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Preface

These notes are based on a series of lectures given at T.CErRre,
Bangalore during November and December 1985. The lectunes c
sisted of two parts. In the first part, | presented basic ptigse of
stochastic flows, specially of Brownian flows. Their relagowith lo-

cal characteristics and with stochastiffeliential equations were central
problems. | intended to show the homeomorphism properthieflows
without using stochastic flerential equations. In the second part, as
an application of the first part, | presented various limé@dtems for
stochastic flows. These include the following:

(@) Approximation theorems of stochastidfdrential equations and
stochastic flows due to Bismut, Ikeda - Watanabe, Mallialioyv-
ell et al.

(b) Limit theorems for driven processes due to Papanicel&wock-
Varadhan.

(c) Limit theorems for stochastic ordinaryfiirential equations due to
Khasminskii, Papanicolau - Kohler, Kesten - Papanicoldal.e

| intended to treat these limit theorems in a unified method.

I would like to thank M.K. Ghosh for hisfeorts in completing these
notes. Also | wish to express my gratitude to Professor M &jHR-
nathan and.|.F.R, for giving me this opportunity to visit India. Finally
| would like to thank Ms. Shantha for her typing.

H.Kunita
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Chapter O

Introduction

Let us consider an ordinaryfierential equation oR9 1
dx
—_— = f X’t s Ol
5 = o) (0.1)

where f(x,t) is continuous in X,t) and is Lipschitz continuous im.
Denote bygsi(x) the solution of the equatiofi{0.1) starting fromat
time s, i.e., with initial conditiorx(s) = x. It is a well known fact that
#st(X) satisfies the following properties:

(@) ¢st(X) is continuous irs t, X,
(b) dru(@st(X)) = ¢su(X) for any s t, uand anyx,

(€) ¢ss(X) = xfor anys,

(d) the mapps; : RY — RY is a homeomorphism for argyt.

The mapgs;: with above properties is called a flow of homeomor-
phisms.

A stochastic flow of homeomorphisms is &f valued random field
psi(x w), 0 < s<t< T, xeRYdefined on a probability spacF, P)
such that, for almost alb, it has the above mentioned propertie} {
(d). In particular, ifgy 1., i = 0,1,...,n—1 are independent for any<
to<ti<...<t, <T,itis called a Brownian flow. An important class

1



2 0. Introduction

of Brownian flows is constructed by solving Ito’s stochasliferential
eqguation

dxt) = ZT: Fr(x, t)dBx(t) + Fo(x, t)dt, (0.2)
k=1

whereFy(x, 1), F1(Xx t), ..., Fr (X t) are continuous inX,t) and Lipschitz
continuous inx, and B;(t),--- , B(t)) is a standard Brownian motion.
Let ¢st(X, w) be the solution of the equation under the initial condition
X(s) = x. Then, taking a suitable modification, it defines a Brown-
ian flow. This fact has been established by many authors, Ewgor-
thy [4], Malliavin [8], Bismut [3], Ikeda - Watanabé [1L3], Kita [18]

However, not all stochastic flows can be constructed by Hwea
method. In fact, we need an infinite number of independenwBian
motions B4(t), Bx(t), ... and functionsFo(x, t), F1(X, 1), ..., or equiva-
lently a Brownian with values i€ = C(R%; RY), i.e., aC- Brownian mo-
tion. Here, a continuou® valued random fielX(s t),x e R4,0< t <
T, is called a C- Brownian motion X(x, ti.1)-X(x,t),i =0,1,...,n-1
are independent forany 8 tyg < t;... <ty < T. Then under a mild
condition any Brownian flow can be obtained by a stochastterintial
eguation of the form

DC(t) = X(x(t), dt). (0.3)

This fact is due to Le Jan 23] and Baxendale [1]. See alsovaugi
- Kunita [€].

The first part of these lectures will be devoted to the studyhef
basic properties of stochastic flows including the abovesfda Chap-
ter we shall characterize the Brownian flown by means ofaitsll
characteristics:

b(x. 1) = im = (Eldvesn(9] - 9 (0.4)

ay.1) = lim £ (Eldyeon() - X)dreen(y) - ']

where « is the transpose of the column vectox.l(x,t) and a(x,y, t)
will be referred to as infinitesimal mean and infinitesimaVvarance
respectively. It will be shown that these two objects deteenthe law
of the Brownian flow.



In ChaptefR2, we shall consider the stochastitedential equation
based on C - valued Brownian motion or more generally C-vhtan-
tinuous semimartingal¥(x, t), given in the form[{TI3). It will be shown
that the equation has a unique solution if its local charesties are Lip-
schitz continuous and that the solution defines a stochfistic Con- 3
versely, under some conditions the flow can be expressed @stms
of a suitable stochastic fliérential equation.

The second part of these notes will be devoted to various thek
orems concerning stochastic flows. We shall consider thypestof
limit theorems. The first is the approximation theorem fortackas-
tic differential equation given by {0.2). Let(t) = (vi(t),...,v (1)),
¢ > 0 be a piecewise smooth r dimensional process suchBi{gt =
fotv““(r)dr,s > 0 converges to a Brownian motid(t) ase — 0. Con-
sider the stochastic ordinaryftéirential equation

2—? = 3 Fu OV + Folx D). (0.5)
k=1

Let ¢%:(X) be the solution of[{0I5) starting from at time s. The
guestion is whether the family of stochastic flopise > 0 converges
weakly or strongly to a Brownian flow determined by the staticadif-
ferential equation{012) ( with some correction term). Thebtem has
been considered by many authors in several special caség)ofe.g.,
Bismut [3], Dowell [6], Ikeda - Watanabé [114], Kunita |15], afliavin
[25].

