xN) ∈ RNd, (Xt(x1), . . . ,Xt(xN)) is anRND-
valued Brownian motion in the usual sense, i.e., it is a Gaussian process
with independent increments.

Proposition 2.2.6.Let X(x, t) be a continuous C-valued semimartingale
with local characteristics(α, β). If α, β do not depend onω then X(x, t)
is a C-Brownian motion

Proof. This is a straightforward implication of Levy’s characterization
of Brownian motion. �

Example 2.2.7.Examples ofC-Brownian motions.

Let (B1
t , . . . , B

r
t ) be anr-dimensional standard B.M. LetF0(x, t),

F1(x, t), . . . , Fr(x, t) beRd-valued functions Lipschitz continuous inx.
Let

X(x, t) =
∫ t

o
Fo(x, s)ds+

r
∑

k=1

∫ t

o
Fk(x, s)dBk

s. (2.2.1)
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Then X(x, t) is a C − B.m. with β(x, t) = F0(x, t) andα(x, y, t) =
r
∑

k=1
Fk(x, t)Fk(y, t)∗. Next consider an infinite sequence of independent

one-dimensionalB.m′s{Bk
t }∞k=1. Let {Fk(x, t)}∞k=o be a sequence ofRd-

valued functions such that there existsL > 0 satisfying

∞
∑

k=o

|Fk(x, t) − Fk(y, t)|2 ≤ L|x− y|2,
∞
∑

k=o

|Fk(x, t)|2 ≤ L(1+ |x|2.

Then

X(x, t) =
∫ t

o
Fo(x, r)dr +

∞
∑

k=1

∫ t

o
Fk(x, r)dBk

r (2.2.2)

converges and is aC−B.m. In this caseβ(x, t) andα(x, y, t) =
∞
∑

k=1
Fk(x, t)

Fk(y, t)∗.
We will see in the next proposition that if the local characteristics of 36

a C-B.m. satisfy suitable condition then it is of the form (2.2.2).

Proposition 2.2.8. Let X(x, t) be a C-B.m. with local characteristics
(α, β) and X(x, 0) = 0. Assumeα, β are Lipschitz continuous. Then
there exist an infinite sequence of independent standard B.m.’s {Bk

t }k=1

and functions Fk(x, t), k = 0, 1, 2, . . . such that

X(x, t) =
∫ t

o
Fo(x, r)dr +

∞
∑

k=1

∫ t

o
Fk(x, r)dBk

r .

Proof. We will only consider the homogeneous case, i.e., when the lo-
cal characteristics do not depend ont. Let F0(x) = E[X(x, 1)], then
E[X(x, t)] = tF0(x). Set

Y(x, t) = X(x, t) − tFo(x) �

Then Y(x, t) is a zero-meanC − B.m. Let {xn} be a dense subset
of Rd. Consider the sequence{Yi(xk, t)} k=1,2,...

i=1,2,...,d
. By Schmidt’s orthog-

onalization procedure we can find a sequence{Bk
t }k=1,2,... of orthogonal
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(=Independent) Brownian motions such that the linear span of{Bk
t , k =

1, 2, . . .} is equal to that of{Yi(xk, t), k = 1, 2, . . . , i = 1, . . . , d}. Set
Fk(x) = E[Y(x, 1)Bk

1]. Then

Fk(x)t = E[Y(x, t)Bk
t ],

Y(x, t) = Fo(x)t +
∞
∑

k=1

Fk(x)Bk
t .

Also it is easily seen thatα(x, y) =
∞
∑

k=1
Fk(x)Fk(y)∗.

2.3 Stochastic Integrals
37

Let Y(x, t) be aC-martimgale such that the characteristicα(x, y, t, ω)
is integrable and continuous in (x, y). Further we make the following
assumption:

Assumption 4.
∫ t

o
sup|x|,|y|≤K |α(x, y, t, ω)|dt < ∞ for any K and t.

Let ft(ω) be a progressively measurableRd-valued process such that
∫ t

o
|α( fs, fs, s)|ds< ∞ a.s. for each t. (2.3.1)

Our endeavour here is to define the stochastic integral
∫ t

0 Y( fr , dr). This
would be a natural generalization of the usual stochastic integral in
the sense that if Y(x, t) = xYt,Yt an L2-martingale then

∫ t

o
Y( fr , dr) =

∫ t

o
frdYr .

Case a ft is continuous in t.
For a positive integerN, define the following stopping time.

τN(ω) =











































inf

{

t ∈ [0,T] : sup
0≤r≤t
|Y( fr , t)| > N or

∫ t

o
sup

0≤r≤s
|α( fr , fr , s)|ds> N

}

∞, if the above set is empty.
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ThenτN ↑ ∞ asN ↑ ∞. SetYN(x, t) = Y(x, tΛτN). ThenYN(x, t)
is aC-martingale with local characteristicαN(x, y, t) = α(x, y, t)I{τN>t}.
Let∆ = {0 = t0 < t1 < · · · < τn = T} be a partition of the interval [0,T].
For anyt ∈ [0,T] define

LN∆
t ( f ) =

n−1
∑

i=0

{

YN( ftiΛt, ti+1Λt) − YN( ftiΛt, tiΛt)
}

. (2.3.2)

Then LNΛ
t ( f ) is anRd-valuedL2-martingale, since fort = tk, s = ti ,

k > i,

E
[

LN∆
t ( f ) − LN∆

s ( f )|Fs

]

=

k−1
∑

j=i

E
[

E
[

YN( ft j , t j+1) − YN( ft j , t j)|Ft j

]

|Fs

]

= 0.

Also 38

E
[

LN∆
t ( f ) − LN∆

s ( f )(LN∆
t ( f ) − LN∆

s ( f ))∗|Fs

]

=

k−1
∑

j=i

E[E[(YN( ft j , t j+1) − Y1
N( ft j , t j))(YN( ft j , t j+1)

− YN( ft j , t j))
∗|Ft j ]|Fs]

=

k−1
∑

j=i

E[E[
∫ t j+1

t j

αN( ft j , ft j , r)dr|Ft j ]|Fs]

= E[
∫ t

s
αN( f∆r , f∆r , r)dr|Fs],

where f∆r = ftk if tk ≤ r < tk+1. Therefore

< LN∆
t ( f ), LN∆

t ( f )∗ >=
∫ t

o
αN( f∆r , f∆r , r)dr. (2.3.3)

Now let {∆n, n = 1, 2, . . .} be a sequence of partitions of [0,T] such
that |∆n| → o. Consider the corresponding sequence ofL2-martingales
{LN∆n

t ( f ), n = 1, 2, . . .}. As before it can be verified that

< LN∆n
t ( f ), LN∆m

t ( f )∗ >=
∫ t

o
αN( f∆n

r , f∆m, r)dr.
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Therefore

< LN∆n
t ( f ),−LN∆m

t ( f ), (LN∆n
t ( f ),−LN∆m

t ( f ))∗ >

=

∫ t

o

[

αN

(

f∆n
r , f∆n

r , r
)

− αN

(

f∆n
r , f∆m

r , r
)

− αN

(

f∆m
r , f∆n

r , r
)

+αN

(

f∆m
r , f∆m

r , r
)]

dr → 0 asm, n→ ∞ a.s.

Now in view of (A4), the above also converges inL1-sense. We then39

define

lim
n→∞

LN∆n
t ( f ) = LN

t ( f ) =
∫ t

o
YN( fr , dr). (2.3.4)

ThusLN
t ( f ) is anL2-martingale. ForN > M it is easy to see thatLN

t ( f )
= LM

t ( f ) if t < τM(≤ τN). Define

Lt( f ) = LN
t ( f ) if t < τN. (2.3.5)

ThenLt( f ) is a continuous local martingale. We write

Lt( f ) =
∫ t

o
Y( fs, ds).

Case b. ft is progressively measurable and bounded.

In this case setf N
t =

1
N

∫ t

t−1/N fsds. Then{ f N
t } is uniformly bounded

continuous process and it converges toft a.s. w.r.t.dt ⊗ dP. Now since

< Lt

(

f N
)

− Lt

(

f M
)

,
(

Lt

(

f N
)

− Lt

(

f M
))∗

>

=

∫ t

o

[

α
(

f N
ν , f N

ν , ν
)

− α
(

f N
ν , f M

ν , ν
)

− α
(

f M
ν , f N

ν , ν
)

+α
(

f M
ν , f M

ν , ν
)]

dν→ 0 a.s.

therefore{Lt( f N),N = 1, 2, . . .}converges uniformly int in probability
(see Kunita [18], Thm 3.1). Hence we set

Lt( f ) = lim
N→∞

Lt

(

f N
)

=

∫ t

o
Y ( fr , dr) .
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Case c.
In the general case whenft is only progressively measurable, write

f N = ( fΛN)V(−N). then{Lt( f N),N = 1, 2, . . .} converges uniformly in
t in probability. Set

Lt( f ) = lim
N→∞

Lt( f N) =
∫ t

o
Y( fr , dr).

40
Proposition 2.3.1. Let ft and gt be progressively measurable processes
satisfying (2.3.1). Then

<

∫ t

o
Y( fr , dr),

∫ t

o
Y(gr , dr) =

∫ t

o
α( fs, gs, s)ds. (2.3.6)

Proof. It is straightforward.
Let Y(x, t) andZ(x, t) be continuousC-martingales with local char-

acteristicsαY and αZ respectively satisfying (A4). Let ft and gt be
progressively measurable processes such that

∫ t

o
|αY( fs, fs, s)|ds < ∞,

∫ t

o
|αZ(gs, gs, s)|ds < ∞ for all t a.s. Then

t
∫

o
Y( fr , dr) and

t
∫

o
Z(gr , dr)

make sense. We are interested in computing

<

∫ t

o
Y( fr , dr), (

∫ t

s
Z(gr , dr))∗ > .

�

Lemma 2.3.2. There exists a random fieldαYZ(y, z, t, ω) which is mea-
surable and is continuous in y, z such that

< Y(y, t),Z(z, t)∗ >=
∫ t

o
αYZ(y, z, r, ω)dr. (2.3.7)

Further

|αYZ
i j (y, z)| ≤ αY

ii (y)1/2, αZ
j j (z)

1/2, αY
ii (y) = αY

ii (y, y), (2.3.8)

and

|αYZ
i j (y, z) − αYZ

i j (y′, z′)| ≤ αY
ii (y)1/2

{

αZ
j j (z) − 2αZ

j j (z, z
′) + αZ

j j (z
′)
}1/2

+ αZ
j j (z
′)1/2

{

αY
ii (y) − 2αY

ii (y, y
′) + αY

ii (y
′)
}1/2

. (2.3.9)
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Definition 2.3.3. αYZ(y, z, t) is called the joint local charcteristic of Y
and Z.

Proof of Lemma 2.3.2.It is well known that for any fixedy, z< Y (y, t),
Z(z, t)∗ > has a density functionαYZ(y, z, t) w.r.t. dt. Further41

| < Yi(y, t),Z j(z, t) > − < Yi(y, s),Z j(z, s) > |
≤ (| < Yi(y, t) > − < Yi(y, s) >)1/2(< Z j(z, t) > − < Z j(z, s) >)1/2.

Therefore

1
t − s
|
∫ t

s
αYZ

i j (y, z, r)dr| ≤
1

t − s

(∫ t

s
αY

ii (y, r)dr

)1/2 (∫ t

s
αZ

j j (z, r)dr

)1/2

.

Letting t → s, we get

|αYZ
i j (y, z, s)| ≤ αY

ii (y, s)
1/2αZ

j j (z, s)
1/2 for all y, z, a.a.s.

The second inequality can be proved similarly. Also (2.3.9)implies that
αYZ(y, z, t) is continuous iny, z.

Theorem 2.3.4.We have

<

∫ t

s
Y( fr , dr),

(∫ t

s
Z(gr , dr)

)∗
>=

∫ t

s
αYZ( fr , gr , r)dr. (2.3.11)

The proof is simple.

2.4 Construction of stochastic Flows by Stochastic
Differential Equations

Let

X(x, t) = Y(x, t) +
∫ t

o
β(x, r)dr (2.4.1)

be a continuousC-semimartingale whose local characteristicsα, β are
continuous inx, y and satisfy

∫ t

o
sup
|x|,|y|≤K

|α(x, y, r, ω)|dr < ∞,
∫ t

o
sup
|x|≤K
|β(x, r)|dr < ∞ (A4)′
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for anyK > 0 and anyt.42

Let ft be a progressively measurable process satisfing (2.3.1) and
∫ t

o
|β( fr , r)|dr < ∞. We define

∫ t

o
X( fr , dr) =

∫ t

o
β( fr , r)dr +

∫ t

o
Y( fr , dr). (2.4.2)

Definition 2.4.1. A continuous Ft-adaptedRd-valued processφt is said
to be a solution of the stochastic differential equation

dφt = X(φt, dt) (2.4.3)

starting from x at time s(t ≥ s) if

φt = x+
∫ t

s
X(φtr, dr) for all t ≥ s. (2.4.4)

Example 2.4.2.Let us consider the Example 2.2.7, i.e.,

X(x, t) =
∫ t

o
Fo(x, s)ds+

r
∑

k=1

∫ t

o
Fk(x, s)dBk

s.

In this case theS DEreduces to the usual one, viz.

dφt = Fo(φt, t)dt +
r

∑

k=1

Fk(φt, t)dBk
t .

Theorem 2.4.3.Assume that the local characteristicsα, β of the semi-
martingale X(x, t) satisfy Lipschitz continuity and have linear growth,
then the S DE(2.4.3) has a unique solution for any x and s. Further if
φs,t(x) is the solution starting from x at time s then it has a modification
which is a stochastic flow of homeomorphisms.

Proof. The proof is based on the method of successive approximations.
The steps are similar to those used in proving the existence and unique-
ness of the solution of a usualS DE. Set fort ≥ s

φ0 = x



42 2. Stochastic Flows and Stochastic Differential Equations

φ1
t = x+

∫ t

s
X(φo

r , dr)

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

φn
t = x+

∫ t

s
X(φn−1

r , dr) = x+
∫ t

s
β(φn−1

r , dr) +
∫ t

s
Y(φn−1

r , dr)

�43

Therefore, we have

E

{

sup
s≤r≤t
|φn+1

r − φn
r |2

}

≤2

{

E

[

sup
s<r≤t
|
∫ t

s
(β(φn

r , r) − β(φn−1
r , r))dr|2

]

+4E

[

|
∫ t

s
Y(φn

r , dr) −
∫ t

s
Y(φn−1

r , dr)|2
]}

≤2

{

E

[

sup
s≤r≤t
|
∫ t

s
(β(φn

r , r) − β(φn−1
r , r))dr|2

]

+4E

[∫ t

s
Tr

{

α(φn
r , φ

n
r ) − 2α(φn

r , φ
n−1
r ) + α(φn−1

r , φn−1
r )

}

dr

]}

≤2

{

L2TE

[

sup
s≤r≤t

∫ t

s
|φn

r − φn−1
r |2dr

]

+ 4LE

[∫ t

s
|φn

r − φn−1
r |2dr

]}

(whereL is the Lipschitz constant associated with the local characteris-
tics)

≤ 2L(LT, 4)
∫ t

s
E

[

sup
s≤r ′≤r

|φn
r ′ − φ

n−1
r ′

]

dr

≤ {2L(L ∗ ∗4)}n
1
n!

(t − s)nL(1+ |x|)2, by induction.

Hence
∞
∑

n=1

E

{

sup
s≤r≤t
|φn+1

r − φn
r |2

}1/2

< ∞.
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Therefore{φt} converges uniformly int in L2-sense. Let

φt = lim
n→∞

φn
t .

Thenφ is a solution of the equation (2.4.3). The uniqueness resultis 44

similar. We denote the solution byφs,t(x). We shall now establish the
homeomorphism property of the solution. Note that

Ms,t(x) = φs,t(x) − x−
∫ t

s
β(φs,r(x), r)dr =

∫ t

s
Y(φs,r(x), dr)

is anL2-martingale and

< Ms,t(x),Ms,t(y)∗ >=
∫ t

s
α(φs,r(x), φs,r (y), r)dr).

Therefore we get

E|φs,t(x) − φs,t(y)|p ≤ C|x− y|p,

whence it follows thatφs,t(x) is continuous inx. Next define

φ̃s,u(x) =















φs,u(x) if s< u < t

φt,u(φs,t(x)) if u > t.

Thenφ̃s,u(x) is also a solution of (2.4.3) starting fromx at times. There-
fore φ̃s,u(x) = φs,u(x) a.s. Henceφs,t has the flow property. Therefore by
Theorem 2.1.5φs,t is a stochastic flow of homeomorphisms.

Definition 2.4.4. Fs,t = σ(X(x, u) − X(x, v) : s≤ u, v ≤ t). Then clearly
φs,t(x) is Fs,t-measurable.

Corollary 2.4.5. If X(x, t) is a C-valued B.M. thenφs,t is a Brownian
flow.

Proof. For any 0≤ t0 < t1 < . . . tn ≤ T, Fti ,ti+1, i = 0, 1, . . . , n − 1 are
independent. Henceφti ,ti+1, i = 0, 1, . . . , n− 1 are independent. Thusφs,t

is a Brownian flow. �
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2.5 Representation of Stochastic Flows by SDES

In the previous section we have seen that the solution of anS DE de-
fines a stochastic flow of homeomorphisms. Here we discuss thecon-
verse problem,i.e. given a stochastic flow can it be represented as the45

stochastic integralw.r.t. some semimartingale? To make it precise let
φs,t be a stochastic flow satisfying (A1) ∼ (A3) with local characteristics
(a, b).

Problem To find a continuousC-semimartingaleX(x, t) such that

φs,t(r) = x+
∫ t

s
X(φs,r (x), dr). (2.5.1)

The solution to this problem is very whena ≡ 0. Indeed,

Ms,t(x) = φs,t(x) − x−
∫ t

s
b(φs,r (x), r)dr = 0.

Thereforeφs,t is the solution of the stochastic ordinary differential equa-
tion

dx
dt
= b(x, t, ω)

x(s) = x.

The general case is dealt with in the following theorem.

Theorem 2.5.1. Let φs,t be a stochastic flow satisfying(A1) ∼ (A3)
with local characteristics(a, b). Then there exists a unique continuous
C-semimartingale X(x, t) satisfying(A4)′ such that the representation
(2.5.1)holds. Furthermore the local characteristics of X(x, t) coincide
with a, b.