The second limit theorem we shall be concerned with is thddpy
panicolaou Stroock-Varadhah J29]. Consider the followsygtem of
stochastic dterential equations

p
dXe(t) = i;L F(XE(), Z (1) dt + G(x*(t), Z(t))dt + Z ai(X°(1), Z°(1)dB; (t)
=1
1 - 1 .
dZ(t) = ;F(Xs(t), Z(t))dt + - Z o (), Z(1))dB; (1),
=1

where Ba(t),....Bp(t)) and Ba(t),...,Bq(t)) are independent Brown-
ian motions,F, G, F, o, 0 are bounded smooth functions with bounded



4 0. Introduction

derivatives. The processeqt), ¢ > O(called the driving processes) do
not converge. However, under suitable conditions on theficants,
the processes’(t), £ > O(the driven processes) can converge weakly to
a diffusion process.

The third one is concerned with the stochastic ordinaffecdintial

equation

%( = 8f(X, t, w) + Szg(xa ts LL)),

where f, g are random velocity fields satisfying suitable strong ngxin
conditions ande[f] = 0. The stochastic flowgg; determined by the
above equation converge to the trivial flﬁt(x) = X. Khasminskii
[16], Papanicolaou - Kohlet 28], Borodinl[5], Kesten- Paijgalaou
[15] et al have shown that after changing the scale of timeptbcesses
Wi = S,t 120 € > 0 converge weakly to a fiusion process.

In Chaptef B we shall present a general limit theorem so tiet t
above mentioned cases can be handled together.



Chapter 1

Brownian Flows

This chapter consists of four sections. In Seclioh 1.1 wendefiochas- 5
tic flows of measurable maps. If a stochastic flow of measaratdps
continuous irt, has independent increments, we call it a Brownian flow.
We then describe its N- point motion and show that it is a Menm-
cess. Finally we show that given a consistent family of titeors proba-
bilities, we can construct a stochastic flow with independatrements
whose N-point motion will have the same family of transitipmobabil-
ities. In Sectiof_1]2, we introduce the notion of local cleteastics of

a Brownian flow which are essentially the infinitesimal mead ao-
variance of the flow. We then show the existence of a Browniam fl
with prescribed local characteristics. In Secfiof 1.3, tuelys Brownian
flow of homeomorphisms. We show that if the local charadiesof

a Brownian flow satisfy certain Lipschitz conditions, thebécomes a
flow of homeomorphisms. In Sectién1l.4 we establish thEedmor-
phism property of a Brownian flow under some smoothness Agsum
tions on its local characteristics.

1.1 Stochastic Flows with Independent Increments
Let (Q, F, P) be a probability space. L8t > 0 be fixed. Fork s<t<

T, x € RY, let ¢s1(%, w) be anRY valued random field such that for each
fixed s t, s < t, ¢st(., w) is @ measurable map frolf into RY. Let M

5



6 1. Brownian Flows
denote the totality of measurable maps frafhinto RY. Thengs; can
be regarded as an M - valued process.
Definition 1.1.1. ¢s; is called a stochastic flow of measurable maps if
() ¢si(x,.)is continuous in probability w.r¢s,t, x),
(i) ¢ss=identity map a.s.for each S,
(iii) ¢su = Pru0pst a.S. for each s< t < u.

whereo stands for the composition of maps. By a stochastic flow
we will always mean a stochastic flow of measurable maps. L&t 0
th<th <...<th <T,% € RI,0 < i < n-1be arbitrary. If
P 4,,(%),1 = 0,1,...,n -1 are independent random variables for any
such(ti, x;}, thengs; is called a stochastic flow with independent incre-
ments. Further, iBs:(X, w) is continuous irt a.s. for eachs, x thengs;
is called a Brownian flow (of measurable maps).

Let s be a stochastic flow with independent increments. X\8t=
(X1, X2,..., Xn) € RNGwhere eachq € Rd. Setpsi(XN) = (¢si(X0),
bst(X2), . .., pst(xn)). For fixeds xN, g5 (xN) is anRNY valued pro-
cess. We claim that it is a Markov process with transitiorbpility

PR, E) = P(psi(x™) € E). (1.1.1)

Indeed, let
T 1) = f fy™M)PE (M, dy™) (1.1.2)

wheref : RNY - Ris a bounded measurable map. Egt = o-(¢yv(X) :
s<u<v<txeRY. Note thatps, = ¢r,0¢st and the independent
increment property obs; implies thatgy, is independent oF s;. Now

E [f (¢su()_((N))|Fst)] =E [f (‘Pt,u(X(N)))]y(N) = ¢st()_((N))
= T (g5 (XV).

From the above property, we see that
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T = TR TV 1. (1.1.3)

If fis bounded and continuous, thé*é'}')f((l((“)) is a continuous
function of s, t, (xX")).

Remark 1.1.2.The family {Pé’}')Q((N),.)}N_lz defined by [T1]1) of
transition probabilities is consistent in the followingise. Suppos#
andN are two positive integers arld > M. Let1<i; <ip <--- <N
be positive integergx;, - - - , Xi,,} a subset ofxy, ..., Xy} andEy, ..., En
Bo rel sets irkY such thaEy, = RYif KM ¢ {i,...,im}. Then

PN (... xn. E1 X.... XEn) = PAO(,. ... Xy EiyX. .. XE, ).
(1.1.4)

Proposition 1.1.3. Let{Pé’}')Q((N), IN=12,.. } be a family of transi-
tion probabilities satisfying the consistency conditiinl.4) Assume
that the corresponding _gﬁ‘)f(g('\‘)) is continuous in(s, t, x\)) for any
bounded continuous function f. Then there is a stochastic dfonea-
surable maps with independent increment whose N-pointegpbtias
the transition probability{ Pg\t')(g(“), .)}.