Definition 2.5.2. The semimartingale X(x, t) associated withφs,t(x) is
called the infinitesimal generator (or stochastic velocityfield) of the flow
φs,t.
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Proof of theorem 2.5.1.SetM(x, t) = M0,t(x). ThenM(x, t) is a contin-
uousC-martingale with local characteristica(φ0,t(x), φ0,t(y), t),i.e.,

< M(x, t),M(y, t)∗ >=
∫ t

o
a(φo,r (x), φo,r (y), r)dr (2.5.2)

Next define 46

Y(x, t) =
∫ t

o
M(φ−1

o,r(x), dr). (2.5.3)

Then using Theorem 2.3.4, we have

< Y(x, t),Y(y, t)∗ >=
∫ t

o
a(x, y, r)dr. (2.5.4)

We will show that

< X(x, t) = Y(x, t) +
∫ t

o
b(x, r) dr. (2.5.5)

is the required semimartingale. Define

M̃s,t(x) =
∫ t

s
Y(φs,r(x), dr). (2.5.6)

Then by Theorem 2.3.4, we have

< M̃s,t(x), M̃s,t(y)∗ >=
∫ t

s
a(φs,r (x), φs,r(y), r)dr). (2.5.7)

Also

< Y(x, t) − Y(x, s),Ms,t(y)∗ >=
∫ t

s
a(x, φs,r (y), r)dr. (2.5.8)

Combining (2.5.4) and (2.5.8) we get

< M̃s,t(x),Ms,t(y)∗ >=
∫ t

s
a(φs,r (x), φs,r(y), r)dr). (2.5.9)

Therefore

< Ms,t(x) − M̃s,t(x), (Ms,t(x) − M̃s,t(x))∗ >= 0.
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Hence
Ms,t(x) = M̃s,t(x).

Thus 47

φs,t(x) − x−
∫ t

s
b(φs,r (x), r)dr =

∫ t

s
Y(φs,r(x), dr).

This completes the existence part. Now we will show the uniqueness of
the representation.

Suppose there exists another continuousC-semimartingaleX′(x, t)
satisfying (A4)′ such that

φs,t(x) = x+
∫ t

s−
X′(φs,r (x), dr) = x+

∫ t

s
X(φs,r (x), dr).

Claim:X = X′

Indeed, we can write

X′(x, t) =
∫ t

o
b′(x, r)dr + Y′(x, t)

whereY is a continuousC-martingale. By the uniqueness of Doob-
Mayer decomposition, we have

∫ t

s
b(φs,r (x), r)dr =

∫ t

s
b′(φs,r (x), r)dr,

and
∫ t

s
Y(φs,r(x), dr) =

∫ t

s
Y′(φs,r (x), dr).

Let αY, αY′ andαYY′ denote the local characteristics ofY,Y′ and
the joint local characteristic of (Y,Y′) respectively. We have for any
s< t, x ∈ Rd

<

(∫ t

s
Y(φs,r(x), dr) −

∫ t

s
Y′(φs,r (x), dr)

)

,

(∫ t

s
Y(φs,r(x), dr) −

∫ t

s
Y′(φs,r(x), dr)

)∗
>

=

∫ t

s

[

αY(φs,r (x), φs,r (x), r) − αYY′(φs,r (x), φs,r(x), r)
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−αYY′(φs,r (x), φs,r (x), r) + αY′(φs,r(x), φs,r (x), r)
]

dr.

This implies48

αY(φs,t(x), φs,t(x), t) − αYY′(φs,t(x), φs,t(x), t)

− αY′Y(φs,t(x), φs,t(x), t) + αY′(φs,t(x), φs,t(x), t) = 0

for almost allt. Puttingx = φ−1
s,t (x), we get

αY(x, x, t) − αYY′(x, x, t) − αY′Y(x, x, t) + αY′(x, x, t) = 0 for a.a.t.

Hence
< Y(x, t) − Y′(x, t), (Y(x, t) − Y′(x, t))∗ >= 0.

Therefore
Y(x, t) = Y′(x, t).

Corollary 2.5.3. If φs,t is a Brownian flow then X(x, t) is a C-B.M.

Proof. If φs,t is a Brownian flow then the local characteristicsa, b are
deterministic which in turn implies that the local characteristic of Y is
deterministic. ThusY(x, t) is aC.B.m. with local characteristic a. Hence
X(x, t) is a C-B.m. �

In the light of representation of stochastic flows byS DESwe recon-
sider the existence of a Brownian flow with given local characteristics
(a, b). It was assumed in Theorem 1.2.8 thata andb were twice spa-
tially differentiable and their derivatives bounded. In the next theorem
we will drop these conditions and still show the existence ofa Brownian
flow using Theorem 2.5.1.

Theorem 2.5.4. Suppose we are given a pair of functions(a(x, y, t),
b(x, t)) such that

(i) a(x, y, t) = (ai j (x, y, t))i, j=1,...,d is symmetric and nonnegative defi-
nite and is continuous in(x, y, t) and Lipschitz continuous in x, y.

49

(ii) b(x, t) = (bi(x, t))i=1,...,d is continuous in x, t and Lipschitz continu-
ous in x.
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Then there exists a unique Brownian flow with local characteristics
(a, b) satisfying(A1) ∼ (A3)(of Chapter 1).

Proof. We can find a Gaussian random fieldX(x, t, ω)with independent
increments such that the mean ofX(x, t, ω)is

∫ t

o
b(x, r)dr and

Cov(X(x, t), X(y, s)) =
∫ tΛs

o
a(x, y, r)dr. Also X(x, t) has no fixed dis-

continuity. ThereforeX(x, t) is a Brownian motion for eachx. Since
a(x, y, t) is Lipschitz continuous inx, y,X(x, t) has a modification such
that it is continuous in (x, t). ThereforeX(x, t) is aC − B.m. Now con-
sider theS DEbased onX(x, t)

dφt = X(φt, dt), φs = x, t ≥ s.

The solution of theS DEφs,t(x) is a Brownian flow of homeomorphisms
with local characteristics (a, b). This completes the existence part.�

uniqueness.Let φs,t be a Brownian flow with local characteristics (a, b)
satisfying (A1) ∼ (A3). Then there exists an infinitesimal generator of
φs,t, sayX(x, t), which is aC − B.m. with local characteristics (a, b).
The law ofX(x, t) is uniquely determined by (a, b). Hence the lawφs,t

is unique.

Remark 2.5.5.The law of a non-Brownian flow is not in general deter-
mined by its local characteristics. Similarly the law of aC- semimartin-
gale is not determined by its local characteristics. To justify this we pro-
duce a counterexample. LetB1

t , B2
t be two independent one-dimensional

Brownian motions. Set

Yt =

∫ t

o
B1

sdB1
s,Zt =

∫ t

o
B1

sdB2
s.

HereYt andZt have the same local characteristics, viz. (B1
t )

2, but the
laws ofYt andZt are different.

50
Remark 2.5.6.We know that 2-point process determines the law of a
Brownian flow. But 1-point process does not determine it. In fact one
can find several Brownian flows with the same 1-point process.Here we
give an example which is due to Harris [9].
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Example .Let x ∈ R1 andc(x) a real, nonnegative definite function of
classC2

b andc(0) = 1. Seta(x, y) = c(x− y). Thena(x, y) is symmetric
and nonnegative definite and is Lipschitz continuous. Therefore there
exists a stochastic flow of homeomorphismsφs,t with local characteristic
a. Consider the one-point processφs,t(x) s, x fixed). This is a diffusion

with infinitesimal generatorL =
1
2

d2

dx2
. Thereforeφs,t(x)t ∈ [s,T], is

a Brownian motion for anyx. There may be many suchc(x). Simplest
Brownian flow would beφs,t(x) = x+ Bt(Bt : one-dimensional B.M). In
this casec(x) ≡ 1.

To end this section it would perhaps be of some relevance to discuss
the following problem. We know that the infinitesimal generator of 1-
point motion of a Brownian flow is an elliptic operator. Now given an
elliptic operator

Lt =
1
2

d
∑

i, j=1

ai j (x, t)
∂2

∂x j∂x j
+

d
∑

i=1

bi(x, t)
∂

∂xi

(where (ai j ) is nonnegative definite, symmetric and is continuous inx),
does there exists a Brownian flow whose 1-point motion has thein-
finitesimal generatorLt? The problem is reduced to finding (ai j (x, y, t))
which should be nonnegative definite and symmetric with somesmooth-
ness condition such thatai j (x, x, t) = ai j (x, t).

If ai j is independent oft andai j (x) isC2
b then we can find sucha(x, y)

(see Ikeda-Watanabe [13]). Indeed there exists a square root of a = (ai j )
i.e., a(x) = σ(x)σ(x)∗ whereσ(x) is Lipschitz continuous. We then
definea(x, y) = σ(x)σ(y) which is symmetric and nonnegative definite.51

Finally the solutionφs,t of

dφt = b(φt)dt + σ(φt)dBt

is a Brownian flow with local characteristica(x, y). The solution to the
problem in the general case is not known.
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2.6 Inverse Flows and Infinitesimal Generator

Let φs,t be a stochastic flow of homeomorphisms generated by a contin-
uousC-semimartingaleX(x, t) with local characteristicsa, b which are
Lipschitz continuous and have linear growth. In other wordsφs,t satis-
fies the followingS DE

dφs,t(x) = X(φs,t(x), dt), φs,s(x) = x. (2.6.1)

Let Ψs,t ≡ φ−1
s,t , the inverse ofφs,t. Then obviouslyΨs,toΨt,u ≡ Ψs,u for

s< t < u. Ψs,t is called a backward flow. In this section, we take up the
following problem.

Problem To find the backward infinitesimal generator ofΨs,t.
In other words we want to representΨs,t in the form (2.6.1). To

accomplish this we have to define backward semimartingales and back-
ward integrals.

Let X(x, t) be a continuousC-semimartingale given by

X(x, t) = Y(x, t) +
∫ t

o
b(x, r)dr (2.6.2)

whereY(x, t) is a continuousC-martingale. Set

Gs,t = σ(Y(., u) − Y(., v) : s≤ u, v ≤ t).

For fixeds, X(x, t) − X(x, s), t ∈ [s,T] is a Gs,t-semimartingale but for
fixed t X(x, s) − X(x, t), s ∈ [0, t] is adapted toGs,t but need not be a52

semimartingale. So here we make such an assumption.
(A5) For any fixedt, Y(., s) − Y(., t), s ∈ [0, t], is a backward mar-

tingale adapted toGs,t, i.e. for s< u < t

E[Y(x, s) − Y(x, t)|Gu,t] = Y(x, u) − Y(x, t).

Remark 2.6.1.Under (A.5) X(x, t) has the same local characteristics
(a, b).
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Example 2.6.2.(1) LetY(x, t) be aC − B.m. andb(x, t) independent of
Y. Then

X(x, t) = Y(x, t) +
∫ t

o
b(x, r)dr

is a backward semimartingale.

(2) Let Y(x, z, t) be aC − B.m. with parameterz ∈ S andz(t) S-valued
stochastic process independent ofY. Then

Ỹ(x, t) ≡
∫ t

o
Y(x, z(r), dr)

is a backward integral as follows;

∫ t

s
X( fr , dr̂) = lim

|∆|→0

n−1
∑

k=0

{X( ftk+1, tk+1) − X( ftk+1, tk)} (2.6.3)

where∆ = {s= t0 < t1 < . . . < tn = t}

Theorem 2.6.3.Let φs,t be a stochastic flow of homeomorphisms gen-
erated by a continuous C-semimartingale X(x, t) satisfying (A.5) with
local characteristics a, b satisfying the Lipschitz continuity and linear
growth properties. Suppose that

d(x, t) =
∑

j

∂

∂x j
a j(x, y, t)|y=x

exists and is of linear growth, thenψs,t = Φ
−1
s,t is a continuous backward53

stochastic flow generated by−X(x, t) +
∫ t

0 d(x, r)dr, i.e.,

ψs,t(y) = y−
∫ t

s
X(ψr,t(y), dr̂) +

∫ t

s
d(ψr,t(y), r)dr. (2.6.4)

Proof. We have

Φs,t(x) = x+
∫ t

s
X(Φs,r(x), dr).

�
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Puttingx = ψs,t(y), we have

y = ψs,t(y) +
∫ t

s
X(Φs,r (x), dr)|x=ψs,t (y). (2.6.5)

We shall now compute
∫ t

s
X(Φs,r (x), dr)|x=ψs,t (y). Let ∆ = {s = t0, <

t1 < · · · < tn = t}. Then
∫ t

s
X(Φs,r (x), dr)|x=ψs,t (y)

= lim
|∆|→0

n−1
∑

k=0

{

X(Φs,tk(x), tk+1) − X(Φs,tk(x), tk)
}

|x=ψs,t (y)

= lim
|∆|→0

n−1
∑

k=0

{

X(ψtk,t(y), tk+1 − X(ψtk,t(y), tk))
}

(2.6.6)

Now

n−1
∑

k=0

{

X(ψtk,t(y), tk+1) − X(ψtk,t(y), tk)
}

=

n−1
∑

k=0

[

X(ψtk+1,t(y), tk+1) − X(ψtk+1,t(y), tk)
]

−
n−1
∑

k=0

[{

X(ψtk+1,t(y), tk+1) − X(ψtk,t(y), tk+1)
}

−
{

X(ψtk+1,t(y), tk) − X(ψtk,t(y), tk)
}]

= I∆1 + I∆2 , say.

By definition54

I∆1 →
∫ t

s
X(ψr,t(y), d̂r).

Using mean value theorem, we have

I∆2 = I∆2 (y) = −
∑

k

∑

i

{

∂

∂xi
X(ψtk,t(y), tk+1) −

∂

∂xi
X(ψtk,t(y), tk)

}
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× (ψi
tk+1,t(y) − ψi

tk,t(y))

−
1
2

∑

i, j,k

ξ∆i, j,k(ψ
i
tk+1,t(y) − ψi

tk,t(y))(ψ j
tk+1,t(y) − ψ j

tk,t(y))

= J∆1 + J∆2 , say.

whereξ∆i, j,k is a random variable given by

ξ∆i, j,k =
∂2

∂x j∂x j
X(ηk, tk+1) −

∂2

∂x j∂x j
X(ζk, tK)

where |ηk − ψtk,t | ≤ |ψtk+1,t − ψtk,t |, |ζk − ψtk,t | ≤ |ψtk+1,t − ψtk,t |. Hence
sup

k
|ξ∆i, j,k| → 0 as |∆| → 0. Thus J∆2 → 0 as |∆| → 0

and

J∆1 (Φs,t(x)) = −
∑

i

∑

k

{

∂

∂xi
X(Φs,tk(x), tk+1) − ∂

∂xi
X(Φs,tk(x), tk)

}

.

× (Φi
s,tk+1

(x) − Φi
s,tk(x))

−−−−→
|∆|→0

−
∑

i

<

∫ t

s

∂

∂xi
X(Φs,r (x), dr),Φi

s,t(x) − xi >

= −
∑

i

<

∫ t

s

∂

∂xi
X(Φs,r (x), dr),

∫ t

s
Xi(Φs,r (x), dr) >

= −
∑

i

∂

∂xi

∫ t

s
ai(Φs,r (x),Φs,r (x), r)dr

= −
∫ t

s
d(Φs,r (x), r)dr.

Therefore 55

J∆1 (y)−−−−→
|∆|→0

0 −
∫ t

s
d(Φs,r (x), r)dr|x=ψs,t (y) = −

∫ t

s
d(ψr,t(y), r)dr.

Hence

I∆2 −−−−→|∆|→0
−

∫ t

s
d(ψr,t(y), r)dr.
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Combining all these results, we get

y = ψs,t(y) +
∫ t

s
X(ψr,t(y), d̂r) −

∫ t

s
d(ψr,t(y), r)dr.

2.7 Appendix

Generalized ITO Formula, Stratonovich Integral
and Stratonovich Stochastic Differential Equations

Let X(x, t) be a one-dimensional continuous random field. It is said to be
a continuousCk-process if it isk-times continuously differentiable in x
a.s. andDαX(x, t) is continuous in (x, t) a.s. for|α| ≤ k. It is called a con-
tinuousCk-martingale ifDαX(x, t) is martingale for anyx, |α| ≤ k and
a continuousCk-process of bounded variation ifDαX(x, t) is a process
bounded variation for eachx and |α| ≤ k. Finally X(x, t) is said to be a
continuousCk-semimartingale ifX(x, t) = Y(x, t)+V(x, t), whereY(x, t)
is a continuousCk-martingale andV(x, t) a continuousCk-process of
bounded variation. Let (a(x, y, t), b(x, t)) be the local characteristics of
X(x, t). We make the following assumptions. (A4)′k a(x, y, t) andb(x, t)
are k-times continuously differentiable inx andy (respectivelyx), and56

for |α|, |β| ≤ k and for anyK > 0
∫ t

o
sup
|x|,|y|≤K

|Dα
xDβ

ya(x, y, r)|dr < ∞ a.s.

∫ t

o
sup
|x|≤K
|Dα

xb(x, r)|dr < ∞ a.s.

We shall now present a differential rule for the composition of two pro-
cesses, which is a generalization of the well known Ito formula.

Theorem 2.7.1(Generalized Ito Formula I). Let F(x, t) be a one-dimen-
sional C2- process and a C1-semimartingale with local characteristics
satisfying(A4)1 and Xt anRd-valued continuous semimartingale. Then

F(Xt, t) =F(Xo, 0)+
∫ t

o
F(Xt, dr) +

d
∑

i=1

∫ t

o

(

∂

∂xi
F

)

(Xr , r)dXi
r
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+

d
∑

i=1

<

∫ t

o

(

∂

∂xi
F

)

(Xr , dr),Xi
t >

+
1
2

d
∑

i, j=1

∫ t

o

∂2F
∂xi∂x j

(Xr , r)d < Xi
r ,X

j
r > . (2.7.1)

Proof. For a partition∆ = {0 = to < t1 < · · · < tn = t}, set

F(Xt, t) − F(Xo, 0) =
n−1
∑

k=0

{

F(Xtk , tk+1) − F(XtK , tk)
}

+

n−1
∑

k=0

{

F(Xtk+ , tk+1) − F(XtK , tk+)
}

= I∆1 + I∆2 , say.

�

We have by the definition of the stochastic integral

I∆1 −−−−→|∆|→0

∫ t

o
F(Xr , dr).

The second term is written as 57

I∆2 =
n−1
∑

k=0

d
∑

i=1

{

∂

∂xi
F(Xtk , tk+1) −

∂

∂xi
F(Xtk , tk)

}

(Xi
tk+1
− Xi

tk)

+

n−1
∑

k=0

d
∑

i=1

∂

∂xi
F(Xtk , tk)(X

i
tk+1
− Xi

tk)

+
1
2

d
∑

i, j=1

n−1
∑

k=0

∂2

∂xi∂x j
F(ξk, tk+1)(Xi

tk+1
− Xi

tk)(X
j
tk+1
− X j

tk)

= J∆1 + J∆2 + J∆3 ,

where|ξk − Xtk | ≤ |Xtk+1 − Xtk |. Set

L∆s =
n−1
∑

k=0

{

∂

∂xi
F(XtkΛs, tk+1Λs) − ∂

∂xi
F(XtkΛs)

}
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and Ls =

∫ s

o

∂

∂xi
F(Xr , dr).

ThenL∆s converge toLs uniformly in s in probability as|∆| → 0. On
the other hand,

n−1
∑

k=0

(Ltk+1 − Ltk)(X
i
tk+1
− Xi

tK ) −−−−→
|∆|→0

< L,Xi
t > in probability.

These two facts imply

n−1
∑

k=0

(L∆tk+1
− L∆tk)(X

i
tk+1
− Xi

tk) −−−−→|∆|→0
< L,Xi >t in probability.

Hence

J∆1 −−−−→|∆|→0

d
∑

i=1

<

∫ t

o

∂

∂xi
F(Xr , dr),Xi

t > .

Also

J∆2 −−−−→|∆|→0

d
∑

i=1

∫ t

o

∂

∂xi
F(Xr , dr), dXi

r .

Set58

J̃∆3 =
1
2

d
∑

i, j=1

n−1
∑

k=0

∂2

∂xi∂x j
F(Xtk , tk)(X

i
tk+1
− Xi

tk)(X
j
tk+1
− X j

tk).

Then

J̃∆3 −−−−→|∆|→0

1
2

d
∑

i, j=1

<

∫ t

o

∂2

∂xi∂x j
F(Xr , r), dXi

r ,X
j
t > .

Now set

ξ∆i jk =
∂2

∂xi∂x j
F(ξk, tk+1) − ∂2

∂xi∂x j
F(Xtk , tk).

Then
sup
i, j,k
|ξ∆i jk | → 0 as |∆| → 0.



2.7. Appendix 57

Note that

|J∆3 − J̃∆3 | ≤
1
2

∑

i, j

sup
i, j,k
|ξ∆i jk |















∑

k

(Xi
tk+1
− Xi

tk)
2















1
2

×














∑

k

(Xi
tk+1
− Xi

tk)
2















1
2

.

Since
∑

k(X
ℓ
tk+1
−Xℓ

tk)
2 tends to a finite value in probability as|∆| → 0,

the above converges to zero in probability. Hence

J∆3 −−−−→|∆|→0

1
2

∑

i, j

∫ t

o

∂2

∂xi∂x j
F(Xr , r) d < Xi ,X j >r .

Combining all these results, the desired formula (2.7.1) follows.

Remark 2.7.2.If F(x, t) is a deterministic function twice continuously
differentiable inx and once continuously differentiable int, then the last
but one term in the right hand side of (2.7.1) vanishes. This corresponds
to the well known Ito formula.

Stratonovich Integral
59

Let X(x, t) be a continuousC2-valued process and a continuousC1-
semimartingale. Letft be anRd-valued continuous semimartingale. We
shall define the Stratonovich Integral offt based onX(x, t). For a parti-
tion ∆ = {0 = to < t1 < · · · < tn = t} set

K∆t =
n−1
∑

k=0

1
2

{

(X( ftk+1, tk+1) − X( ftk+1, tk)) + (X( ftk , tk+1) − X( ftk , tk))
}

(2.7.2)

Lemma 2.7.3. Suppose that the local characteristics of X and
∂

∂xi
X

satisfy(A4)′1. Then lim
|∆|→0

K∆t exists and

lim
|∆|→0

K∆t =
∫ t

o
X( fr , dr) +

1
2

∑

j

<

∫ t

o

(

∂

∂x j
X

)

( fr , dr), f j
t > . (2.7.3)
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Proof.RewriteK∆t as

K∆t =
n−1
∑

k=0

{

X( fk, tk+1) − X( ftk , tk)
}

+
1
2

n−1
∑

k=0

{

(X( ftk+1, tk+1) − X( ftk, tk+1)) − (X( ftk+1, tk) − X( ftk , tk))
}

= L∆t + M∆t , say �

We have

L∆t −−−−→|∆|→0

∫ t

o
X( fr , dr).

By the mean value theorem,

M∆t =
1
2

∑

j

∑

k

{

∂

∂x j
X( ftk, tk+1) −

∂

∂x j
X( ftk , tk)

}

(

f j
tk+1 − f j

tk

)

+
1
4

∑

i, j,k

ξ∆i jk

(

f i
tk+1 − f i

tk

) (

f j
tk+1−

j
tk

)

.

where sup
k
|ξ∆i jk | → 0 as|∆| → 0. Then as in the proof of generalized Ito60

formula we get

M∆t −−−−→|∆|→0

1
2

∑

j

<

∫ t

o

(

∂

∂x j
X

)

( fr , dr), f j
t > .

The lemma is thus proved.

Definition 2.7.4. The limit of K∆t as |∆| → 0 is called the Stratonovich
Integral of ft based on X(x, t) and is written as

∫ t

o
X( fr , odr).

Proposition 2.7.5. Let X(x, t) be a continuous C2-process and a C1-

semimartingale. Let the local characteristics of X and
∂

∂x j
X satisfy

(A4)′1. Let ft be anRd-valued continuous semimartingale. Then the
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Stratonovich integral is well defined and is related to Ito integral by

∫ t

o
X( fr , odr) =

∫ t

o
X( fr , dr) +

1
2

d
∑

j=1

<

∫ t

o

(

∂

∂x j
X

)

( fr , dr), f j
t > .

(2.7.4)

Theorem 2.7.6(Generalized Ito Formula II). Let F(x, t) be a continu-
ous C3-process and C2-semimartingale with local characteristics(α, β).
Suppose that these are twice continuously differentiable and bothα, β
and their derivatives satisfy(A4)′1. Let Xt be a continuous semimartin-
gale. Then we have

F(Xt, t) − F(Xo, 0) =
∫ t

o
F(Xr , odr) +

∑

i

∫ t

o

(

∂

∂x j
F

)

(Xr , r)odXj
r .

(2.7.5)

Proof. Rewrite the right hand side of 2.7.5 using Ito integral. By the
generalized Ito formula I, we have

∂

∂x j
F(Xt, t) −

∂

∂x j
F(Xo, 0)

=

∫ t

o

∂

∂x j
F(Xr , dr) +

∑

i

∫ t

o

∂2

∂xi∂x j
F(Xr , r)dXj

r

+
∑

i

<

∫ t

o

∂2

∂xi∂x j
F(Xr , dr), Xi

t >

+
1
2

∑

i,k

∂3

∂xi∂x j∂xk
F(Xr , r)d < Xi

r ,X
k
r > .

Therefore 61
∫ t

o

(

∂

∂x j
F

)

(Xr , r)odXj
r =

∫ t

o

∂

∂x j
F(Xr , r)dXj

r +
1
2
<

∂

∂x j
F(Xt, t),X

j
t >

=

∫ t

o

∂

∂x j
F(Xr , r)dXj

r +
1
2
<

∫ t

o

∂

∂x j
F(Xr , dr),X j

t >

+
1
2

∑

i

∫ t

o

∂2

∂xi∂x j
F(Xr , r)d < Xi

r ,X
j
r > . (2.7.6)
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On other hand
∫ t

o
F(Xr , odr) =

∫ t

o
F(Xr , dr) +

1
2

∑

i

<

∫ t

o

(

∂

∂xi
F

)

(Xr , dr),Xi
t > .

(2.7.7)
Finally combining (2.7.1), (2.7.6) and (2.7.7) we get (2.7.5). �

Stratonovich Stochastic Differential Equation

Let X(x, t) be a continuousC2-process and aC1-semimartingale with
local characteristics (a, b) satisfying (A4)′1. A continuousRD-valued
semimartingaleΦt is called a solution of the Stratonovich Stochastic
Differential equation

dφt = X(Φt, odt) (2.7.8)

starting fromx at times if it satisfies

φt = X +
∫ t

s
X(Φr , odr)

= x+
∫ t

s
X(φr , dr) +

1
2

∑

j

<

∫ t

s

∂

∂ x j
X(φr , dr), φ j

t > . (2.7.9)

62

Note that

∑

j

1
2
<

∫ t

s

∂

∂x j
Xi(φr , dr), φ j

t >

=
∑

j

1
2
<

∫ t

s

∂

∂x j
Xi(φr , dr),

∫ t

s
X j(φr , dr) >

=
1
2

∑

j

∫ t

s

∂

∂x j
ai j (x, y, r)|x=y=φr dr.

Therefore, setting

di(x, t) =
∑

j

∂

∂x j
ai j (x, y, t)|y=x, (2.7.10)
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we see that if a solutionφt of (2.7.8) exists then it satisfies

φt = x+
∫ t

s
X(φr , dr) +

1
2

∫ t

s
d(φr , r) dr. (2.7.11)

Consequently we have the following theorem.

Theorem 2.7.7.Let X(x, t) be a continuous C2-process and a C1-semi-
martingale with local characteristics a, b which are continuously differ-
entiable in x, y and their derivatives are bounded. Suppose further that
d(x, t) defined in(2.7.10)is Lipschitz continuous. Then the Stratonovich
SDE (2.7.8) has a unique solution and it defines a stochastic flow of
homeomorphisms. Furthermore if a, b, d are k-times continuously dif-
ferentiable and their derivatives bounded then the solution defines a
stochastic flow of Ck−1 diffeomorphisms.





Chapter 3

Limit Theorems for
Stochastic Flows

This Chapter is devoted to the study of limit theorems for stochastic 63

flows. In section 3.1, we introduce the notion of weak and strong con-
vergence of stochastic flows. In section 3.2 we discuss the convergence
of random ordinary differential equations to a diffusion process. We
state a theorem in this regard and elucidate it with various examples. In
section 3.3 we state the main limit theorem. The proof of the theorem is
very long. We develop it in the subsequent sections. In section 3.4 we
discuss the tightness of (N + M)-point processes and in the next section
the weak convergence of (N + M)-point process is dealt with. In sec-
tion 3.6 we describe the tightness of Sobolev space-valued processes.
We conclude the proof of the main limit theorem in section 3.7. In sec-
tion 3.8 we complete the proof of the approximation theorem stated in
section 3.2. In the next two sections we treat the ergodic andmixing
cases. Finally, conclude the chapter with tightness and weak conver-
gence of inverse flows.
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3.1 Weak and Strong Convergence of Stochastic
Flows

Suppose we are given a family of filtrations{Fε
t }ε>0 andXε

t = Xε(x, t)
a continuous C-semimartingale adapted toFε

t with local characteristics
having “nice” properties. Letφεs,t be the stochastic flow generated by
Xε

t , i.e.,

d φs,t(x) = Xε (φs,t(x), dt), t ≥ s

φs,s(x) = x.

We write φεt = φεo,t(x). Our aim is to study the convergence of
(φεt ,X

ε
t ) as stochastic flows. We will introduce three notions of con-

vergence, viz, strong convergence, weak convergence and convergence64

as diffusion processes. Of these, the weak convergence plays the most
importance role and we discuss it in detail. Before giving the definitions
of various convergence we shall introduce some function spaces.

Let Cm = cm(Rd;Rd). Let f ∈ Cm andN a positive integer. Then

|| f ||m,N =
∑

|α|≤ m

sup
|x|≤N

|Dα f (x)|,N = 1, 2, . . . . . . . . .

defines a family of seminorms and with this family of seminorms Cm

becomes a complete separable space. LetWm = C([0, t]; Cm) be the set
of all continuous maps from [0,T] to Cm. For φ,X ∈ Wm let φt,Xt

denote their values att ∈ [0,T]. Define

|||φ|||m,N = sup
t ∈ [0,T]

||φt ||m,N,N = 1, 2, . . . . . . .

The above family of seminorms makesWm a complete separable
space. LetW2

m = Wm ×Wm and letB(W2
m) denote its topological Borel

σ-field.
Assume that the local characteristicsa∈, b∈ of the flow are (m+ 1)-

times continuously spatially differentiable and the derivatives are boun-
ded. Then in view of Remark 2.1.6 (φε(., ω),Xε (., ω)) ∈ W2

m a.s In
other words, it is aW2

m-valued random variable. Let

P(ε) (A) = P(ω : (φε. (ω),Xε
. (ω)) ∈ A),A ∈ B(W2

m)).
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Definition 3.1.1. Let P(0) be a probability measure on W2m. The family
(φεt ,X

ε
t ), ε > 0 is said to converge weakly to P(0) as stochastic flows if

the family{P(ε), ε > 0} converges to P(0) weakly.
65

Definition 3.1.2. Let (φt,Xt) be pair of stochastic flow of Cm-diffeomor-
phism and continuous Cm-semimartingale. Then(φεt ,X

ε
t ) is said to con-

verge strongly to(φt,Xt) as stochastic flows if|||φε − φ|||m,N and |||Xε −
X|||m,N converge to 0 in probability for any N= 1, 2, . . . . . ..

Remark 3.1.3.We shall show later that if (φεt ,X
ε
t ) converges weakly to

(φt,Xt), i.e., P(ε) converges weakly to the joint law of (φt,Xt), |||Xε −
X|||m,N → 0 in probability and some other conditions are satisfied then
|||φε − φ|||m,N → 0 and therefore (φεt ,X

ε
t ) converges to (φt,Xt) strongly.

Definition 3.1.4. Let x(N) = (x1, . . . , xN) ∈ RNd, v(M) = (y1, . . . , yM) ∈
R

Md. Consider the(N + M)-point process(φεt (x(N)),Xε
t (y(M))). Let

VN = C([0,T]; RNd), VM = C([0,T]; RMd). On the measurable space
(VNXVM, B(VN X VM)) we define the law of the(N + M)-point process
as follows:

Q(ε)
(x(N) ,y(M))

(A) = P{ω : (φεt (x
(N)); Xε

t (y(M)) ∈ A},A ∈ B(VN X VM).

If the law of every (N+M)-point process converges weakly, then we
say that the flow converges as diffusion process. Obviously, if (φεt ,X

ε
t )

converges weakly as stochastic flows, then the law of (N + M)-point
process converges weakly.

Proposition 3.1.5. The family of laws{P(ε)}ε>0 on (W2
m, B(W2

m)) con-
verges weakly if we following two conditions are satisfied:

(i)
{

P(ε)
}

ε>0
is tight, i.e., for anyδ > 0 there exists a compact subset

Kδ of W2
m such that P(ε)(Kδ) > 1− δ for anyε > 0.

(ii)
{

Q(ε)
(x(N) , y(M))

}

ε>0
converges weakly for any x(N), y(M),M,N =

1, 2, . . ..

The proof is based on standard arguments. See Billingsley [2]. 66
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Sometimes it is convenient to consider (φεt ,X
ε
t ) as a process with

values in Sobolev spaces. So we will now introduce a few Sobolev
spaces. For a positive integerN let BN denote the ball inRd with centre
at the origin and of radiusN. Let p > 1. Let f : Rd → Rd be a function
such thatDα f ∈ Lp(BN) for all α such that|α| ≤ m. For such functions
we define the following seminorm

|| f ||m,p,N =
















∑

|α|≤m

∫

BN

|Dα f (x)|p dx

















1/p

,

where the derivatives are in the sense of distributions. We define

Hloc
m,p =

{

f : Rd → Rd| || f ||m,p,N < ∞ for anyN
}

.

The family of seminorms{|| · ||m,p,N,N = 1, 2, . . .} makesHloc
m,p a

complete separable space. LetWm,p = C([0,T]; Hloc
m,p). Forφ ∈ Wm,p

define
|||φ|||m,p,N = sup

t ∈ [0,T]
||φ||m,p,N,N = 1, 2, . . . . . . .

With this family of seminorms,Wm,p is a complete separable space.
For p = ∞ we write Wm, instead ofWm,∞. Let W2

m,p = Wm,p X Wm,p.
We usually supposep > d. In such cases we have

W2
m+1,p ⊂W2

m ⊂W2
m,p ⊂W2

m−1.

These inclusions are consequences of the well known Sobolev
imbedding theorem. Indeed,Hloc

m+1,p ⊂ Cm ⊂ Hloc
m,p. We shall now define

the weak topology ofWm,p.

Definition 3.1.6. Let 〈., .〉N denote the canonical bilinear form on Hloc
m,p

restricted to BN. We say that{φn, n = 1, 2, . . .} ∈Wm,p converges weakly
to φ ∈ Wm,p if 〈φn

t , f 〉N converges to〈φt, f 〉N uniformly in t for any
f ∈ (Hloc

m,p). The space Wm,p equipped with the weak topology is a
complete separable space.

67
Remark 3.1.7.Let A be a bounded subset ofHloc

m,p, i.e., for any positive
integerN there exists a constantKN such that supf ∈ A || f ||m,p,N ≤ KN.
ThenA is relatively compact inHloc

m,p w.r.t. the weak topology.
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We are now in a position to describe a criterion under which the
family of measures{Pε}ε>0 is tight.

Proposition 3.1.8. Let {P(ε)}ε>0 be a family of probability measures on
W2

m,p. Suppose for any positive integer N there exist positive integer N
there exist positive numbersα, β,K such that

(i) E(ε)[||φt ||αm,P,N + ||Xt ||αm,P,N] ≤ K,

(ii) E(ε)[||φt − φs||αm,P,N + ||Xt − Xs||αm,P,N] ≤ K|t − s|1+β

hold for any t, s ∈ [0,T] and for anyε > 0. Then{P(ε)}ε>0 is tight in
W2

m,p w.r.t. the weak topology.

The proof is similar to that of Kolmogorov’s criteria for tightness
and is therefore omitted.

Remark 3.1.9.The above Proposition is not true forp = ∞, ie.

E(ε)
[

||φt ||αm,N + ||Xt ||αm,N
]

≤ K for all t ∈ [0,T]

and E(ε)
[

||φt − φs||αm,N + ||Xt − Xs||αm,N
]

≤ K|t − s|1+β,

for all t, s ∈ [0,T], do not imply the tightness of{P(ε)}ε>0 in W2
m.

If {P(ε)} is defined as a family of probability measures onW2
m, then

it can be extended toW2
m,p as follows: Consider the class of sets

{

A∩W2
m : A ∈ B(W2

m,p)
}

= B(W2
m,p)|W2

m
⊂ B(W2

m).

Define 68

Pεm,P(A) = P(ε)
m (A∩W2

m),A ∈ B(W2
m,P).

Similarly Pεm can be extended toPεm−1 on W2
m−1.

Proposition 3.1.10.Suppose m> 1, p > d. Then{P(ε)
m−1}ε>0 is tight in

W2
m−1 if {Pεm,p}ε>0 is tight in W2

m,pw.r.t. the weak topology.

Proof. The proof follows from Kondraseev’s theorem which states that
any relatively compact set inHloc

m,P w.r.t. the weak topology is embedded
in Cm−1 as a relatively compact set. See Sobolev [30]. �
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3.2 Approximation of Stochastic Differential Equa-
tions

Let vε(t, ω) = (vε1(t, ω), . . . . . . , vεr (t, ω)) be anr-dimensional piecewise
continuous stochastic process such thatE[vεi (t)] = 0 for all i. Let
Fk(x, t), k = 0, 1, . . . , r be continuous functions,C∞ in x and the deriva-
tives bounded.