Proof. Let0<t; <ty < --- <ty < T. Then by Kolmogorov consis-
tency theorem, there exigtindependent random fieldgi = 1,2,---n
s.t. the law of £(x1)), ..., & (xn)) coincides withP{y (x™), ) for any
xN) e RNd, SinceTélt)f(x) is continuousw.r.t x for all bounded contin-
uousf, we can pick a version di(x)} s.tx — &(x) is measurable. For
tj <t;, define

_ [identity if i = j
bt fj—lofj—Zo' .. Ofi if i < J

.....

consistent family of probability measures as the pararsatary over
0<t <th<-- <ty <T,xe RI Therefore, by Kolmogorov s
consistency theorem, there exists a random figlgx, w) such that the
joint law of {¢y,1;(%),1 < i < j < nk = 1,...,N} coincides with
{&y(%), 1 < i < j <nk=12..,N}. Again the continuity of
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Télt)f(x) w.r.t.s t, x allows us to pick a version such the mag, x —
#si(X w) is measurable a.s This(x, w) clearly satisfies (i) and (ii) of
Defn. 11.1 (iii) being an easy consequence [0f (1 1.3) above. Thus it is
the required stochastic flow. m|

Remark 1.1.4.In view of the above propositions there is a one to one
correspondence between stochastic flows with independerements
and a consistent family of transition probabilities whoeeresponding
family of semigroups satisfies a certain continuity craeri

1.2 Local Characteristics. Generator of N-Point
Motion

Let ¢st(S, w) be a Brownian flow. We make the following assumptions:

Assumption 1. ¢st(X,.) is square integrable and the following limits
exist:

I |
0] rLILno HE[¢t,t+h(X) -X
Denote the above limit by(kt). Then ifxt) = (b*(x1),...,
bd(x, 1)) is anRY vector.
R §
(i) lim =El(@resn(x) = x)(@esn(y) =)

where x stands for the transpose of « RY. Denote the above
limit by a(x, y,t). Then &x,y,t) = (a(x,y,t)) is a dx d matrix.

The pair (ab) is called the local characteristics of the flagu;.
Clearly the matrix &x, y, t) = (aj(X,y, t)) satisfies the following proper-
ties:

9 (i) Symmetry: g(x,y,t) = ajj(y, x, t) for any xy,t
(i) Nonnegative definiteness:y, aj(Xp. xq,t)gfipxj{q > 0 for any (X,

I’J’p’q
oxn)andép = (&, .. €0, p=1,2,....N.
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Assumption 2. There exists a constant K independent,cf ksuch that

[Elpst() — NI < K1+ [X)(t - 9), (1.2.1)
[E[¢st(¥) = X)(@se(y) = W)1 < KA+ DDA+t -9). (1.2.2)

Remark 1.2.1.Assumption 2 is technical in nature but it is not very
restrictive. It will naturally be satisfied in most of the@nésting cases.

Remark 1.2.2.1t follows from (Al) and A2) that

Ib(x, t)] < K(1+ [x]), (1.2.3)
la(x, y, t)] < K(1+ [X)(1 + |y). (1.2.4)

Note that the first norm is a usual vector norm and the secoadson
a matrix norm.
Let Mg¢(x) be defined as follows:

t
Mst(X) = dsi(X) — X — fs b(¢sr(X), r)dr. (1.2.5)

Lemma 1.2.3. For each sx, Msi(X),t € [s T] is a continuous &
martingale and

<MUML) >= [ a0 oxIndr (126
S
where< .,. > stand for quadratic variation process.
Proof. Set
Msi(X) = E[¢st(X)]. 1.2.7)
m|
Then

23 = fim 2t (Ims ()]

= im ZEl(Msn(0ei(9) - 9] (1.2.8)
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10
Now

LM (@s00) ~ 91091 < K(L+ Ibei(A)

SinceK(1 + |pst(X)]) is integrable, we can change the order of lim and
E in (L.Z3). Hence we get

%“‘nst(x) = E[b(gs:(x). ]for allt > s

Therefore

t
Mst(X) — X = L E[b(¢s(X), r)]dr (2.2.9)

Hence
E[Mst(X)] = 0.

Note that fors < t < u,
Msu(X) = Mst(X) + M u(X)(¢st(X))-
Therefore

E[Msu(¥)IFst] = Mst(X) + E[Mtu(Y)ly=g5 (X)
= Mst(X)

This proves the first assertion. We will now establ[Sh-()).2D&fine

Vsi(xY) = E[Ms:(X)(Ms (). (1.2.10)

11 Then

Vst+h(X,Y) = Vst(X.Y) = E[(Mst+h(X) = Mst(X)(Mstn(Y) = Msi(y))°].

Therefore
HVatn(6) = Va6 ] = FEMin(@ai (D) M@

= FEIVin @00, 6O (12.11)
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Lettingh — 0in (T.Z11), we get

27 3) = Elasi(0.85:0). 01

Therefore

t
Vst(X,Y)=f E[a(¢sr (X dsr(y). N)Idr. (1.2.12)

Set
t
Nst(X Y) = Mst(X)Msi(y)* — j; aA(¢sr(X), Psr(y),r)dr. (1.2.13)

Then [LZIR) implies
E[Ns:(x.y)] = 0.

Let s<t < u. Then a simple computation yields

Nsu(X. ¥) = Nst(X, ) + Neu(@st(X), #st(Y))
+ Mst(X)Meu(@st(Y)) + Mst(Y)Meu(@st(X)).