Consider the following stochastic ordinary differential equation

dx
dt
=

r
∑

ℓ=1

Fℓ(x, t)v
ε
ℓ (t) + Fo(x, t). (3.2.1)

Let φεs,t(x) denote the solution starting fromx at time s. We now
consider the following problem.

Problem. If {vε(t)}ε>0 tends to a white noise or more precisely, ifBε(t) =
t
∫

o
vε(s)ds tends to a Brownian motionBt = (B1(t), . . . , Br(t)) weakly or

strongly thenφεt (= φ
ε
o,t) tends to a Brownian flowφt weakly or strongly

and the limiting flowφt satisfies the following stochastic differential
equation

dφt =

r
∑

ℓ=1

Fℓ(φt, t)odBℓ(t) + Fo(φt, t)dt. (3.2.2)

The solution of the above problem is not always in affirmative. In69

fact, we need some additional term in the right hand side of (3.2.2). To
solve the problem in concrete terms we make the following assumptions:
Let Gε

t = σ(vε(s) : 0 ≤ s≤ t).

(A1)(a)
t
∫

s
|E[vεi (r)|Gε

s]|dr → 0 uniformly in s, t in L2-sense.

(b) E















∫

st

vεi (τ)dτ
τ
∫

j

vεj (σ)dσ|Gε
s















→
t
∫

s
νi j (r)dr unifomly in s, t, whereνi j

is a deterministic measurable function.
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(c) there existγ > 1, K > 0 such that

E





















|
t

∫

s

|E[vs
i (r)|G

ε
s]|dr|γ |vεj (s)|

γ





















≤ K.

Remarks 3.2.1. (i) (a) and (b) roughly show that{Bε(t)} converges to

a zeromean, martingale with quadratic variation
t
∫

s
(νi j (r) + ν ji (r))

dr. Hence{Bε(t)}ε>0 converges to a Brownian motion with mean

0 and covariance
t
∫

s
(νi j (r) + ν ji (r)) dr.

(ii) (C′) ensures the tightness of the law pf (Bε(t), φεT(x)). SinceVε(t)
converges to a white noise its moment tends to infinity. The con-
dition (c) shows that the rates of divergence of the moment ofvε(t)

and convergence of
t
∫

s
|E[vε(r)|Gε

s]|dr are balanced. In fact, in all

examples given later the fourth moment ofvε(t) = 0(1/ε2) and the

fourth moment of
t
∫

s
|E[vε(r)|Gε

s]|dr = 0(ε2).

We shall now that state the main result of this section. LetWm =

C([0,T]; Cm),Vr = C([0,T]; Rr ). Let P(ε)
m Senate the law of (φε, Bε)

defined onWm× Vr .

Theorem 3.2.2.Assume (A1). Then{P(ε)
m }ε>0 converges weakly for any

m ≥ 0. Further the limit P(0)
m has the following properties:(i) B(t)

is an r-dimensional Brownian motion with zero mean and covariance
t
∫

o
(νi j (r) + ν ji (r))dr. (ii ) φt satisfies

dφt =

r
∑

ℓ=1

Fℓ(φt, t)odBℓ(t) + Fo(φt, t) dt

+
∑

1≤ℓ≤m≤r

Sℓ,m[Fℓ, Fm](φt, t)dt. (3.2.3)
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where odB stands for Stratonovich integral and Sℓ,m =
1
2

(νℓm− νmℓ), 70

[Fℓ, Fm]k(x, t) =
d

∑

i=1

F i
ℓ(x, t)

∂

∂xi
Fk

m(x, t) −
d

∑

i=1

F i
m(x, t)

∂

∂xi
Fk
ℓ (x, t).

Further, if {Bε(t)} converges to B(t) strongly then{φεt } converges to
φt strongly. We do not give the proof here. We will do it later in amore
general setup. Approximation theorems for the solution of stochastic
differential equations have been discussed by several authors:McShane
[27]. Wong-Zakai [34], Stroock-Varadhan [32], Kunita [19], [20], [21].
Ikeda-Nakao-Yamato [12]. Malliavin [25], Bismut [3]. Dowell [6]. We
shall wlucidate the theorem with the help of a few examples.

Example 3.2.3. Polygonal approximation of Brownian motion
Let B(t) = (B1(t), . . . , Br(t)) be anr-dimensional Brownian mo-

tion.Set

vεℓ(t) =
1
ε
δεkBℓ if ∈ k ≤ t < ε(k+ 1)

where ∆εkBℓ = Bℓ(ε(k + 1)) = Bℓ(εk).

Then

Bε(t) =

t
∫

o

vε(s)ds→ B(t) uniformly in t.

All we have to do is to verify the assumptions in (A1). Sincevε(t)
andvε(s) are independent if|t − s| > ε, we have

|
t

∫

s

|E[vεℓ (u)|Gε
s]|du| ≤ |∆εkBℓ| if εk ≤ s< ε(k+ 1).

Also71

variance (∆εkBℓ) = ε→ 0.
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Therefore (a) is satisfied. Nowvar(vεj (s)) =
1
ε

, therefore

E





















|
t

∫

s

|E[vεi (u)|Gε
s]|du|2|vεj (s)|

2





















≤
(

3ε2.3
1

ε2

)1/2

= 3,

which verifies (c). Also it is easy to verify (b) with νi j (u) =
1
2
δi j . Hence

Sℓ,m = 0.

Example 3.2.4. McShaneHere we consider the approximation of two
dimensional Brownian motion by continuously differentiable function.
For t ∈ [0, 1], let φ1(t) andφ2(t) be continuously differentiable func-
tions such thatφ1(0) = φ2(0) = 0 andφ1(1) = φ2(1) = 1. Let B(t) =
(B1(t), B2(t)) be a two dimensional standard Brownian motion. Set

vεi (t) =















1
ε
φ̇i((t − kε)/ε)∆εkBi if ∆εkB1∆

ε
kB2 ≥ 0,

1
ε
φ̇3−i((t − kε)/ε)∆εkBi if ∆εkB1∆

ε
kB2 < 0,

if kε < t < (k+ 1)ε, k = 0, 1, . . ., Then

Bε(t) =

t
∫

o

vε(s)ds→ B(t) uniformly in t.

As in the previous example, we can verify (a) and (b). Also it can
be shown that

E





















t
∫

s

vεi (τ)dτ

τ
∫

s

vεj (σ)dσ|Gε
s





















→ 1
2
δi j +

1
π

t
∫

o

[φi(s)φ̇ j(s)− φ̇ j(s)φi(s)]ds.

Example 3.2.5. Mollifiers approximation (Malliavin)
Let B(t) = (B1(t), . . . , Br(t)) be anr-dimensional standard Brownian

motion. Letφ be a nonnegativeC∞− function whose support is con-

tained in [0,1] and
1
∫

o
φ(s)ds= 1. Set

φε(t) =
1
ε
φ(t/ε), ε > 0
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and Bε(t) =

∞
∫

o

φε(s− t)B(s)ds=

ε
∫

o

φε(s)B(s+ t)ds.

72

Then
Bε(t)→ B(t) uniformly in t.

Set

vε(t) = −
∞

∫

o

φ̇ε(s− t)B(s)ds.

Then
t

∫

s

|E[vε(u)|Gε
s]|du=

s+ε
∫

s

|E[vε(u)|Gε
s]|du,

sincevε(u) is independent ofGε
s if u > s+ ε. Also

var(vε(u)) =
1
3

1
∫

o

φ(s)2ds.

Therefore

var(

s+ε
∫

s

vε(u)du) ≤ ε.

Now it is easy to verify (a), (b) and (c). For (b), νi j =
1
2
δi j .

Example 3.2.6. Approximation by Ornstein-Uhlenbech processes
(Dowell)

Let B(t) be anr-dimensional standard Brownian motion. Let{vε(t)}
ne given by

dvε(t) = −1
ε
vε(t)dt + 1

ε
dB(t)

vε(0) = a Gaussian random variable with mean zero and covariance
1
2ε

(δi j ).
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Then {vε(t)} is a stationary Gaussian process with mean zero and

covariance
1
2ε

(δ(i j )). Also vε(t) is given by

vε(t) = e−
1
ε
(t−s)vε(s) +

1
ε

t
∫

s

e−
1
ε
(t−u)dB(u).

Therefore 73

Bε(t) − Bε(s) = ε(1− e−
1
ε
(t−s))vε(s) +

t
∫

s

(1− e−
1
ε
(t−u))dB(u).

Since the variance of the first term in ther.h.s. is 0(ε) and the integrand
tends to 1 asε→ 0, we have

Bε(t) − Bε(s)→ B(t) − B(s).

The assumptions in (A1) can be verified.

t
∫

s

|E[vεi (r)dr|Gε
s]|dr =

t
∫

s

(e−
1
ε
(r−s)dr)|vεi (s)|

= ε(1− e−
1
ε
(t−s))|vεi (s)| → 0 as ε→ 0.

Also

E





















t
∫

s

vεi (τ)dτ

τ
∫

s

vεj (σ)dσ|Gε
s





















= E





















t
∫

s

vεj (σ)dσ

t
∫

σ

vεi (τ)dτ|Gε
s





















= E





















t
∫

s

vεj (σ)dσ
{

ε

(

1− e−
1
ε
(t−σ)

)

vεi (σ)
}

|Gε
s





















= ε

t
∫

s

(

1− e−
1
ε
(t−σ)

)

E
[

vεi (σ)vεj (σ)|Gε
s

]

dσ
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= ε

t
∫

s

(

1− e−
1
ε
(t−σ)

) [

e−
2
ε
(σ−s)vεi (s)vεj (s)

]

+
1
2ε

[(

1− e−
2
ε
(σ−s)

)

δi j

]

dσ

→ 1
2

(t − s)δi j .

3.3 The Main Limit Theorem

In this section, we will state the main limit theorem for stochastic flows
and the proof of the theorem will be developed in the subsequent sec-
tions.

Let for eachε > 0 there be given a continuousCk−1- semimartingale74

Xε(x, t) such thatXε(x, 0) = 0 and it is adapted toFε
t . Let (aε(x, y, t),

bε(x, t)) be the local charactersistics ofXε(x, t). Suppose thataε andbε

are Lipschitz continuous andaε is k-times continuously differentiable in
x, t, bε is (k+ 2)- times continuously diffrentiable inx. Also assume that
bε(x, t) is Fε

o- measurable. We can writeXε(x, t) as

Xε(x, t) = Yε(x, t) +
∫ t

o
bε(x, t) dt (3.3.1)

whereYε(x, t) is a continuousCk−1 -martingale. Set

Gε
t = σ(Yε(x, u), bε(x, u) : 0 ≤ u ≤ t, x ∈ Rd).

ThenXε(x, t) is Gε
t -adapted contonuousCk−1-semimartingale. Now

we introduce the following quantities:

b̄ε(x, t) = E[bε(x, t)], b̃ε(x, t) = bε(x, t) − b̄ε(x, t),

Aεi j (x, y, t, s) = E

[∫ t

s
b̃εi (x, r)dr|Gε

s

]

bεj (y, s),

cεi (x, t, s) =
∑

j

∂

∂x j
Aεi j (x, y, t, s)|y=x,

dεi jk (x, y, t, s) = E





















t
∫

s

b̃εi (x, r)dr|Gε
s





















aεjk(y, y, s).
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We next introduce two sets of assumptions. The first is concerned
with the convergence and the second with moments essentially needed
for tightness.

(A2)k There exist continuous functionsa = (ai j (x, y, t)), b̄ =
(b̄i(x, t)), c = (ci (x, t)), A = (Ai j (x, y, t)), which arek-times continuously
differentiable inx, y or x, as the case may be, and satisfy the following
properties:

75

(1) E













sup
|x|≤K
|E

[ t
∫

s
aεi j (x, y, r)dr|Gε

s

]

−
t
∫

s
ai j (x, y, r)dr|













→ 0 asε→ 0,

(2) sup
|x|≤K
|

t
∫

s
b̄ε(x, r)dr − b̄

t
∫

s
(x, r)dr| → 0,

(3) E













sup
|x|≤K
|E

[ t
∫

s
Dα

xb̃ε(x, r)dr|Gε
s

]

|












→ 0 for |α| ≤ k,

(4) E













sup
|x|≤K
|E

[ t
∫

s
Aεi j (x, y, t, r)dr|Gε

s

]

−
t
∫

s
Ai j (x, y, r)dr|













→ 0,

(5) E













sup
|x|≤K
|E

[ t
∫

s
cε(x, t, r)dr|Gε

s

]

−
t
∫

s
c(x, r)dr|













→ 0.

All the above convergences are uniform int, s for anyK > 0.

(A3)k For anyK > 0 there exist constantsγ > 1 andL > 0 such that
for anyx, y, t, s

(6) E













sup
|x|≤K,|y|≤K

|Dα
xDβ

yaεi j (x, y, t)|
γ













≤ L ∀ε > 0, |α| ≤ k, |β| ≤ k,

(7) sup
|x|≤K
|Dα

xb̄ε(x, t)| ≤ L for all ε > 0, |α| ≤ k

(8) E













sup
|x|≤K,|y|≤K

|Dα
xDβ

yAεi j (x, y, t, s)|
γ













≤ L ∀ε > 0, |α| ≤ k+1, |β| ≤ k+1,

(9) E













sup
|x|≤K, |y|≤K

|Dα
xDβ

ydεi jk (x, y, t, s)|γ












≤ L ∀ε > 0, |α| ≤ k+ 2, |β| ≤ k.
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Let φεt (x) = φεo,t(x) be the stochastic flow generated byXε(x, t). Let

P(ε)
m , m≤ k− 1, be the law of (φεt ,X

ε
t ) defined onW2

m.

Theorem 3.3.1.Assume(A2)k and(A3)k for some k≥ 2. Then{P(ε)
k−2}ε>0

converges weakly to P(o) as stochastic flows. The limits measure P(o)

satisfy the following properties:

(a) X(x, t) is a Ck−1 − B.m. with local characteristics(a + ā, b̄) where
āi j (x, y, t) = Ai j (x, y, t) + Ai j (y, x, t),
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(b) φt is a Brownian flow of Ck−1-diffeomorphisms genereted by

X(x, y) +

t
∫

o

c(x, r)dr.

Further if Xεt converges strongly thenφεt also converge strongly.

In the next section, we will prove the tightness of (N + M)-point
processes under an additional assumption (A4). In section 3.5, we will
first prove the weak convergence assuming (A4) and then we will drop
the assumption (A4) and prove the same in the general case. In sec-
tion 3.6, we prove the tightness of Sobolev space valued processes and
in section 3.7 we conclude the proof of the main theorem.

3.4 Tightness of (N+M)-Point Processes

Let x(N) = (x1, . . . , xN) ∈ RNd, y(M) = (y1, . . . , yM) ∈ RMd. Consider

the of the (N + M)-point process (φεt ((x(N))),Xε(y(M), t)). As before we
denote the law of the (N + M)- point process byQ(ε)

(x(N),y(M)) which is

defined onVN × VM. For fixedx(N) andy(M) we shall drop the subscript

from Q(ε)
(x(N),y(M)) and write simplyQ(ε). We shall show the tightness of

these laws{Qε}ε>0 under the following condition:
(A4) There exists aK > 0 such that

aε(x, y, t, ω) = 0 if |x| ≥ K, |y| ≥ K,
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bε(x, t, ω) = 0 if |x| ≥ K.

Under the above conditionXε(x, t, ω) = 0 if |x| > K and the associ-
ated flowφεt (x) satisfies|φεt (x)| ≤ K if |x| ≤ K andφεt (x) = x if |x| > K.
Let γ = γ(K) be the positive constant as in (A3)k.

Lemma 3.4.1. For any p∈ [2, 2γ] there exists a positive constant C=
C(p) such that

E[|Xε
t (x) − Xε

s(x)|p] ≤ C|t − s|2−
2
P for all ε > 0 and for all x. (3.4.1)

Proof. We will consider the case ford = 1 only for implicity. We 77

suppressx from Xε
t (x), aε(x, x, t) etc. For fixedx. We have

E
[

|Yε
s − Tε

s |p
]

=
1
p

p(p− 1)E





















a
∫

s

aε(r)|Yε
r − Yε

s |p−2dr





















≤ 1
2

p(p− 1)L
1
γ

t
∫

s

E
[

|Yε
r − Yε

s |
(p−2) γ

γ−1

]

γ−1
γ

dr (by (A.3)(6))

≤
1
2

p(p− 1)L
1
γ

t
∫

s

E
[

|Yε
r − Yε

s |p
] P−2

P dr (3.4.2)

since (p − 2)
γ

γ − 1
< p. Now for anya > 0 we havea

p− 2
p < 1 + a.

Therefore

E
[

|Yε
t − Yε

s |p
]

≤
1
2

p(p− 1)L
1
γ



















(t − s) +

t
∫

s

E
[

|Yε
r − Yε

s |p
]

dr



















. �

By Gronwall’s inequality, we getE[|Yε
t −Yε

S|
p] ≤ c|t−s|. Substituting

this back to (3.4.2) we have

E[|Yε
t − Yε

S|
P] ≤ c

t
∫

s

|r − s|
p−2

p dr ≤ c′|t − s|2−
2
p . (3.4.3)
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Next, note that

|
t

∫

s

bε(r)dr|p = p

t
∫

s

b̄ε(τ)|
t

∫

s

bε(r)dr|p−1 sign (τ)dτ

+ p(p1)

t
∫

s

b̃ε(τ)

τ
∫

s

bε(σ)|
σ

∫

s

bε(r)dr|p−2dσ

= I ε1 + I ε2, say

where sign (τ) = sign
τ
∫

s
bε(r)dr. We have

E[|I ε1|] ≤ pL

t
∫

s

E





















|
τ

∫

s

bε(r)dr|p−1





















dτ (by(A.3)(7))

E[I ε2]| ≤ p(p− 1)|
t

∫

s

E





















Aε(t, σ)|
σ

∫

s

bε(r)dr|p−2





















dσ|

≤ p(p1)L
1
γ

t
∫

s

E





















|
τ

∫

s

bε(r)dr|(p−2) γ

γ−1





















γ−1
γ

dσ

by (A.3) (8). These two imply78

E





















|
t

∫

s

bε(r)dr|p




















≤ c



























t
∫

s

























E





















|
σ

∫

s

bε(r)dr|p−1





















+ E





















|
σ

∫

s

bε(r)dr|p




















p−2
p
























dσ



























.