Hence
E[Nsu(X, Y)IFst] = Nst(X,y).

Thus Nst(x,y) is a martingale. This completes the proof of the

lemma.
12

Remark 1.2.4.b(x,t) anda(x, y, t) are often referred to as the infinitesi-
mal mean and covariance respectively of the flow.

Letx e R, k=12...,N,% = (x,...,x}). We define a dferen-
tial operator.Y) as follows:

™)

1 o2 f
LMV F(xN) = 2 ayj (X, X, 1) ———
2 i v
ik IX %,

: of
+ Zk: b (X, t)a—XLQ((N)). (1.2.14)
I,
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L§N) is elliptic operator which may be degenerate. It is the itdgimal
generator oﬂ'g\'), which is the semigroup of N-point process. This fact
will follow from the following theorem.

Theorem 1.2.5.Let f be a € function onRNY such that f and its
derivatives have polynomial growth. Then the followingdsdior any

S,t,)_((N):
t
T - 1(xV) = f TNLN £ (xXN)dr, (1.2.15)
S
In particular
1
lim = (T f = 1) = LV, (1.2.16)

Proof. The proof is essentially based on Ito’s formula. It followsrh
LemmdL.ZB that for fixeds(X), #st(X) is a continuous semimartingale
with the following decomposition:

{
dst(X) = X+ Mst(X) +f b(¢sr(X), r)dr. (1.2.17)

O

By Ito’s formula, we have

fpse (X)) — £(xV) — f t LM £ (g5, (xXN)) dr

t .
-5 %wsr@“)))dmgr(xk). (1.2.18)
ki VS

13 Claim: ¢s(x) has finite moments of all orders. Granting the claim,
the above is a zero mean martingale. Then taking expectatioget

t
Tg?l)f()_((N)) _ fQ((N)) _f Tg}')LgNr)f()_((N))dr -0,
s

which proves the theorem. So it remains to substantiateldia gvhich
we do in the following lemma.
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Lemma 1.2.6. ¢st(X) has finite moments of any order. Further, for any
p real ande > 0, there is a positive constant € C(p, ) such that

E(e + l¢st(¥)°)P < C(e + 1X?)P (1.2.19)
for any st, x.
Proof. Defineg(xX) = & + [x2 and f(x) = g(X)P. LetL, = LY. We shall
apply Ito’s formula to the 1 point process. We have

Lef = 2pg0)P™ > B % + pg)P™ D ai(x x )

+2p(p - 1)gYP? > aj(x X Oxx;. O
i
Using the estimate§ (1.2.3) ald (112.4), we hiayé(x)| < C’f(x),
whereC’ is a constant independent rfr. Now for anyn, define the
stopping time
inf{t > s: |¢st(X)] > n}
oo if the above set is empty

Let the stopped procesggia-, be denoted bys;. Thenf(fsi(X)) —
fst L, f ¢, dr is a martingale. Therefore

~ t ~
E[f(¢s (0] = 1) + fs E[Lr f(psr(9)1dr
t
<f(x+C fs E[f(fsr(x)]dr.

14
Hence by Gronwall’'s inequality, we have

E[f(ds:(X)] < f(x)e¥ &9,
In the above inequality, the right hand side is independémt so
letting n T oo, we get
E[f(#st(X)] < f(x)e” 9,

Thus
Ele + l¢st(X)P]P < C(e + IX?)P.
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Remark 1.2.7.(i) For each positive integds, 1 < k < N, define

Za,(xk,xk,t)

+ Z (%, t)— (1.2.20)

Ly is the generator of dpoint process. Then the following is easily
verified:

LN = Z LV f 4 Z Z 8 0% X6 O—
k#¢ i,j

The second term i_{I.ZP1) could be regarded as the ini@mact
betweenps(xk) andgsi(x¢). Thus the generator of thé—point is the
sum of the generators of the-Ipoint motions together with the cross
- interaction. If no interaction exists then the second teiithcease to
exist andpst(X1), ¢st(X2), . . . would move independently.

(i) The family of operatordL™ N = 1,2,.. } is consistent in the
following sense: LetM, N be two positive integers and > M. Let

(1.2.21)

1<ij<iz<...<im <N,{X,..., X, } asubset ofxy,..., xn}. Let f
be a function oRNY depending only onxX,, ..., Xi,)- Then
LV (xq, ..o xn) = LM (. i), (1.2.22)

which is an obvious consequence of the Renjark1l.1.2. We udacl
this section by showing the existence of a Brownian flow witreg
local characteristics.

Theorem 1.2.8.Let b(x, t) be anR%-valued bounded continuous func-
tion and gx, y,t) and dx d-matrix valued bounded continuous function
which is nonnegative definite and symme(eg(x, y,t)) = (aj(y, X, t)).
Suppose a and b are twice spatiallyfdientiable and their derivatives
are bounded. Then there is a Brownian flow with local chanasties

(a, b). Further, the law of the flow unigue.

Proof. We definel_g'\') as before. By Oleinik’s theorem (Stroock - Varad-
han [31]) there exists a unique ':') such that
t
TV ) = F(xN) + f TEOLMN £ (xN)dr. o

S
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The consistency of the famil&rg;‘), N=12--- } follows from that

of {LgN), N = 1,2,...}. By virtue of Propositiof_L.T]3 there exists a
stochastic flow with independent incremewfﬁ) whose N-point pro-
cess has the same semigroupTé'%’. SinceTé'}') defines a dtusion
semigroup, it follows thats:(X) is continuous int a.s for eachs, x.
Hencegs; is a Brownian flow.