Then we obtain similarly as the above

E





















|
t

∫

s

bε(r)dr|p




















≤ C′|t − s|2−
2
p .
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Lemma 3.4.2. For any p > 3(2 −
1
r

) there exists a positve constant

C = C(p) such that

E[|φεt (x) − φεs(x)|p] ≤ C|t − s|2−
1
γ , (3.4.4)

for all ε > 0 and for all x.

Proof. We prove the case ford = 1 only. In view of (A4) (3.4.4) is
obvious if |x| > K. So we assume|x| ≤ K. We suppressx from φεt (x).
We have

φεt − φεs =
t

∫

s

b̄ε(φεr , r)dr +

t
∫

s

b̃ε(φεr , r)dr +

t
∫

s

Yε(φεr , dr).� (3.4.5)

Using Ito’s formula forF(x) = |x|P and writing signr = sign (φεr −
φεs), we get

|φεt − φεs|p = p

t
∫

s

b̄ε(φεr , r)|φεr − φεs|p−1sign(r)dr

+ p

t
∫

s

b̃ε(φεr , r)|φεr − φεs|p−1 sign (r)dr

+ p

t
∫

s

|φεr − φεs|p−1sign(r)γε(φεr , dr)

+
1
2

p(p− 1)

t
∫

s

aε(φεr , φ
ε
r , r)|φεr − φεs|p−2dr

= I ε1 + I ε2 + I ε3 + I ε4, say. (3.4.6)

Note that|φεr | ≤ K. Then from (A3)k

|E[I ε1]| ≤ pL

t
∫

s

E[|φεr − φεs|P−1]dr. (3.4.7)
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We have 79

E[I ε3] = 0.. (3.4.8)

By (A3)k, we have

E[I ε4] ≤ C

t
∫

s

E[φεr − φεs|
(p−2) γ

γ−1 ]
γ−1
γ dr. (3.4.9)

We shall now calculateI ε2. By Ito’s formula

b̃ε(φεr , r)|φεr − φεs|p−1 sign (r)

=

t
∫

s

{

∂

∂x
bε(φεσ, r)b

ε(φεσ, σ) +
1
2
∂2

∂x2
b̃ε(φεσ, r)a

ε(φεσ, φ
ε
σ, σ)

}

× |φεσ − φεs|p−1sign(σ)dσ

+ (p− 1)

r
∫

s

[

b̃ε(φεσ, r)b
ε(φεσ, σ) +

∂

∂x
(b̃εφεσ, r)a

ε(φεσ, φ
ε
σ, σ)

]

× |φεσ − φεs|p−2dσ

+
1
2

(p− 1)(p− 2)

t
∫

s

b̃ε(φεσ, r)a
ε(φεσ, φ

ε
σ, σ)|φεσ − φεs|p−3sign(σ)dσ

+ a martingale with zero mean. (3.4.10)

Therefore

E
[

I ε2
]

= p

t
∫

s

E

[

(cε(φεσ, t, σ) +
1
2
∂2

∂x2
dε(φεσ, φ

ε
σ, t, σ))|φεσ − φεs|p−1sign(σ)

]

dσ

+ p(p− 1)

t
∫

s

E[{Aε(φεσ, φ
ε
σ, t, σ) +

∂

∂x
dε(φεσ, φ

ε
σ, t, σ)}|φεσ − φεs|p−2]dσ

+
1
2

p(p− 1)(p− 2)

t
∫

s

E
[

dε(φεσ, φ
ε
σ, tσ)|φεσ − φεs|p−3sign(σ)

]

dσ.
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Applying Holder inequality and using the tightness assumption, we 80

have

E
[

I ε2
]

| ≤ 2pL1/γ

t
∫

s

E
[

|φεσ − φεs|
(p−1) γ

γ−1

]

γ−1
γ

dσ

+ 2p(p− 1)L1/γ

t
∫

s

E
[

|φεσ − φεs|
(p−2) γ

γ−1

]
γ−1
γ

dσ

+ p(p− 1)(p− 2)L1/γ

t
∫

s

E
[

|φεσ − φεs|
(p−3) γ

γ−1

]

γ−1
γ

dσ (3.4.11)

Summing up these estimates, we obtain

E
[

|φεs − φεs|P
]

≤ C

t
∫

s















E
[

|φεr − φεs|p−1
]

+ E
[

|φεs − φεs|
(p−1) γ

γ−1

]
γ−1
γ

+ E
[

|φεr − φεs|
(p−2) γ

γ−1

]
γ−1
γ

+ E
[

|φεr − φεs|
(p−3) γ

γ−1

]
γ−1
γ















dr. (3.4.12)

Since |φεt − φεs| ≤ 2K,E[|φεt − φεs|p] ≤ C|t − s|. Substituting this
in (3.4.12), we obtain

E
[

|φεt − φεs|p
]

≤ C

t
∫

s

{

r − s| + |r − s|
γ−1
γ

}

dr.

Hence
E[|φεt − φεs|p] ≤ C|t − s|2−

1
γ .

The following proposition is clear from Lemmas 3.4.1, 3.4.2and
Kolmogorov’s theorem

Proposition 3.4.3. The family of measures
{

Q(ε)
(x(N)y(M)

}

ε>0
is tight for

any x(N) and y(M).
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3.5 Weak Convergence of (N+M)-Point processes

Let x(N) = (x1, x2, . . . , xN) ∈ RNd and y(M) = (y1, . . . , yM) ∈ RMd. As
before letQ(ε)

(x(N)y(M))
be the law ofφεt (x

(N),Xε
t (yM)) defined onVN ×VM.

In this section we discuss the weak convergence of
{

Q(ε)
(x(N),y(M))

}

ε>0
.

81
Theorem 3.5.1.Assume(A2)k, (A3)k for some k≥ 2 and(A4). Then for

each x(N) and y(M) the family1
{

Q(ε)
(x(N),y(M))

}

ε>0
converges weakly to a

probalility measure Q(0)
(x(N),y(M))

. Further let P(0) = P(0)
k−1 be a probability

measure on Wk−1 satisfying(a) and (b) of Theorem 3.3.1. Then the law
of (φt(x(N)),Xt(y(M)),P(0)) coincides with Q(0)

(x(N),y(M))
for any x(N), y(M).

The proof of the above theorem will be developed through several
Lemmas. By Proposition 3.4.3 the family{Q(ε)

(x(N),y(M))
}ε>0 is tight. Let

Q(0) be an accumulation point of{Qε}1)
ε>0 as ε → 0. Therefore{Qε}

converges along a subsequenceεn ↓ 0. Let h be a bounded continuous
function onR(N+M)ℓd, whereℓ is a positive integer. Let (φ,X) ∈ VN×VM.
For 0≤ s1 < s2 < · · · < sℓ ≤ s, define

φ(φ,X) = h(φs1, . . . φsℓ,Xs1, . . . ,Xsℓ). (3.5.1)

Thenφ is a bouded continuous function onVN × VM. Also set

φε(ω) = h(φεs1(x(N), ω), . . . , φεsℓ(x
(N), ω),Xε

s1(y(M), ω) . . . ,Xε
sℓ(y

(M)), ω))
(3.5.2)

φε is a measurable function defined on (Ω, F,P), the basic probabil-
ity space.

We have

E











































t
∫

s

f (φεr , r)dr





















φε




















= EQ(ε)











































t
∫

s

f (φr , r)dr





















φ




















(3.5.3)

for any function f for which the above makes sense.
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82
Lemma 3.5.2. Let {gε(x, t, ω)}ε>0 be a family of C1 valued processes
satisfying

(a) for any K> 0 there existγ > 1 and L> 0 such that

E













sup
|x|≤K
|Dαgε(x, t)|γ













≤ L, |α| ≤ 1, (3.5.4)

(b) there exists a deterministic function g(x, t) such that for any K> 0

E





















sup
|x|≤K
|E[

t
∫

s

gε(x, r)dr|Gε
s] −

t
∫

s

g(x, r)dr|





















→ asε→ 0. (3.5.5)

Then

E









































t
∫

s

gεn(φεn
r , r)dr





















φεη





















−−−−→
εn→0

EQ(0)









































t
∫

s

g(φr , r)dr





















φ





















, (3.5.6)

whereφεn
r = φ

εn
r (x(N)).

Proof. By the tigtness of{φεt }ε>0, for anyθ, η > 0 there existsζ > 0 such
that the set

Aε(ζ, η) =















ω sup
|t−s|≤ζ

|φεr − φεs| < η














(3.5.7)

satisfies
P(Aε(ζ, η)) > 1− θ.� (3.5.8)

This is a consequence of the well known Arzela-Ascoli theorem. By
(a), for anyδ > 0 jthere existsη > 0 such that

E

























sup
|x−y|<η
|x|≤K,|y|≤K

|gε(x, t) − gε(y, t)|

























≤ δ. (3.5.9)

11) We suppress (x(N), y(M)) from Q(ε)

(x(N) ,y(M))
.
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This follows from mean value theorem. We fixη. Let ∆ be a par-
tition of [s, t] given by∆ = {s = to < t1 · · · < tn = t}, |∆| < ζ. We
have

|E
































∫ t

s
gε(φεr , r)dr −

n−1
∑

k=0

∫ tk+1

tk
gε(φεtk , r)dr

















φε

















|

≤ |E
































∫ t

s
gε(φεr , r)dr −

n−1
∑

k=0

∫ tk+1

tk
gε(φεtk , r)dr

















φε

















: (Aε(ζ, η))|

+ E

































∫ t

s
gε(φεr , r)dr −

n−1
∑

k=0

∫ tk+1

tk
gε(φεtk , r)dr

















φε

















: (Aε(ζ, η)c)|

≤ δ(t − s)||φ|| + 2L
1
γ (t − s)||φ||θ (3.5.10)
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Again e have
∣

∣

∣

∣

∣

∣

∣

E

































n−1
∑

k=0

∫ tk+1

tk
gε(φεtk , r)dr

















φε

















− EQ(0)

































n−1
∑

k=0

∫ tk+1

tk
gε(φεtk , r)dr

















φ

















∣

∣

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

∣

∣

n−1
∑

k=0

{

E

[(

E

[∫ tk+1

tk
gε(y, r)dr|Gε

tK

]

|y=φεtk

)

φε
]

−E

[(∫ tk+1

tk
g(φεtk , r)dr

)

φε
]}

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

∣

n−1
∑

k=0

{

E

[(∫ tk+1

tk
g(φεtk , r)dr

)

φε
]

− EQ(0)

[(∫ tk+1

tk
g(φtk , r)dr

)

φ

]}

∣

∣

∣

∣

∣

∣

∣

= I ε1 + I ε2, say. (3.5.11)

Now I ε1 → 0 asε → 0 by (b) andI ε2 → 0 along a subsequence by
the weak conver ofQ(ε). Therefore

lim
εn→0

∣

∣

∣

∣

∣

∣

∣

E

[(∫ t

s
gεn(φεn

r , r)dr

)

φεn

]

− EQ(0)

































n−1
∑

k=0

∫ tk+1

tk
g(φtk , r)dr

















φ

















∣

∣

∣

∣

∣

∣

∣

≤ δ(t − s)||φ|| + 2L
1
γ (t − s)||φ||θ

γ−1
γ .
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Sinceδ, θ are arbitary, we letθ, δ→ 0 and conclude the assertion of
the lemma.

We make the following convention as a definition.
84

Definition 3.5.3. If E[ f εnφεn] → EQ(0)[ fφ] asεn → 0 then we say that
f εn → f weakly.

Lemma 3.5.4. The following are L2 martingales with respect to Q(0)

Mt(x) = φt(x) −
∫ t

0
(b̄(φr (x), r) + c(φr (x), r))dr (3.5.12)

if x ∈ {x1, . . . , xN},

Yt(y) = Xt(y) −
∫ t

0
b̄(y, r)dr (3.5.13)

if y ∈ {y1, . . . , yM},

Proof. We will consider the cased = 1 only. Take a subsequenceεn ↓ 0
such thatQ(εn) → Q(0) weakly. We have

E

[(

φ
εn
t − φ

εn
s −

∫ t

s
b̄εn(φεn

r , r)dr −
∫ t

s
b̃εn

r (φεn
r , r)dr

)

φεn

]

= 0. (3.5.14)

�

Now φ
εn
t − φ

εn
s → φt − φs weakly. By (A2)k and the previous lemma

∫ t

s
b̄εn

r (φεn
r , r)dr →

∫ t

s
b̄(φr , r)dr weakly. (3.5.15)

Using Ito’s formula we have
∫ t

s
b̃εn(φεn

r , r)dr =
∫ t

s
b̃εn(φεn

s , r)dr +
∫ t

s
dr

(∫ r

s

∂

∂x
b̃εn(φεn

σ , r)b̃
εn(φεn

σ , σ)dσ

)

+
1
2

∫ t

s
dr

(∫ r

s

∂2

∂x2
b̃εn(φεn

σ , r)a
εn(φεn

σ , φ
εn
σ , σ)dσ

)
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+ a martingale.

= I εn
1 + I εn

2 + I εn
3 + I εn

4 , say. (3.5.16)

SinceE
[∫ t

s
b̃εn(z, r)dr|Gεn

s

]

z=φεns
→ 0, we haveI εn

1 → 0 weakly by

lemma 3.5.2. Using (A2)k, we obtain

E
[

I εn
2 |G

εn
s

]

= E

[∫ t

s
cεn(φεn

σ , t, σ)dσ|Gεn
s

]

→
∫ t

s
C(φr , r)dr weakly.

85

E
[

I εn
3 |G

εn
s

]

= E

[∫ t

s

∂2

∂x2
dεn(φεn

σ , φ
εn
σ , t, σ)dσ|Gεn

s

]

→ 0

weakly since
∂2

∂x2
dεn → 0. Also I εn

4 → 0 weakly since it is a martingale.

Combining all these result it follows thatMt(s) is a martingale. The
same procedure matatis mutandis shows thatYt(y) is a martingale.

In the next lemma, we shall compute the quadratic variationsof
these martigales.

Lemma 3.5.5. With respect to Q(0) we have

(i) < Mt(x),Mt(y)∗ >=
∫ t

0
(a+ ã)(φr (x), φr (y), r)dr, (3.5.17)

(ii) < Mt(x),Yt(y)∗ >=
∫ t

0
(a+ ã)(φr (x), y, r)dr, (3.5.18)

(iii) < Yt(x),Yt(y)∗ >=
∫ t

0
(a+ ã)(x, y, r)dr. (3.5.19)

Proof. As before, we consider the cased = 1 only. Using Ito’s formula,
we have

φεt (x)φεt (y) − φεs(y) =
∫ t

s
φεr (x)b̄ε(φεr (y), r)dr +

∫ t

s
φεr (y)b̄ε(φεr (x), r)dr

+

∫ t

s
φεr (x)b̃ε(φεr (y), r)dr +

∫ t

s
φεr (x)b̃ε(φεr (x), r)dr

+

∫ t

s
aε(φεr (x), φεr (x), r)dr + a martingale. (3.5.20)

�
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Let εn ↓ 0 be the same sequence as in Lemma 3.5.4 then

φ
εn
t (x)φεn

t (y) − φεn
s (x)φεn

s (y)→ φt(x)φt(y) − φs(x)φs(y) weakly,
∫ t

s
φ
εn
r (x)b̄εn(φεn

r (y), r)dr →
∫ t

s
φr (x)b̄(φr (y), y)dr weakly,

∫ t

s
aεn(φεn

r (x), φεn
r (y), r)dr →

∫ t

s
a(φr (x), φr (y), r)dr weakly.

We next consider the third term in the right hand side of (3.5.2). We 86

have

φ
εn
r (x)b̃εn(φεn

r (y), r) = φεn
s (x)b̃εn(φεn

s (y), r)

+

∫ r

s
φ
εn
σ (x)

∂

∂x
b̃εn(φεn

σ (y), r)bεn(φεn
σ (y), σ)dσ

+

∫ r

s
bεnφ

εn
σ (x), σb̃εn(φεn

σ (y), r)dσ

+

∫ r

s

∂

∂x
b̃εn(φεn(y), r)aεn(φεn

σ (x), φεn
σ (y), σ)dσ

+
1
2

∫ r

s
φ
εn
σ (x)

∂2

∂x2
b̃εn(φεn

σ (y), r)aεn(φεn
σ (y), φεn

σ (y), σ)dσ

+ a martingale

= I εn
1 (r) + I εn

2 (r) + I εn
3 (r) + I εn

4 (r) + I εn
5 (r) + I εn

6 (r). (3.5.21)

Now
∫ t

s
I εn
1 (r)dr → 0 weakly sinceφεn

s is Gεn
s - measurable. Since

E

[∫ t

s
I εn
2 (r)dr|Gεn

s

]

= E

[∫ t

s
φ
εn
σ (x)cεn

σ (φεn
σ (y), t, σ)dσ|Gεn

s

]

therefore
∫ t

s
I εn
3 (r)dr →

∫ t

s
φr(x)c(φr (y), r)dr weakly.

Also
∫ t

s
I εn
3 (r)dr →

∫ t

s
A(φσ(x), φσ(y), σ)dσ weakly,

and
∫ t

s
I εn
k (r)dr → 0 weakly for k = 4, 5, 6.
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To sum up we have

(1)φt(x)φt(y) − φs(x)φs(y) −
∫ t

s
φr(x)b̄(φr (y), r)dr

−
∫ t

s
φr (y)b̄(φr (x), r)dr −

∫ t

s
a(φr (x), φr (y), r)dr

−
∫ t

s
φr (x)c(φr (y), r)dr −

∫ t

s
φr (y)c(φr (x), r)dr

−
∫ t

s
ã(φr(x), φr (y), r)dr

is a martingale with respect toQ(0), i.e87

φt(x)φt(y) − φs(x)φs(y) −
∫ t

s
φr(x)(b̄(φr (y), r) + c(φr (y), r))dr

−
∫ t

s
φr(y)(b̄(φr (x), r) + c(φr (x), r))dr

−
∫ t

s
(a+ ã)(φr (x), φr (y), r)dr

is aQ(0)-martingale.
On the other hand by Ito’s formula we have
(2) φt(x)φt(y) = φs(x)φs(y) +

∫ t

s
φr(x)dφr (y) +

∫ t

s
φr (y)dφr (x)+ <

φt(x), φt(y) >.
Obviously

< φt(x), φt(y) >=< Mt(x),Mt(y) > .

Substituting (2) in (1) we find
∫

φr (x)dMr (y) +
∫ t

s
φr (y)dMr (x)

−
∫ t

s
(a+ ã)(φr (x), φr (y), r)dr+ < Mt(x),Mt(y) >

is a martingale. Hence

< Mt(x),Mt(y)∗ >=
∫ t

0
(a+ ã)(φr (x), φr (y), r)dr.
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This proves (i). The relations (ii) and (iii) can be proved similarly.