Remark 1.2.9.Under the condition of the above theorem, the law of
the Brownian flow is determined by the-goints motions. Indeed, let
{Tg:'), N =1, 2} and {Tg:'), N =1, 2} be consistent families of16
semigroups with generatoflsg'\‘), N=12... } and{EgN), N=12 .. }
respectively. ITG = T& thenT{Y, T for anyN > 2. This follows
from the above theorem because the generator depends ahily lmeal

characteristics and{® = [ impliesL™ = {M N=1,2,. ..

1.3 Brownian Flow of Homeomorphisms

Definition 1.3.1. Let ¢5:(X) be a Braownian flow of measurable maps.
Thengs:(X) is said to be a Brownian flow of homeomorphisms if

() #st(X) is continuous ing t, X) a.s

(i) ¢st(., w) : RY — RYis a homeomorphism for arg/< t a.s. Further
if

(i) ¢st(., ) : RY — RYis aCK-diffeomorphism for ang < t a.s., then
st is called a Brownian flow o€-diffeomorphisms.

Apart from assumptiorid 1 ai@l 2, we will impose a Lipschitzdion
tion on the local characteristica, ).

Assumption 3. There exists a constant L such that

Ib(x,t) — b(y,t) < LIX-VYl, (1.3.1)
la(x, X, t) — 2a(x, y, t) + afy, v, t)| < L|x - y|.2 (1.3.2)
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We will see in the next theorem that Assumptidn 3 makes a Brown
ian flow a flow of homeomorphisms.

Theorem 1.3.2. Let ¢s; be a Brownian flow satisfyingAl) ~ (A3).
Then it is a Brownian flow of homeomorphisms. More preciduedyet
exists a version abs; which is a Brownian flow of homeomorphisms.

The proof of the above theorem is based on several estimaiel w
we will derive in the following lemmas. In these lemmady], (A2), (A3)
will be assumed.

Lemma 1.3.3. For any real p, there is a positive constant € C(p)
such that for any > 0, x, y, € RY

Ee + Ipst(X) — ¢stNIA)P < Cle + Ix - yPA)P. (1.3.3)

Proof. Setg(x,y) = € + |x— y|? and f(x,y) = g(x, y)P. A simple compu-
tation yields

LPT(xy) = 2pgx y)P* {Z(bi(x, ) - (. ) (% - yi)}

+ pgx, )2 {Z(g(x, Y)Gij +2(p — 1) — W)(X; — ¥)))
i

X (@ (% % 1) = 2 (% ¥, t) + a&ij (V. Y, t))} . O

Using the estimate§ (1.2.3], (1.P.4) ahd (1.3[1). (1.3v2)can find

a constsn€’ such that
ILOF(x,y)l < C'F(x,Y).

Now, by Ito’s formula,

t
E[f(#st(¥), dst O] = F(x.Y) + f E[LP f(¢st(X), dsre(y))]dr
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t
< f(X’Y)+C’fE[f(¢sr(X)’¢s,r(Y))]dr-

By Gronwall’s inequality, we have

E[ (5. )] < .59,

Hence there exists a constahsuch that

Ee + ¢st(¥) — ¢st(MIP)P < Cle + [x - yPA)P.

Lemma 1.3.4. For any positive integer p there exists a constaneC
C(p) such that for any xe RY, we have

Eldsi (%) — Xo/2? < Clt — SP(L + [%o|)?P. (1.3.9)

Proof. Fix a pointx, € RY and sety(X) = |x—%ol%, f(X) = g(X)P. Then as
before, usingl1213)[(1.2.4L (1.B.1) and (11.3.2) we cad &onstants
C41,Cy, C3 such that

ILe F I < C1(X) + C20(X)P2(L + %)) + C39(N)P (L + [%ol)2. O

Therefore using Ito’s formula, we have

t

E[f(#st(0))] < (%) + C1 f E[f(¢sr (x0))]dr

S
t

+Co f EL0(6e:(%))P2/2]dr (1 + )

S
t

+C f E[0(ds1(%0))" 1dr (1 + [%ol)2.

S

Applying Gronwall’s inequality, we have

18
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t
E[f(¢st(x0))] < Ca(1 + %ol) f E[9(¢sr (%))P2]dr + Cs(1 + I%l)?

t

f Elg(dsr (%))* 1dr. (1.3.5)

S

1 .
Now for p = 5,1, the estimate[{1.3.4) follows fromAR). Us-

ing (I.35), the same estimate follows for= 1%. Again using [1.315),

we get [1.34) fop = 2. Proceeding inductively, we conclude the result
for any p.

Remark 1.3.5.1f pis a positive integer there exists a cons@nt C(p)
such that for anyo, yo € RY

Elgst(Xo) — %o — (#st(Yo) — Yo)I?P < Clt — 9PI% — Yol?P.  (1.3.6)

Setg(x,y) = 1(X %) — (Y — Yo)l%, f(x.y) = g(x,y)P. Then we can
show that

ILPf] < Cof +CagP 21X — Yol + CagP %o — Yol?.
The rest to the proof is similar to that of laminaZl3.4.

Lemma 1.3.6. Let p be a positive integer. Then there exists a constant
C = C(p) such that

Elpst(X) — ds v (X)?P
<SC{x=XPP+ L+ X+ XDt -t +|s-sP)} (1.3.7)
holds for any < t, § <t and x X'eRY.

Proof. We consider the casg < s <t < t’ only. The other case will
follow similarly. m|

We split the proof in various steps



1.3. Brownian Flow of Homeomorphisms 19

(@) s=s andx = X.

Elpst(X) — dst(X)?P = Elpst(X) — drr» pst(¥)*P
- f Ely — due ) PPIP@si(¥edy)

< Cat =P [ (L+ Y)PP(Gsech)
[using Lemma 1.3.4]

= Caft — t'|PE(L + 3%

< Colt = t'|P(L+x)?P

(b) s=9,x#X.

Elgs(X) — ¢st(X)IPP < 2P
{Elgst(x) — psv (X)PP + Elsr (X) - psr (X)1PP)
< Ca{lt = t'IP(L+ X)*P + [x - X*P}.

[using lemmdT.3]3]
(€) Elpst(X) — ¢s v (X)I?P = Elgst(X) — psr (s s(X))?P
~ [ B9 - 650 ()P)Ps Doty

<Cs f {It=tIP@+ X)? + Ix - Yi*P} (g s(X)dy)
= Cait —t'IP(1 + [X)* + Elx — ¢ X *°}
< Caflt = t[P(L+ X)) + Calx — X[?P + Csls— §|P(1 + [X )P

< Co{(It = V[P +Is— SIP)(L+ X + X )? + |x = X[?P}.

We shall now state without proof a criterion for the conttgubf
random fields which is a generalization of the wellknown Kogarov's
criterion for the continuity of stochastic processes.

20
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Theorem 1.3.7(Kolmogorov -Totoki) Let{x(1),2 € A} be a random
field whereA is bounded rectangular iR". Suppose there exist positive
constantsy, 3, K such that

EIX(2) = X(@)* < Kix—y|"™?, (1.3.8)
then{X(1), 1 €, A} has a continuous modification.
For the proof of the above theorem, see Kuriiia [18].

Proof of theorem 1.3.2Let p > 2(d + 2). Then by Theoreri1.3.7,
#st(X) has a continuous modification. Therefara(., w) : RY — R%is
a continuous map for any< t a.s. For negative we have

Ellgst(X) — ¢st(¥)I*] < Clx - y?P
E[1 + |t (X)?P] < C(L + |x))?P.

These two will imply thats(., w) is a homeomorphism. The proof is
exactly the same as in Kunita]18]. We omit the details.

1.4 Stochastic Flow of Difeomorphisms

In this section, we will see that if the local characteristig, b) of a
Brownian flow are smooth and their derivatives bounded therflow
becomes a flow of dieomorphisms. We will make this precise in the
next theorem. Before that, we will add a few words about matat For

a multindexa = (a1, @y,...,aq), whereq; € N,i = 1,2,...,d,|a| =
al1+az2+ -+ a9

0 0
D*=D§ = (=—)"...... —).
= G )

Theorem 1.4.1.Let ¢s; be a Brownian flow with local characteristics
(a, b) satisfying (A1), (A2), (A3). Assume further &,y,t) and K(x,t)
are k-times continuously fiérentiable in x and y and tha(x, y, t), D§
b(x,t),la| < k|8 < k are bounded. Thepsi(.,w) : RY — R%is Ck?
diffeomorphism for any s t a.s.
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We will prove the above theorem fér= 2. For highelk, the proof
if similar. The proof is based on the following lemmas.

Lemma 1.4.2. Let e be a unit vector iR, y(# 0) a real number. Set

nat(Xy) = %wst(x Y8 — der(¥).

Then, for any positive integep, there exists a constafit = C(p)
such that

Elmst(%y) = ns.x (X, Y )PP < Clx = X2 + |y - y ?P

@+ IXT+ W+ YD (- tP+]s—SP)}. (1.4.1)

22
Lemma 1.4.3. For (X1, Xo, X3, Xa) € R%, set

1 1
g(x1, X2, X3, Xa) = ;/(Xl - X2) — v (X3 — Xa)

where yy’ are fixed nonzero real number. Set=f|g|??, where p is a
positive integer. Then there exist constants=C;(p), i = 1, 2 such that

ILOF(x1, X, X3, Xa)| < C1 (X4, X2, X3, Xa)

1
+ Co(IX1 — X3| + |X2 — X4|)2p (1 + |)7, (X3 — X4)|2p). (1.4.2)

Proof of Lemma 1.4.3.We shall consider the case= 1 for simplicity.
The timet will be dropped froma(x, y, t) andb(x, t) since it is fixed. A
simple computation yields

L £ (x, Xo, ¥, Xa) = Zp{i(b(xl) ~ b(x2)) - yi (bxa) - b(x4»}

|2p—1

10(X1, X2, X3, X4)|“" "X SIgNQ(X1, X2, X3, X4)

+p(2p-1)

1
?{a(xl, X2) — 2a(X1, X2) + a2, Xz)}]

2
ke {a(X1, X3) — a(X1, Xa) + a(X2, X3) — A(X2, X4)}
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2
+ ﬁ{a(X:a, X3) — 2a(X3, Xa) + a(Xa, Xa)19(X1, X2, X3, X4)|?P~2

=11+ Iy, say (12.4.3)

Using mean value theorem the first tern is written as

1
2pI

1
[ f b(x, + (%2 - xl))de] %(xl %)
0

x g~ signg

1
- [[ f b/ (x5 + (% — x@)d@] y—l,(Xe, %)
0

1

1
[ f b’(x1+e(x2—xl»de] gP + f (b (x + 6%z — x0))
0

0

1 .
—b' (X3, (x4 — X3))} d9X)7(X3 — x4)Ig1?P signg.