Proof of the Theorem 3.5.1 under (A4) Let x(N)
0 = (x10, . . . , xN0) ∈

R
Nd, y(M)

0
= (y10, . . . , xM0) ∈ RMd be two fixed points. Forx =

(x1, . . . , xN)ε RNd and y = (y1, . . . , xM) ∈ RMd, define the following
differential operator

L(N,M)
s,y(M)

o

f (x, y) =
1
2

N
∑

p,q=1

d
∑

i, j=1

(a+ ã)i j (xp, xq, s)
∂2 f (x, y)

∂xi
p∂x j

q

+
∑

i,p

{

b̄i(xp, s) + ci(xp, s)
} ∂ f

∂xi
p
(x, y)

+
1
2

∑

p,q

∑

i, j

(a+ ã)i j (yp0, yq0, s)
∂2i(x, y)

∂yi
p∂y j

q

+
∑

i,p

b̄1(yp0, s)
∂ f (x, y)

∂yi
p

+
1
2

∑

p,q

∑

i, j

(a, ã)i j (xp, yq0, s)
∂2 f (x, y)

∂xi
p∂y j

q

(3.5.22)

By Ito’s formula, if is aC2-function with bounded derivatives, then88

using Lemmas 3.5.5 and 3.5.6, we find that the following is a martingale
with respect toQ(0)

f (φt,Xt) −
∫ t

0
L(N,M)

s,y(M)
o

f (φs,Xs)ds. (3.5.23)

Therefore Q()) is the solution of the martingale problem for

L(N,M)

s,y(M)
0

and hence it is unique. Now

{

Q(0)
(xN

0 ,y
M
0

)

}

(xM
0 ,y

M
0

)
is a consistent

family of measures. Therefore there exists a unique probability mea-
sure P(0) on W2

k−1 such that the law of (φt(x
(N)
0 ,Xt(yM

0
)) with respect

to P(0) is Q(0)
(xN

0 ,y
M
0

)
. Also (3.5.17)–(3.5.19) withx ∈ {x10, . . . , xN0},

y ∈ {y10, . . . ,YM0} is satisfied with respect toP(0). HenceXt(x) is a
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Ck−1− valued Brownian motion with local characteristics (a+ ã, b). We
claim thatφt is generatedXt(x) +

∫ t

0 c(x, r)dr. Set

M̃t(x) =
∫ t

0
Y(Φs, ds).

Then

< M̃t(x), M̃t(y)∗ >=
∫ t

0
(a+ ã)(φr (x), φr (y), r)dr.

Therefore89

< Mt(x) − M̃t(x), (Mt(y) − M̃t(y))∗ >= 0.

This impliesMt(x) = M̃t(x). Thusφt is generated byXt(x)+
t
∫

o
c(x, r)dr.

Proof of the Theorem 3.5.1 (without (A4)) Let P(0) be a probability
measure onW2

k−1 satisfying (a) and (b) of the theorem. Then the law

of (φt(x(N)
o ),Xt(y(M)

o
),P(0)) is Q(0)

(x(N)
o , y(M)

o
)
. We claim thatQ(ε) −−−→

ε→0
Q(0)

weakly.

Step 1. We consider the truncated process forK > 0. LetψK : Rd → R
be a smooth function such that

ψK(x) =















1 if |x| ≤ /2,
0 if |x| > K,

and 0≤ ψK ≤ 1. SetXε,K(x, t) = Xε(x, t)ψK(x). Then the local
characteristics ofXε,K areaε(x, y, t)ψK(x)φK(y) andbε(x, t)ψK(x)
which obviously satisfy (A4). Letφε,Kt be the flow generated by
Xε,K . Denote the law of (φε,Kt (x(N)

o ),Xε,K
t (y(M)

o
)) by Qε,K. Then

Q(ε,K) −−−→
ε→0

Q0,K weakly. Let us compareQ(0,K) and Q(0). We

may assume that|x(N)
o | ≤

K
2
, |y(M)

o
| ≤ K

2
. Let A ∈ B(VN × VM).

Then clearly

Q(0)
(

A∩
{

φ : ||φ|| < K
2

})

= Q(0,K)
(

A∩
{

φ||φ < K
2

})

. (3.5.24)
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Step 2. In order to show the weak convergence of{Q(ε)}ε<0, it suffices to
show that for any closed subsetS of VN × VM

lim
ε→0

Q(ε)(S) ≤ Q(0)(S).

For anyδ > 0, there exists aK > 0 such thatQ(0)
(GK ) > 1 − δ, 90

whereGK = {φ : ||φ|| < K/2}.Then

Q(0,k)(GK) = Q(0)(GK) > 1− δ, by (3.5.24)

SinceQ(ε,K) → Q(0,K) weakly, therefore

lim
ε→0

Q(ε,K)(GK) ≥ Q(0)(GK).

Hence there exists anεo > 0 such that for anyε < εo, we have
Q(ε,K)(GK) > 1− 2δ. Therefore

Q(ε)(S) = Q(ε)(S ∩GK) + Q(ε)(S ∩Gc
K)

≤ Q(ε,K)(S ∩GK) + Q(ε,K)(Gc
K)

≤ Q(ε,K)(S ∩ ḠK) + 2δ.

Thus

lim
ε→0

Q(ε)
(S) ≤ lim

ε→0
Q(ε,K)(S ∩ ḠK) + 2δ

≤ Q(0,K)(S ∩ ḠK) + 2δ

≤ Q(0)(S) + 2δ

Sinceδ is arbitrary

lim
ε→0

Q(ε)(S) ≤ Q(0)(S)
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3.6 Tightness of Sobolev Space-valued Processes

Let P(ε)
m,p denote the law of (φεt ,X

ε
t ) on W2

m = (C([0,T]; Hloc
m,p))2 for

m ≥ k − 1. We shall discuss the tightness of{P(ε)
m,p}ε>0. We begin by

considering the casem= 0,W2
0,p = (C([0,T] : Lloc

p ))2. For someK > 0

consider a truncated process (φ
ε,K
t ,Xε,K

t ). Let the law of the truncated
process be denoted byP(ε,K)

0,p . Let ψ̃K : Rd → Rd be a smooth function
such that

ψ̃
(x)
K =















x if |x| < K/2

0 if |x| > K
91

Set X̃ε,K
t = ψ̃K(Xε,K

t ). Let the law of (φε,Kt , X̃ε,K
t ) be denoted by

P̃(ε,K)
o,p . We have the following result about the tightness of

{

P̃(ε,K)
0,p

}

.

Lemma 3.6.1.
{

P̃(ε,K)
0,p

}

ε>0
is tight with respect to the weak topology of

W2
0,p for any K> 0 and p> dV3

(

2−
1
γ

)

Proof. We have form Lemma 3.4.2

E
[

|φε,Kt (x) − φε,Ks (x)|p
]

≤ L|t − s|2−
1
γ for all x ∈ Rd

and E
[

|φε,Kt (x)|p
]

≤ L for all x ∈ Rd
�

Integrating the above relations with respect to the Lebesgue measure
on the ballBn = {x : |x| ≤ n}, we get

E
[

||φε,Kt − φε,Ks ||
p
0,p,n

]

≤ L vol (Bn)|t − s|2−
1
γ

E
[

||φε,Kt ||
p
0,p,n

]

≤ L Vol (Bn).

We can find similar estimates for̃Xε,K
t . These estimates imply the

tightness of{ ˜P(ε,K)
0,p}ε>0 in the weak topology.

Let p(0,K)
k−1 be a probability measure onW2

k−1, with local characteris-
tics a(x, y, t)ψK(x)ψK(y) andb(x, t)ψK(x), whereψK : Rd → R1 is the
smooth function described in section 3.5. For 0≤ t1 < t2 · · · < tN define
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P̃(0,K)
k−1 (Xt1

∈ A1, . . . ,XtN ∈ AN, φt1 ∈ B1, . . . , φtN ∈ BN)

= P(0,K)
k−1 (ψK(Xt1) ∈ A1, . . . , ψK(XtN

) ∈ BN, φt1 ∈ B1 . . . , φtN ∈ BN)
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The measurẽP(0,K)
k−1 on W2

k−1 can be extended to a measureP̃(0,K)
0,p on

W2
0,p.

Lemma 3.6.2. {P̃(ε,K)
0,p }ε>0 converges weakly tõP(0,K)

0,p with respect to the

weak topology of W20,p.

Proof. Fix N, taket1 < t2 < · · · < tN. It follows from the weak conver-
gence of the (N + M)- point process that

lim
ε→0

E(ε,K)
k−1

[

φt i(x1) . . . φtN(xN)
]

E(0,K)
k−1

[

φt i(x1) . . . φtN(xN)
]

. (3.6.1)

Let η1(x), . . . , ηN(x) ∈ Lq(Bn), where
1
p
+

1
q
= 1. Multiply the above

to the both sides of (3.6.1)) and integrate overBn. Then we get

lim
ε→0

E(ε,K)
k−1

[

(φt1, η1)(φt2 , η2) . . . (φtNηN)
]

= E(0,K)
k−1

[

(φt1η1) . . . (φtNηN)
]

. (3.6.2)

Similarly we can show that forα1, . . . , αN > 0, β1, . . ., βM > 0,
ζ1 . . . , ζM ∈ Lq(Bn)

lim
ε→0

E(ε,K)
k−1

[

(φt1, η1)α1 . . . (φtN , ηN)αN (ψ̃K(Xt1), ζ1)β1 . . . (ψ̃K(XtM ).ζM)βM
]

= E(0,K)
k−1 [(φt1, η1)α1 . . . (φtN , ηN)αN (φ̃K(Xt1), ζ1)β1 . . .

(ψ̃K(XtM ), ζM)βM ]

= E(0,K)
k−1 [(φt1, η1)α1 . . . (φtN , ηN)αN (Xt1, ζ1)β1 . . . (XtM , ζM)βM ]

We can replacẽP(ε,K)
k−1 etc. byP̃(ε,K)

0,p etc. and hencẽP(ε,K)
0,P → P̃(0,K)

0,p
with respect to the weak topology. �

93
Proposition 3.6.3. {P0,p

(ε)}ε>0 converges weakly.The proof is similar to
that of the weak convergence of{Q(ε)} and is therefore omitted.
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Theorem 3.6.4.Assume(A2)k, (A3)k, k ≥ 2. Then{Pk−2,p
(ε)}ε>0 is tight

with respect to weak topology of W2k−2,p

Proof. Consider the system of equations forDαφεt , |α| ≤ k − 2. Set
Dαφεt =

αφεt and considerφε
t
= (αφεt |α| ≤ k− 2),

dφεt = Xε(φεt , dt)

dαφεt =
d

∑

i=1

∂

∂xi
Xε(φεt , dt)(αφεt )

i , |α| = 1

etc. In vector notation
dφεt = Xε(φε

t
, dt)

whereXε(x, t) = (Xε(x, t),
∑

i

∂
∂xi

Xε(x, t)xi
β
, . . .), x = (x, xβ, . . .). Then the

law of (φε
t
,Xε

t ), viz.P0,p
(ε) with respect to the weak topology which is

equivalent to the tightness of{P(ε)
k−2,p}. �

Remark 3.6.5.In view of Proposition 3.1.10, the family of measures-
{Pk−3

(ε)}ε>0 in tight in W2
k−3

3.7 Proof of the Main Theorem

The weak convergence of{Pm
(ε)}ε>0(m≤ k−3) has already been proved.

Here we shall prove the strong convergence ofφεt under the assumption
thatXε

t converges strongly toXo
t . We shall prove thatφεt → φ◦t strongly.

Consider the stochastic differential equation

dφo
t = Xo(φo

t , dt) + c(φo
t )dt, φo

o = x (3.7.1)
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The solution of (3.7.1) is denoted byφo
t (x). Form ≤ k − 3, let P̃(ε)

m

denoted the law of (φεt ,X
ε
t , φ

o
t ,X

o
t ) defined onW2

m× W̃2
m (whereW̃2

m) is a
replica ofW2

m). A typical element ofW̃2
m will be denoted as (̃φ, X̃). We

show that{P̃m
(ε)}ε>0 converges weakly to somẽPm

(0). Since{P̃m
(ε)}ε>0

is tight, let P̃m
(0) be any limits point of{P̃m

(ε)}. ThenP̃m
(0)|W2

m
= Pm

(0)
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(≡ limit of Pm
(ε)). By the first assertion of the theoremφt is generated

by Xt +

t
∫

o
c(x, r)dr. SinceXt = X̃t a.s. P̃m

(0), φt = φ̃t a.sP̃m
(0) by the

uniqueness of the solution i.e.,P̃m
(0) is supported in the diagonal set

{(φ,X, φ̃, X̃) : φ = φ̃,X = X̃}. Let ρm be the metric onW2
m, i.e., for

(φ, φ̃) ∈ C([0,T]; Cm) ×C([0,T]; Cm),

ρm(φ, ψ) =
∑

N

1
2N

|||φ − ψ|||m,N
1+ |||φ − ψ|||m,N

which is a bounded continuous function onW2
m× W̃2

m. Therefore

E
[

ρm(φε, φo)
]

= Ẽm
(ε)

[

ρm(φ, φ̃)
]

→ E(0)
m

[

ρm(φ, φ̃)
]

= 0,

sinceρm(φ, φ̃) = 0 a.s. Henceφε → φo strongly.

3.8 Proof of the Approximation Theorem

In this section, we shall discuss the proof of the approximation theorem
for stochastic ordinary differential equations described in section 3.2
Recall

dφεt
dt
=

r
∑

k=1

Fk(φ
ε
t , t)v

ε
k(t) + Fo(φεt , t). (3.8.1)

We assume (A1). To prove the theorem we need the following
lemma.

Lemma 3.8.1. Assume(A1). Then for any continuous functions f(x, t)
and g(x, t) onRd × [0,T]

E





















t
∫

s

f (x, τ)vεi (τ)dτ

t
∫

s

g(y, σ)vεj (σ)dσ|Gε
s





















→
t

∫

s

f (x, r)g(y, r)νi j (r) dr

(3.8.2)
uniformly on compact sets. 95
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Proof. Let f (t) andg(t) be bounded measurable functions.Then

E





















t
∫

s

f (τ)vεi (τ)dτ

t
∫

s

g(σ)vεj (σ)dσ|Gε
s





















| ≤ nK|| f || ||g|| |t − s| (3.8.3)

Indeed, the left hand side (3.8.3) is equal to

∣

∣

∣

∣

∣

∣

∣

∣

E





















t
∫

s

t
∫

σ

f (τ)E[vεi (τ)|Gε
σ]dτ)g(σ)vεi (σ)dσ|Gε

s





















∣

∣

∣

∣

∣

∣

∣

∣

≤ K
1
γ || f || ||g|| |t − s|, [from (A1 (c))]. �

So in view of (3.8.3) it is enough to prove the case whenf (x, t),
g(x, t) are step functions oft. Therefore assume that

f (x, t) = f (x, ti ), g(x, t) = g(x, ti ) for ti ≤ t < ti+1

Then

E





















t
∫

s

f (x, τ)vεi (τ)dτ

τ
∫

s

g(y, σ)vεj (σ)dσ|Gε
s





















=
∑

k

f (x, tk)g(y, tk)E

[∫ tk+1

tk
vεi (τ)dτ

∫ τ

tk
vεj (σ)dσ|Gε

s

]

+
∑

k

f (x, tk)E

[∫ tk+1

tk
vεi (τ)dτ

∫ tk

s
g(y, σ)vεj (σ)dσ|Gε

s

]

= I ε1 + I ε2, say.

Now

I ε1 −−−→
ε→0

∑

k

f (x, tk)g(y, tk)

tk−1
∫

tk

νi j (r) dr =

t
∫

s

f (x, t)g(y, r)νi j (r)dr.

I ε2 =
∑

k

f (x, tk)E























E























tk+1
∫

tk

vεi (τ)dτ|Gtεk























tk
∫

s

g(yσ)vεj (σ)dσ|Gε
s























−−−→
ε→0

0,
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since E























tk+1
∫

tk

vεi (τ)dτ|G
ε
tk → asε→ 0






















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Proof of the approximation theorem
(Theorem 3.2.2)

In view of the main limit theorem, all we have to do is to verify(A2)k
and (A3)k. In this case, we have

bε(x, t) =
r

∑

k=1

Fk(x, t)v
ε
k(t) + Fo(x, t),

b̄ε(x, t) = Fo(x, t), b̃ε(x, t) =
r

∑

k=1

Fk(x, t)v
ε
k(t),

Aεi j (x, y, t, r) =
∑

k,ℓ

E





















t
∫

s

F i
ℓ(x, τ)v

ε
ℓ (τ)dτ|G

ε
r





















F j
k(y, r)v

ε
k(r)

Therefore

E





















t
∫

s

Aεi j (x, y, t, r)dr|Gε
s





















=
∑

k,ℓ

E





















t
∫

s

dτF i
ℓ(x, τ)v

ε
ℓ (τ)

t
∫

s

F j
k(y, σ)vεk(σ)dσ|Gε

s





















−−−→
ε→0

∑

k,ℓ

t
∫

s

F i
ℓ(x, r)F

j
kνi j (r)dr.

(A3)k can be proved similarly. Let̃Pm
(ε) denote the law of (φεt ,X

ε
t , B

ε
t )

defined onW2
m× Vr . Then{P̃m

(ε)}ε>0 converges tõP
(0)

m weakly. This can
be proved in the same manner as we did earlier. The limit

((φt,Xt, Bt), P̃
(0)
m )
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satisfies:

(i) Xt is a C-Brownian motion with local characteristicsai j (x, y, t) =
∑

k,ℓ
F i
ℓ
(x, t)F j

k(y, t)ν̄i j (t), whereν̄i j = νi j + νi j , b(x, t) = Fo(x, t).

(ii) φr is generated byXt +

t
∫

o
c(x, r)dr, where

c j(x, t) =
∑

ℓ,k,i

∂

∂xi
F i
ℓ(x, t)F

i
k(x, t)νkℓ(t).

(iii) B(t) is a Brownian motion with mean zero and variance
t
∫

o
ν̄i j (r)dr97

and

< Xt(x), Bk(t) >=
∑

ℓ

∫ t

o
Fℓ(x, r)ν̄ℓk(r)dr

This can be proved the same way as was done in Lemma 3.5.6.
Now set

X̃t(x) =
r

∑

k=1

t
∫

o

Fk(x, s)dBk(s) +

t
∫

o

Fo(x, s)ds.

Then it can be shown that< Xt − X̃t >= 0 which impliesXt = X̃t.
Therefore, with respect toP(0)

m

dφt =

r
∑

k=1

Fk(φt, t)dBk(t) + c(φt, t) dt (3.8.4)

We shall now change the Ito form to Stratonovich form.