Using mean value theorem once again, we can find positive con-
stantsCs, C4 such that

. 1 _
lia] < Calgl?® + Calxa — Xa| + X2 - Xl . Xa)llgl?P .
: . . a® b I

Using the inequalityab < — + E wherea,f > La ™t +p7+ =1,

a
we get
2p 2p 1 2p
11] < CslgI™F + Ce(IX1 — X3l + X2 — X4l) |)7(X3, X4)|P. (1.4.4)

We next estimaté,. Note the relation

a(xi, Xk) — a(xi, Xm) + a(Xxj, Xc) — a(X;, Xm)
- f f & (% + 0(a(X; — %), X+ 7% — XQ)IOT-(% — X5) (X — Xm)-
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62
h 7 - .
wherea”’ (X, y) 3 ya(x,y)
Set

&0, 7) = a’ (% + O(Xj = %), Xk + T(Xm — X)),

1 1
Wi = ;/(Xl - X2), W3 = V(X3 — Xa).

Then we have

L
pp-1)
+ £33(6, T)W§)d9er [

11 11
= {bfbf&l(g’ ‘r)dOdT} lg1% + {Oj‘ Of(fll(@, 7))

— £13(0, 7) — é31(0,7) — £33(0, T ))deT} |g12P~2| W]

(£12(0, D)W — 2£13(6, T)Wi W3

O%H
O%H

+

1 1
f f (2£11(6, 7)) — £13(6, 7) — €1(6, r)dedr} 191%P~2|gWal2.
0 0

Here, the relation| [&5(6,7)dodr = [ [&13(6,7)dédr in used.
The first term in the above is bounded Byg|gl?°. Again by using 24
mean value theorem, the second term is bounde®@f{ix; — Xa| +
%2 — Xa])2|012P~2|W5[2. The third term is bounded 4 1(|x1 — X3| + |2 —
Xa)?|9I?P~2|Ws|. Therefore, we have

ll2] < Cof + Cro(|X1 — Xal + X2 — X4l)?IgI?P~2

.1
+ Cra(]Xe — Xal + [X2 — Xal)IgI?P l|y(x3 — Xa)|

< Crof + Cyg(|x1 — Xa| + X2 — Xql)?P
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1
+ CralXa — Xa| + X2 — x4|)2p|y(X3 - xg)/?.  (1.4.5)

Finally, using the estimateE {1.]l.4) afd (11.4.5)10 (1 ,AA8) obtain
the desired result.

Proof of Lemma 1.4.2.In view of the notation of Lemmia_L.4.3

f(pst(X+YE), dst(X), ps (X +Y'€E), s 1(X))
= Inst(%,y) = ns v (X, Y)?P.

We split the proof in two steps.
@t=t,9 <s
Applying Ito’s formula, we get

E[f(¢st(X +YE), st(X). ds.t(X +Y'€), 65 1(X)))]
= E[f((x+ye X ¢s.s(X +Y'€)., ps:s(X)))]

t

f L'('4)f(¢5,r(x’ ye)’ ¢S,r(x)’ ¢5',|'(X/ + y’e)’ ¢S’r(x/))dr :

0

+ E

25 Therefore using Lemna_l3.3,

Ellnsi(%,y) - Us,t(xla)/)|2p] < E[le-ns.s(X, )/)|2p]

t

+C f Elnsr(%.Y) - ne (X.y)PP]dr

S
t

+C, f EL(Isr(X + Y8 — do . (X.Y€)

+165r() = ¢ (X)L + Ins X, y))?P1dr.

Consider the first term on the right hand side. Since

1
nss(X,y)-e= )7{(1’5’,5()(’ +Ye€) — ¢ s(X) - Y6,
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using (1.3.6), we get
Elns s(X,y) — &P < Cls- §|P.

Applying Schwarz’s inequality and(1.3.7), the third termncbe
dominated bYC’{|x— X?P + |y — V2P + (L + [X| + [X| + |y + [Y'])?P|s— S|P}.
We then apply Gronwall’s inequality to get the desired eaten

(b)s <s<t <t

Using the flow property, we have

1
Elnst(x.y) — nsi(x Y)I*] = fE |3_/(¢t’,t(zl) — pvi(22) -z + )P

X P(gsy (X + yg)edz, g5y (X)edz)

1
<CJt- t’|p|y|—2p f|zl - 22|2pP(¢St/(x +Y6)edz, ¢si(X)edz)
;o 1
= Clt = V1P Eldsr (- ¥9) ~ e (O
<Ct-t|.

Now combining this estimate and the estimate ajp (ve get the 26
required inequality.

Proof of theorem 1.4.1 Applying Theoren_L3]7ys:(x,y) has a con-
tinuous extension at= 0, i.e

1 0
y_% 9(¢st(x +Y8) — ¢st(X) = a—xi%t(x)

exists for alls, t, xand for each = 1,2,..., whereg = (0,...,1,0,...,
0)1, being at théth place, and is continuous is, €, X). Hencepst(X) is
continuously diferentiable.

Claim: ¢s;is a difeomorphism.

In view of the fact thaps; is a homeomorphism, it lices to show
that the Jacobain matrids;(X) is nonsingular. Consider the m&g x
RY - RY x R

(X z1,...,2Z4) = (Pst(X), 0psi(X)z1, . . ., 0dst(X)Zg). (1.4.6)
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We claim that the above is a Brownian flow. Indeedd$ert < u

Opsu(X) = 0t u(hst(X)ddst(X),

whence the flow property follows. Therefofe{114.6) definBs@vnian
flow of homeomorphisms. Thus the méps:(x) is 1-1 and therefore
0¢si(X) is nonsingular.