∫ t

o
Fk(φs(x), s)odBk(s) =

∫ t

o
Fk(φs(x), s)dBk(s)

+
1
2

∑

ℓ,i

∫ t

o

∂

∂xi
Fx(φs(x), s) × F i

ℓ(φs(x), s)ν̄k,ℓ(s)ds. (3.8.5)
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Also

c j(x, s) − 1
2

∑

k,ℓ,i

∂

∂xi
F i

k(x, s)F
j
ℓ
(x, s)ν̄kℓ(s)

=
1
2

∑

1≤k≤ℓ≤r

(νk,ℓ(s) − νℓk(s))[Fk, Fℓ]
j(x, s). (3.8.6)

Combining all these results,we conclude the proof.

3.9 Ergodic Case

Let z(t), t ≥ 0 be a time-homogeneous Markov process with state space
S. Let Pt(x,A) be the transition probability function. AssumePt(x, .)
has a unique invariant probability measureµ andz(t) is a stationary er-
godic process such that

Pt(z(t) ∈ A) = µ(A).
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For z ∈ S, x ∈ Rd, let F(x, z) andG(x, z) beRd-valued functions
smooth inx and the derivation bounded and continuous in (x, z). Let
Y(x, z, t, ω) and Z(x, z, t, ω) be continuous random fields such that for
each fixedz,Y(., z, t) andZ(., z, t) are continuousC∞-valued martingales
with local characteristicsaY(x, y, z) andaZ(x, y, z) respectively. Assume
z(t) and{Y,Z} are independent. Consider the following stochastic differ-
ential equation

dφεt = εF(φεt , z(t))dt + ε2G(φεt , z(t)) dt

+
√
εY(φεt , z(t), dt) + εZ(φεt , z(t), dt). (3.9.1)

Let φεt (x) denote the solution of (3.9.1) with the initial condition
φεo(x) = x. Then if ε → 0, φεt → trivial flow, i.e., φo

t (x) ≡ x. We
will see that if we change the scale of time then the limit flow becomes
nontrivial. Setψεt = φ

ε
t/ε. Then (3.9.1) becomes

dψεt = F(ψεt , z(t/ε)) dt + εG(ψεt , z(t/ε)) dt
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+ Yε(ψεt , z(t/ε), dt) +
√

3Zε(ψεt , z(t/ε), dt) (3.9.2)

where
Yε(x, z(t/ε), dt) =

√
εY(x, z(t/ε), dt/ε)

Zε(X, z(t/ε), dt) =
√
εZ(x, z(t/ε), dt/ε).















(3.9.3)

Let
Gε

t = σ(z(r),Y(x, z, r),Z(x, z, r) : r ≤ t/ε).

Set

Xε(x, t) =

t
∫

o

F
(

x, z
( r
ε

))

dr + ε

t
∫

o

G
(

x, z
( r
ε

))

dr

+

t
∫

o

Yε
(

x, z
( r
ε

)

, dr
)

+
√
ε

∫ t

o
Zε

(

x, z
( r
ε

)

, dr
)

. (3.9.4)

Claim: (ψεt ,X
ε
t ) converges as stochastic flows.99

Indeed, for anyk > 0 (A2)k can be verified as follows:

E

[∫ t

s
Dα

xF
(

x, z
( r
ε

))

dr|Gε
s

]

= εE

[∫ t/ε

s/ε
F

(

x, z
( r
ε

))

dr|Gε
s

]

→ (t − s)
∫

Dα
xF(x, z)µ(dz) in L1 -sense (3.9.5)

by the Ergodic theorem

E

[∫ t

s
Dβ

yDα
xaY

(

x, y, z
( r
ε

))

dr|Gε
s

]

→
∫

Dβ
yDα

xaY(x, y, z)µ(dz).

(3.9.6)
(A3)k is clear. Therefore (ψεt ,X

ε
t ) converge weakly as stochastic flow.

The limit is a pair of Brownian flow andC∞-Brownian motion with
local characteristics

∫ t

o
aY(x, y, z)µ(dz),

∫

F(x, y)µ(dz).

Special CasesConsider the following stochastic ordinary differential
equation

dφεt
dt
= εF(φεt , z(t)) + ε

2G(φεt , z(t)). (3.9.7)
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In this caseψεt → ψt such thatψt satisfies a deterministic equation

dψt

dt
= F̄(ψt), (3.9.8)

where

F̄ =
∫

F(x, z)µ(dz). (3.9.9)

This may be regarded as a low of large number for the flowψεt .
Let F(x, t) be a period function oft with period 1 andz(t) = t on

T1 = [0, 1] (one dimensional torus), an ergodic process with invariant
measuredt. Consider

dx
dt
= F(x,

t
ε

). (3.9.10)

100

The solution of (3.9.10)φεt (x)
φ
−−−→
ε→0

0

t
, whereφo

t satisfies

dφo
t

dt
= F̄(φo

t ), (3.9.11)

where

F̄(x) =
∫ 1

o
F(x, t)dt. (3.9.12)

This is sometimes called up the averaging of the equation (3.9.10).
Let us next consider the case when

aY(x, y, z) = 0,
∫

F(x, z)µ(dz) = 0 (3.9.13)

In this case the limits ofψεt is also a trivial flow. So we have to
change the time scale in a different way. Set̃ψεt = φt/ε2. Then ψ̃εt is
generated bỹXε

t where

Xε
t (x) =

1
ε

∫ t

o
F

(

x, z
( r

ε2

))

dr +
∫ t

o
G

(

x, z
( r

ε2

))

dr

+

∫ t

o
Z̃ε

(

x, z
( r

ε2

)

, dr
)

, (3.9.14)
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with

Z̃ε
(

x, z
( t

ε2

)

, t
)

= εZ
(

x, z
(

t/ε2
)

,
t

ε2

)

. (3.9.15)

We now make an assumption regarding the existence of a recurrent
potential. (A5) There exists a unique recurrent potential, viz.

ψ(z,A) = lim
t→∞

∫ t

o
(Pr(z,A) − µ(A))dr. (3.9.16)

[uniform convergencew.r.t.z]
and

ψ( f )(z) =
∫

ψ(z, dz′) f (z′)

mapsC∞b into C∞b . It is clear that if
∫

f (x)µ(dx) = 0 then

ψ( f )(z) = lim
t→∞

∫ t

o
Tr f (z)dr. (3.9.17)

where Tr is the semigroup corresponding to the transition function101

Pt(x, .).

Theorem 3.9.1. Assume(A5). Then(ψ̃εt , X̃
ε
t ) converge to a Brownian

flow of C∞-diffeomorphism and C∞-Brownian flow. The local charac-
teristics are given by

āi j (x, y) =
∫

aZ
i j (x, y, z)µ(dz)

+

∫

{

F̂ i(x, z)F j (y, z) + F̂ j(y, z)F i (x, z)
}

µ(dz) (3.9.18)

b̄(x) =
∫

G(x, z)µ(dz), (3.9.19)

ci(x) =
d

∑

k=1

∫

∂F̂ i

∂xk
(x, z)Fk(x, z)µ(dz) (3.9.20)

where F̂(x, z) =
∫

ψ(z, dz′)F(x, z′). (3.9.21)
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Proof. Let G̃ε
t = σ(Z(x, z, s), z(s) : s ≤ t/ε2). We verify (A2)k for any

k > 0.

E

[∫ t

s
G

(

x, z
( r
ε

))

dr|G̃ε
s

]

= ε2E

[∫ t/ε

s/ε2
G(x, z(r))dr|G̃ε

s

]

→ (t − s)
∫

G(x, z)µ(dz)inL1 -sense,

by the Ergodic theorem

E





















t
∫

s

aZ
(

x, y, z
( r

ε2

))

dr|G̃ε
s





















→ (t − s)
∫

aZ(x, y, z)µ(dz).

E





















1
ε

t
∫

s

Dα
xF

(

x, z
( r

ε2

))

dr|G̃ε
s





















= εE

























t/ε2
∫

s/ε2

Dα
xF(x, z(r))dr|G̃ε

s

























= ε

(t−s)/ε2
∫

o

Tr(D
αF)

(

x, z
( r

ε2

))

dr.

([by Markov property])

[whereTr F(x, z) =
∫

Tr (z, dz′)F(x, z′)] −−−→
ε→0

by (A5). 102

E





















1
ε

t
∫

s

F i(x, z(τ/ε2))dτ

τ
∫

s

F j(y, z(σ/ε2))dσ|G̃ε
s





















= ε2E

























t/ε
∫

s/ε2

F j(y, z(σ))dσ

t/ε2
∫

σF i(x, z(τ))dt|G̃ε
s

























= ε2

(t−s)/ε2
∫

o

dσ

(∫

Pσ(z, dz′)F j(y, z′)

)

























t/ε2−σ
∫

o

Tτ(F
i)(x, z′)dτ)|z=z(s/ε2)

























−−−→
ε→0

(t − s)
∫

F j(y, z′)F̂ i(x, z′)µ(dz′).

[using Ergodic theorem and (A5)] �
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Similarly

∑

k

1
ε2

E





















t
∫

s

∂F i

∂xk
(x, z(τ/ε2))dτ

τ
∫

s

Fk(x, z(σ/ε2))dσ|G̃ε
s





















−−−→
ε→0

(t − s)ci(x).

We next check (A3)k.

1
ε

E





















t
∫

s

DαF
(

x, z
( r

ε2

))

dr|G̃ε
s





















1
ε

DβF(x, z(s/ε2))

=

(t−s)/ε2
∫

o

Tr (D
αF)(x, z(s/ε2))drDβF(x, z(s/ε2))

is bounded (independent ofε). This completes the proof
We shall next consider an example concerning the limit theorems

studied by Papanicolaou-Stroock-Varadhan [29].

Example 3.9.2.Let (xε(t), zε(t)) be the diffusion process inRd × Rd de-
fined by the following system of stochastic differential equations:

dxε(t) =
1
ε

F(xε(t), zε(t))dt +G(xε(t), zε(t))dt

+

r
∑

j=1

σ. j(x
ε(t), zε(t))dβ j (t) (3.9.22)

dzε(t) =
1

ε2
F̃(xε(t), zε(t))dt +

1
ε

∑

j

σ̃. j(x
ε(t), zε(t))dβ̃ j (t) (3.9.23)

where (β1(t), . . . , βr(t)) and (̃β1(t), . . . , β̃r (t)) arer-dimensional Brown-103

ian motions independent of each other. Herezε(t) is called the driving
process andxε(t) the driven process. Asε → 0, the right hand side of
(3.9.23) diverges and hence the system of solutionszε(t), ε > 0 does
not converge. On the other hand, the first componentxε(t) varies slowly
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compared withzε(t). Papanicolaou-Stroock-Varadhan have shown that
under some conditions on the coefficients,xε(t) converges weakly to a
diffusion process. Let (φεt (x, z), ψεt (x, z)) denote the solution of (3.9.22),
(3.9.23) starting from (x, z) at timet = 0. The pair defines a stochastic
flow of diffeomorphisms, but the first componentφεt (x, z) ≡ φεt (., z), zbe-
ing fixed, does not in general. However, ifF̃(x, z) = F̃(z), σ̃(x, z) = σ̃(z)
then (3.9.23) defines a closed system,ψεt (x, z) does not depend onx. In
this case the mappingφεt (., z) : Rd → Rd becomes a stochastic flow for
eachz, generated by

Xε(x, dt) =
1
ε

F(x, zε(t))dt +
∑

j

σ. j(x, z
ε(t))dβ j (t). (3.9.24)

Now the solutionzε(t) has the same law asz1(t/ε2). Put

X̃ε(x, t) =

t
∫

o

[

1
ε

F(x, z1(r/ε2)) +G(x, z1(r/ε2))

]

dr

+
∑

j

∫ t

o
σ. j(x, z

1(r/ε2))dβ j (r). (3.9.25)

Let φ̃εt (x, z) be the flow generated bỹXε
t wherez is the initial value.

Then the law of (̃φt(x, z), X̃ε
t ) ≡ the law of (φεt (x, z),Xε

t ). Therefore
(φ̃εt (x, z), X̃

ε
t ) converges.

Remark 3.9.3.These convergence problems do not include the homog-
enization problem. In fact here our conditions are more stringent than

those in homogenization. If we writeaε(x, y) = a(
x
ε
,
y
ε

), bε(x) = b( x
ε
),

then for the convergence of stochastic flows associated withaε, bε we 104

need boundedness conditions on the derivatives ofaε andbε. Such con-
dition are not satisfied for the homogenization.

3.10 Mixing Case

Suppose we are given a filtration{Gs,t}, 0 ≤ s ≤ t < ∞ such thatGs,t ⊂
Gs′t′ if s′ ≤ s ≤ t ≤ t′. For eacht > 0 we define the strong mixing rate
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β(t) as follows

β(t) = sup
s

sup
AεGo,s′ , BεGs+t,∞

|P(A∩ B) − P(A)P(B)|. (3.10.1)

Not that ifGo,s andGs+t,∞ are independent for anys, thenβ(t) = 0.
Henceβ(t) ∼ 0 meansGo,s andGs+t,∞ are close to being independent. In
particular, ifu is aGt,∞-measurable random variable such thatE[u] = 0
thenE[u|Go,s|] ∼ 0 if β(t− s) ∼ 0. more precisely, we have the following
lemma.

Lemma 3.10.1.Let u be a Gt,∞-measurable random variable such that
E[u] = 0. Then for any p, q > 1 with p−1 + q−1 < 1, we have

E
[

|E[u|Go,s]|r
]1/r ≤ Cβ(t − s)1/pE[|u|q]1/q (3.10.2)

where C= C(p, q) and
1
r
=

1
p
+

1
q

.

Proof. (Ibragimov-linnik [11]) letv be a boundedGo,s-measurable ran-

dom variable. For anyp′, q′ > 1 with
1
p′
+

1
q′
= 1, we have

E[|E[u|Go,s]||v|] ≤ E[|E[u|Go,s]|]1/p′E[|E[u|Go,s]| |v|q
′
]1/q′

≤ E[uv1]1/p′E[|u| |v|q′ ]1/q′ , (3.10.3)

wherev1 = signE[u|G0,s]. Similarly we have forp′′, q′′ > 1 with
1
p′′
+105

1
q′′
= 1

E[uv1] = E[u(v1 − E(v1))]

≤ E[u1(v1 − E(v1))]1/p′′E[|v1 − E(v1)| |u|q
′′
]1/q′′ ,

whereu1 = sign (E[v1|Gt,∞] − E[v1]). SetA = {ω : u1 = 1}, B = {ω :
v1 = 1}. Then

|E[u1v1] − E[u1]E[v1]| ≤ |P(A∩ Bc) − P(Ac ∩ B) + P(Ac ∩ Bc)|
+ P(A)P(Bc) + P(Ac)P(B) − P(A)P(B) − P(Ac)P(Bc)|
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≤ 4β(t − s).

Since|v1 − E[v1]| ≤ 2, the above inequality implies

E[uv1] ≤ 2
1

q′′ +
2

p′′ β(t − s)
1

p′′ E[|u|q
′′
]1/q′′ .

Substituting the above in (3.10.3), we get

E[E[u|Go,s]| |v|] ≤ (2
1

q′′ +
2

p′′ )1/p′β(t − s)
1

p′p′′ E[|u|q
′′
]1/q′′E[|v|q

′p′′ ]
1

p′ p′′ .

Set q = q′′ and p = p′p′′, thenq′p′′ = r′, where
1
r′
+

1
r
= 1 and

complete the proof. �

We establish a similar estimate forC1-valued random variable.

Lemma 3.10.2. Let u(x, ω) be a C1-valued random variable, Gt,∞-
measurable and E[u(x)] = 0 for any x. Then for any p, q > 1 with
p−1+q−1 < 1 and for any K> 0 there exists a constant C= C(p, q, d,K)
such that

E













sup
|x|≤K
|E

[

u(x)|Go,s
]r












1/r

≤ Cβ(t − s)
1

p(d+1) E

















∑

|α|≤1

sup
|x|≤K
|Dαu(x)|q

















1/q

(3.10.4)

where
1
r
=

1
p
+

1
q

.

Proof. Let N be any positive number. There existsx1, . . . , xn(n ≤ (2N+ 106

1)d) such that{B(xi;
K
N

), i = 1, . . . , n}, whereB(xi;
K
N

) is the ball with

centrexi and of radius
K
N

, covers the cube [−K,K]d. Then we have

sup
|x|≤K
|E[u(x)|Go,s]| ≤ max

i
sup

x∈B(xi ,
K
N )

|E[u(x) − u(xi)|Go,s]|

+max|E[u(xi )|Go,s]|
= I1 + I2, say. (3.10.5)

�
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Using mean value theorem, we have

I1 ≤
K
N

max
i

∑

|α|=1

sup
xεB(xi ,

K
N )

|E[Dαu(x)|Go,s]|

≤ K
N

∑

|α|=1

sup
|x|≤K
|E[Dαu(x)|Go,s]|.

Therefore

E













sup
|x|≤K
|E[u(x)|Go,s]|r













1/r

≤ K
N

E

















∑

|α|=1

sup
|x|≤K
|E[Dαu(x)|Go,s]|r

















1/r

+C(2N + 1)dβ(t − s)1/P maxE[|u(xi )|q]
1
q .

SetN = β(t− s)
−

1
p(d + 1). ThenNdβ(t− s)1/p = β(t− s)

1i

p(d + 1). Since
r < q the above is bounded by

(K +C3d)β(t − s)

1
p(d + 1)E

















∑

|α|≤1

sup
|x|≤K
|Dαu(x)|q

















1/q

.

This proves the lemma.

Lemma 3.10.3. Let u(x) (resp. v(x)) be a C1-valued random variable
which is Gu,u (resp. Gt,t)-measurable where t< u. Suppose E[u(x)] = 0
for all x and set w(x) = E[u(x)v(x)]. Then for any p, q with p−1+2q−1 <

1 and for any K> 0, there is a positive constant C= C(p, q,K) such
that for s< t

E













sup
|x|≤K
|E[u(x)v(x) − w(x)|Go,s]|δ













1/δ

≤ C {β(u− t)β(t − s)}
1

2p(d+1)

E

















∑

|α|≤1

sup
|x|≤K
|Dαu(x)|2q

















1/2q

× E

















∑

|α|≤1

sup
|x|≤K
|Dαv(x)|2q

















1
2q

(3.10.6)

where p−1 + 2q−1 = δ−1.107
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Proof. Lemma 3.10.2 with uv-w substituted foru. Then

E













sup
|x|≤K
|E[u(x)v(x) − w(x)|Go,s]|r













1/r

≤ Cβ.(t − s)
1

p(d+1) E

















∑

|α|≤1

sup
|x|≤K
|Dα(uv− w)|q

















1/q

≤ C′β.(t − s)
1

p(d+1) E

















∑

|α|≤1

sup
|x|≤K
|Dαu(x)|2q

















1/2q

×

E

















∑

|α|≤1

sup
|x|≤K
|Dαv(x)|2q

















1/2q

, (3.10.7)

wherep−1 + q−1 = r−1. Sinceδ < r, r can be replaced byδ in the left
hand side of (3.10.7). Next note thatδ−1 = r−1 + q−1. Then by Holder
inequality

E













sup
|x|≤K
|E[u(x)v(x)|Go,s]|δ













1/δ

= E













sup
|x|≤K
|E[E[u(x)|Go,s]v(x)|Go,s]|δ













1/δ

≤ E













sup
|x|≤K
|E[u(x)|Go,t]|rGo.s













δ
r

E













sup
|x|≤K
|E[v(x)|q|Go,s]

δ
q













1/δ

≤ E













sup
|x|≤K
|E[u(x)|Go,t]|r













1/r

.E













sup
|x|≤K
|v(x)|q













1
q

≤ Cβ.(u− t)
1

p(d+1) E

















∑

|α|≤1

sup
|x|≤K
|Dαu(x)|q

















1/q

E













sup
|x|≤K
|v(x)|q













1/q

.

�

Finally we have by Lemma 3.10.1 108

|w(x)| ≤ C′β(u− t)1/pE[|u(x)|q]1/qE[|v(x)|r ]1/r
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≤ C′β(u− t)1/pE[|u(x)|q]1/qE[|v(x)|q]1/q,

wherep−1+q−1+ r−1 = 1 andr < q. Therefore the left hand of (3.10.6)
is bounded by

Cβ(u− t)
1

p(d+1) E[
∑

|α|≤1

sup
|x|≤K
|Dαu(x)|q]1/qE[ sup

|x|≤K
|v(x)|q]1/q. (3.10.8)

Hence the square of the left hand side of (3.10.6) is bounded by the
the product of the right hand side 3.10.7 and (3.10.8). This proves the
lemma.

Consider a stochastic defferential equation with a parameterε > 0

dx(t) = εF(x(t), t)dt + ε2G(x(t), t)dt + εY(x(t), dt) (3.10.9)

x ε Rd, 0 ≤ t < ∞,

whereF(x, t, ω),G(x, t, ω) areRd-valued random fields,Fo-measurable,
continuous in (x, t) and k-times continuously differentiable inx, the first
derivatives are bounded.

FurtherE[F(x, t)] = 0 for anyx, t. Y(x, t), 0 ≤ t < ∞, is a continu-
ousCk−1-martingale adapted toFt with local characteristicsa(x, y, t, ω)
with properties similar to the above. The equation is similar to the one
introduced in the previous section. In factF(x, z(t)),G(x, z(t)) etc. of
the previous section correspond toF(x, t, ω),G(x, t, ω) etc. of this sec-
tion. Letφεt (x) be the stochastic flow determined by the above stochastic
differential equation. Then bothφεt andφεt/ε. We shall study the weak
convergence ofψεt asε→ 0 as stochastic flows under a mixing condition
on the stochastic defferential equation. Such a limit theorem has exten-
sively been studied in the caseY ≡ 0, i.e., in the case of stochastic or-
dinary differential equation see Khasminskii [17], Kohler-Papanicolaou109

[28], Kesten-Papanicolaou [15]. In those works the weak convergence
on diffusion processes has been studied. Here we shall study the weak
convergence as stochastic flows including the caseY . 0. Let

Gs,t = σ(F(., u),G(., u) − Y(., v), s≤ u, v ≤ t)

and letβ(t) be the strong mixing rate associated withGs,t. We shall
introduce the assumptions:
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(A6)k There are continuous functionsa = (ai j (x, y, t),A = (Ai j (x, y, t),
b = (bi (x, t)), c = (ci(x, t)) which arek-times continuously differentiable
with respect tox, y or x, as the case may be, and the first derivatives are
bounded such that the following are satisfied

|ai j (x, y, t) − lim
ε→0

1
ε

t+ε
∫

t

E
[

ai j

(

x, y,
r

ε2

)]

dr| = 0,

|Ai j (x, y, t) − lim
ε→0

1

ε3

t+ε
∫

t

τ
∫

t

E
[

F i(x,
σ

ε2
)F j

(

y,
τ

ε2

)]

σdτ| = 0,

|bi(x, t) − lim
ε→0

1
ε

t+ε
∫

t

E
[

Gi
(

x,
r

ε2

)]

dr| = 0,

|(x, t) − lim
ε→0

1

ε3

t+ε
∫

t

dτ

τ
∫

t

dσ
∑

j

E

[

F j(x,
σ

ε2
)
∂

∂x j
F j

(

x,
τ

ε2

)

]

| = 0,

uniformly on compact sets.
Let p, q > 1 be such thatp−1 + q−1 < 1.

(A7)k,p,q (a)
∞
∫

o
β(r)

1
2p(d+1) dr < ∞,

(b) For anyK > 0 the 2qth moments of sup
|x|≤K,|y|≤K

|Dα
xDβ

ya(x, y, t)|,

sup
|x|≤K
|DαG(x, t)| are all bounded by a positive constant

independent oft, |α| ≤ k, |β| ≤ K.
110

Remark 3.10.4.Note that here we are assuming the existence of in-
finitesimal limits whereas in the previous cases we have assumed the
existence of global limits.

Theorem 3.10.5.Assume(A6)k and (A7)k,p,q for some p, q such that
p−1 + q−1 < 1. Then the conclusion of the main limit theorem is valid.

We shall give the proof of the theorem in a more general setting.
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Let Xεt = Xε(x, t), ε > 0 be a family of continuous Ck−1- semi-
martingales adapted to Fεt , ε > 0 with local characteristics aε(x, y, t, ω),
bε(x, t, ω). We assume as before aε and bε are continuous in t and k-
times continuously differentiable in x, y and x respectively. Set̄bε =
E[bε(x, t)] andb̄ε = bε − b̄ε. In place of(A6)k we assume:

(A8)k There are continuous functions a= (ai j (x, y, t)), b̄ = (b̄i(x, t)), c =
(ci (x, t)),A = (Ai j (x, y, t)) which are k-times continuously differen-
tiable with respect to x, y or x and the first derivatives are bounded
and

|a(x, y, t) −
1
ε

t+ε
∫

t

E[aε(x, y, r)]dr| → 0 asε→ 0,

|b̄(x, t) −
1
ε

t+ε
∫

t

b̄ε(x, r)dr| → 0 asε→ 0,

|Ai j (x, y, t) −
1
ε

t+ε
∫

t

dτ

τ
∫

t

dσE[b̃εi (x, τ)bεj (y, σ)]| → 0 asε→ 0,

|ci (x, t) − 1
ε

t+ε
∫

t

dτ

τ
∫

t

dσ
∑

j

E[bεj (x, σ)
∂

∂x j
b̃εi (x, τ)]| → 0 asε→ 0,

uniformly on compact sets. Set111

Gε
s,t = σ(Yε(., u) − Yε(., v), bε(., u), s≤ u, v ≤ t).

Letβε(t) be the strong mixing rate associated with Gε
s,t. We intro-

duce an assumption so that asε → 0, βε(t) → 0,E[|b̃ε|r |] → ∞,
but the rates of the convergence and divergence are balanced. Let
p, q > 1 be such that p−1 + 2q−1 < 1. We restrict the time interval
to [0,T].

γ : (A9)k,p,q aε = (aε(x, y, t)) and b̄ε = (b̄ε(x, t)) satisfy the same mo-
ments conditions as in(A7)k,p,q independently ofε. Furthermore
the mixing rateβε(t) satisfies: withγ such that p−1 + q−1 = γ−1:
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(a) lim
ε→0

T
∫

0

βε(τ)
γ

p(d+1) dτ = 0,
T
∫

ε

βε(τ)
γ

p(d+1)dτ = 0















T
∫

0

βε(τ)
γ

p(d+1)dτ















(b) For each K> 0 there is a positive constant L= LK such that
T
∫

0

βε(τ)
γ

p(d+1) dτ.E













sup
|x|≤K
|Dβb̃ε(x, t)|2q













1/q

≤ L for all ε > 0.

Theorem 3.10.6.Assume(A8)k and (A9)k,p,q for p, q such that p−1 +

2q−1 < 1. Then the conclusion of the main limit theorem is valid.
Before describing the proof of the above Theorem let us pointout

that Theorem 3.10.5 can be deduced form Theorem 3.10.6. Indeed, set
bε(x, t) = 1

ε
F(x, t/ε2) + G(x, t/ε2), γε(x.t) = 1√

ε
Y(x, t/ε2). Then(A8)k

immediately follows from(A6)k. Set Gεs,t = G s
ε2
, t
ε2

.

Then we haveβε(r) = β(r/ε2). Therefore

T
∫

0

βε(τ)
γ

2p(d+1)dτ < ε2

T
∫

0

βε(τ)
γ

2p(d+1)d,

E













sup
|x|≤K
|Dβb̃ε(x, t)|2q













1/q

=
1

ε2
E













sup
|x|≤K
|DβF(x, t)|2q













1/q

.

Hence (A9)k,p,q is satisfied. 112

Proof of theorem 3.10.6.Set Dαb̃ε(x, τ) = uε(x, τ). Then by
Lemma 3.10.2, we have forγ such thatγ−1 = p−1 + q−1

E





















sup
|x|≤K
|

s
∫

t

E[uε(x, τ)|Gε
o,s]|γ





















1/γ

≤ C





















s
∫

t

βε(τ − s)
γ

p(d+1) dτ





















1
γ

sup
τ

E



















∑

|β|≤1

sup
|x|≤K
|Dβuε(x, τ)|q



















1/q

.

Now pick δ such thatp−1 + 2q−1 = δ−1 and p̃ = rδ−1. Thenδ̃q = q,
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whereq̃ is the conjugate of ˜p. Then by Holder inequality

E





















sup
|x|≤K
|

s
∫

t

E[uε(x, τ)|Gε
o,s]dτ|uε(x, s)|δ





















1/δ

≤ C





















s
∫

t

βε(τ − s)
γ

p(d+1) dτ





















1
γ

sup
τ

E



















∑

|β|≤1

sup
|x|≤K
|Dβuε(x, τ)|q



















1/q

×

E













sup
|x|≤k
|uε(x, s)|q













1/q

≤ L

This proves (A3)k. We next prove (A2)k. Set

āε(x, y, r) = E[aε(x, y, r)].

Then
t

∫

s

āε(x, y, r)dr →
t

∫

s

a(x, y, r)dr

follows immediately.

sup
|x|≤K
|

t
∫

s

E[āε(x, y, r)|Gε
o,s]dr| → 0 in L1 − sense,

whereãε = aε − āε. Similar estimate implies

E





















sup
|x|≤K
|

s
∫

t

E[uε(x, τ)|Gε
o,s]dτ|r





















1
γ

≤ C





















s
∫

t

βε(τ − s)
γ

p(d+1) dτ





















1
γ

E



















∑

|β|≤1

sup
|x|≤K
|Dβuε(x, τ)|q



















1/q

→ 0 asε→ 0.
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SetKε(τ, σ, x, y) = b̃ε(x, τ)bε(y, σ) andK̄ε = E[Kε], K̃ε = Kε − K̄ε113

Then by (A.8)k
∫ t+ε

t
dτ

∫ τ

t
dσK̄ε

i j (τ, σ, x, y) = εAi j (x, y, t) + o(t, ε) (3.10.10)

where
o(t, ε)
ε
→ 0 uniformly in t asε→ 0. By Lemma 3.10.1, we have

|
∫ t+ε

t
dτ

∫ t

s
dσK̄ε

i j (τ, σ, x, y)| ≤
∫ t+ε

t
dτ

∫ t

s
dσβε(τ − σ)

1
p(d + 1)

sup
σ

E[|bεj (y, σ)|2q]
1
2q × sup

τ
E[|b̃εi (x, τ) + |2q]1/2q. (3.10.11)

Note that

∫ t+ε

t
dτ

∫ t

s
dσβε(τ − σ)

1
p(d+1) = o

























∫ T

o
βε(τ)

1
p(d + 1)dτ

























.

Therefore (3.10.11) converges to zero. Hence

∫ t+ε

t
dτ

∫ τ

s
dσK̄ε

i j (τ, σ, x, y) = εAi j (x, y, t) + o(t, ε).

This proves

lim
ε→0

∫ t

s
dτ

∫ τ

s
dσK̄ε

i j (τ, σ, x, y) =
∫ t

s
Ai j (x, y, τ)dτ.

On the other hand, by Lemma 3.10.3,

E

[

|E
[∫ t

s
dτ

∫ τ

s
dσK̃ε

i j (τ, σ, x, y)|Gε
o,s

]

|δ
]1/δ

≤ C sup
τ

E
[

|b̃ε(x, τ)|2q
]1/2q

E[|bε(y, τ)|2q]1/2q

×
(∫ t

s
dτ

∫ τ

s
dσβε(τ − σ)

γ

2p(d+1)βε(σ − s)
γ

2p(d+1)

)
1
γ
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≤ C sup
τ

E
[

|b̃ε(x, τ)|2q
]1/2q

E[|bε(y, τ)|2q]1/2q

(∫ T

o
βε(τ)

γ

2p(d+1)dτ

)2/γ

→ 0 asε→ 0.

114

These two computations yield

lim
ε→0

E

[∫ t

s
dτ

∫ τ

s
dσKε

i j (τ, σ, x, y)|Gε
o,s

]

=

∫ t

s
Ai j (x, y, τ)d

τ.

This completes the proof.

3.11 Tightness and Weak Convergence of Inverse
Flows

Let Xε(x, t), ε→ 0 be a family of continuousC-semimartingales adapted
to Fε

t with local characteristics (aε, bε) satisfying Lipschitz continuity
and linear growth properties. Assume thatXε(x, t) is a backward semi-
martingale, i.e., it satisfies (A5) of Chapter 2. Set

X̂ε(x, t) = −Xε(x, t) +
∫ t

o
dε(x, r)dr,

where dεi (x, t) =
∑

j

∂

∂x j
ai j (x, y, t)|y=x.

It is a backward semimartingale with local characteristicsaε,−bε +
dε. We make the following assumption:

(A2)̂k The tightness condition (A2)k is satisfied for the backward
semimartingale. SetΨεs,t = (φεs,t)

−1 andΨεt = Ψ
ε
o,t, whereφεs,t is the flow

generated byXε(x, t). Then for eacht, {Ψεs,t}, s ∈ [0,T] is tight. We
claim that for eachs, {Ψεs,t}, t ∈ [s,T] is tight.

115
Theorem 3.11.1.Let k≥ 4. The family of laws ofΨεt on Wm,m≤ k− 4,
is tight.
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Proof. Letφε,Ks,t be the flow generated by the truncated processXε,K(x, t)

and letΨε,Ks,t = (φε,Ks,t )−1. We shall prove the tightness ofΨε,Kt in Wo,p.
We suppressK. Let s< t. Then

Ψεt (x) − Ψεs(x) = ΨεsoΨ
ε
s,t(x) − Ψεs(x)

= ∂Ψεs(ξ
ε
s(x))(Ψεs,t(x) − x), (3.11.1)

where|ξεs(x)| ≤ K. For anyp ≥ 3, there is a positive constatntC′ such
that

E|Ψεs,t(x) − x|p ≤ C′|t − s|
2−

3
p .

�

In factΨεs,t(x) satisfies the following backward stochastic differential
equation

Ψεs,t(x) = x−
∫ t

s
Xε(Ψεr,t(x), d̂r) +

∫ t

s
dε(Ψεr,t(x), r)d̂r.

Therefore arguing as in Lemma 3.4.2 we get the above estimate.
On the other hand, the inverse of the Jacobian matrix−∂φεt satisfies
as in the case of a usual stochastic differential equation (see Ikeda-
Watanabe [13])

(∂φεt )
−1 = I −

∫ t

o
(∂φεr )

−1Xε(φεr , dr) −
∫ t

o
(∂φr)

−1G(φεr (x), r)dr

where Gi j (x, t) =
∑

k

∂

∂y j

∂

∂xk
aεik(x, y, t)|y=x. Then we can show that

(∂φεt )
−1 converges weakly in the same way as we did earlier. There-

fore the associated laws are tight. Consequently, for anyδ > 0, there is
aC = C(δ) such that

P



























sup
|x|≤K

t∈[0̄,T]

|(∂φεt )−1(x)| ≤ C



























> 1− δ.
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Now, since∂Ψεt (x) = (∂φεt )
−1(Ψεt (x)) and|Ψεt (x)| ≤ K if |x| ≤ K, we 116

get

P

























sup
|x|≤K

t∈[0,T]

|∂Ψεt (x)| ≤ C

























> 1− δ.

Define

Aε,δ =











ω : sup
|x|≤K,t∈[0,T]

|∂Ψεt , (x)| ≤ C











.

ThenP(Aε,δ > 1− δ for anyε. Therefore

E
[

|Ψεt (x) − Ψεs(x)|P : Aε,δ
]

≤ CPE[| Ψεs,t(x) − x|P : Aε,δ]

≤ CP.C′|t − s|2−
3
P .

Therefore the measureP(ε,δ)(.) = P(.|Aε,δ) satisfies

E(ε,δ)[|Ψεt (x) − Ψεs(x)|P] ≤ CP.C′(1− δ)−1|t − s|2−
3
P .

Hence the family of laws{P(∈,δ)} is tight for anyδ > 0. Sinceδ
is arbitrary, we see that the family of laws ofΨεt , ε > 0 is tight. Now
consider the nontruncated case. We see, as before, that the laws ofΨεt
converge weakly with respect to the weak topology ofWo,p. Hence they
are tight in the weak topology ofWo,p. We can prove the tightness ofΨεt
with respect to the weak topology ofWm,m≤ k− 4 in the same manner.

Remark 3.11.2.In the mixing case the tightness assumption is symmet-
ric with respect to the forward and backward cases. Hence thetightness
and weak convergence of inverse flows are always valid.

Remark 3.11.3.The limit of Ψεt is unique and it coincides with the in-
verse of the limit ofφεt .
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tained by [23], [24] and Fujiwara-Kunita [8].

[2.6] This section is adapted from [18].

[2.7] Appendix: Generalized Ito formula presented here is an im-
provement of the same titled formula in [18]. Conditions imposed
here are much simpler.

Chapter 3

[3.1] Ideas of using Sobolev spaces for the tightness of measures
originated from Kushner [22]. See also Ikeda-Watanabe [13].

[3.4] Moment inequalities in this section are some modification of
Kunita [20]. The method of introducing truncated process isdue
to Kestern-Papanicolaou [15].

[3.5] The weak convergence of (N + M)-point processes is sug-
gested by [15]. Lemma 3.5.2 is originated from Khasminskii [16].

[3.6–3.9] The arguments are adapted from [20].
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[3.10] Mixing lemmas given here are analogues of those in [15], 118

although in [15] the forms are apparently different.

[3.11] The tightness of inverse flow is adapted from [20].
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