Chapter 2

Stochastic Flows and
Stochastic Dfferential
Equations

This Chapter deals with the interplay between stochastiesfbind stoc- 27
hastic diferential equation. In secti@n 2.1 we study non-Brownian-sto
hastic flows.Under certain assumptions we establish theebomorphi-

sm and difeomorphism properties of such flows. In sectiod 3.2 we
defineC = C((R)Y;RY)- valued semimartingales and their local char-
acteristics. At the end of the this section we obtain a regmadion
result for a C-valued Brownian motion. In sectibnl2.3 we define
stochastic integrals of progressively measurable presesgth respect

to C-semimartingales, which is essentially a generabnatif the usual
stochastic integrals. In sectibnP.4 we introduce the qoinokthe solu-
tion of a stochastic dlierential equation in this setup and then show that
the solution defines a stochastic flow. In the next sectionake tip the
converse problem and obtain the representation of a sticliasv by
anS DE In sectioZB we discuss the inverse flows and backward in-
finitesimal generators. The Chapter ends with an appendixewte de-
scribe generalized Ito formula, Stratonovich integrald Stratonovich
stochastic dterential equations.

27
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2.1 Non-Brownian Stochastic Flows

Let (2, F) be a standard measurable space Rrdprobability measure
defined on it. Letsi(x, w) be a stochastic flow of measurable maps
which is continuous irt. Let F; denote the (right) continuous natural
filtration of the flow i.eF; = N0 (duv() :0<uU<V<t+eg). Asin
Chaptefdl we will make three assumptions on the flow.

Assumption 1. ¢siX,. is square integrable and the following limits
exit:

1
Llr% EE[¢t,t+h(x) - X)|F(w) = b(x,t, w), say, a,s for each t

i T El(en() ~ Ndsen®) ~ V) TPl = Al Y.t )

say, a.s. for each t

In the above expressions the conditional expectation ispcosa
with respect to a version of the regular conditional disttitm which
does exist by the stipulation on the measurable space. Weflassume
thatb(x, t, w) anda(x, y,t, w) are jointly measurable and progressively
measurable for eack(respectivelyx andy).

Definition 2.1.1. The pair(a, b) is called the local characteristics of the

Remark 2.1.2.If ¢ is a Brownian flow themy .1 (X) is independent of
F¢ and therefora(x, y, t) andb(x, t) do not depend ow. So in that case
a andb coincide with the local characteristics of the Brownian fla\e
show later that if the local characteristiash do not depend o then
#st is a Brownian flow.

Assumption 2. There exists a positive constant K (independent)of
such that

[E[¢s, t(X) — XIFs]| < K(| + [X))It — 5, (2.1.1)
IE[(¢st(X) = ¥)(Pse(y) = V) IFsll < KL+ XD + it — . (2.1.2)
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These two inequalities imply

Ib(x, t, )| < K(1+ |x]), (2.1.3)
a(x, y, t, w)| < K@+ X)L+ y). (2.1.4)

Lemma 2.1.3. For each sx

t
Mst(X) = ¢st(X) — X—f b(psr(X),r)dr,t > s (2.1.5)

is an L?-martingale and

t

< ML;(%), ML(y) >= faaj(¢sr(x),¢sr(y),r)dr. (2.1.6)

S

Proof. The proof is the same as that of lemmazl.2.3. Set

MstX, w = E[¢st(X)|Fs](w). o

Fors <t < u, we have
Elosi (I = f bsu(x ) Prlw. do)

- f¢t,u(¢3t(x’ w,)’ a),) p((w’ dw’)

wherep:(w, dw’) is a regular conditional distribution givefy. Now for
fixed s t, w

pt((-U, {U‘), : ¢St(x’ a),) = ¢S,t(xv (.U)}) =1 aaw.
Therefore
Elpsu(¥IFd] = f Pru(bsi(x ) Pr(, o)

= Meu(@si(X w), w).

Hence
Msu(X, w) = E[Mgu(pst(X)IFs]

29
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So
1 1
H[mst+h(xy w) — Mgt(X, w)] = EE[mt,Hh(‘Pst(X)) - ¢st(X)|Fs].
Lettingh — 0, we get
0
amst(x, w) = E[b(gst(x), t)IFs].
Thus

msi(X) - x=E

t
fb(qbsr(x), r)drlFsl .

Then proceeding as in LemriaTl2.3 we conclude khatis a mar-
tingale. For the second assertion set

Vsi(X Y, w) = E[Mgt(X)Mst(y)*|Fs].

We can show similarly that

Vsi(X, Y, w) = E

t
fa(‘ﬁs,r(x)’ dsr(y), r)dr“:zl (w).

S
Again proceeding the same way we prove that
t
MaOOMi0)" = [ @b (9. s, )
S

is a martingale. The proof is complete.
Let XN = (xg,...,xn) € RNY

Define

1 0 f
L DM, 0) = 5 D @i O Xt o) ——— (x)
i ke OX 0%

- of
+ > B(%tw)—xN). (2.1.7)

in this caseLEN) is a random dferential operator.
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Theorem 2.1.4. ¢5:(X) has finite moments of any order and if f is a
C?-function, f and its derivatives are of polynomial growtemn

t
f(pst(Xa)s- - - » Pst(XN)) = f (LN £)(psr(Xa)s - - psr (n))dr  (2.1.8)

is a martingale.

The proof is similar to that of Theordm T.R.5 and hence it igt@oh 31
Now we make our assumption which is essentially a Lipschitz ¢
dition on the local characteristics.

Assumption 3. There exists a constant L (independent, afjtsuch that
la(x, X, t, ) — 2a(x, Y, t, w)| + ay, v, t, w)| < L|x - y}°. (2.1.9)

Theorem 2.1.5. Let ¢t be a continuous stochastic flow of measurable
maps satisfyingAl) ~ (A3). Then it admits a modification which is a
stochastic flow of homeomorphisms.

Proof. The proof of this theorem also goes along the lines of Theo-
rem[I.3P. Using Ito’s formula and Gronwall’'s inequalitetfollowing
estimates can be derived:

(i) Forany realp ande > 0O there exists a consta@t= C(p) > 0 such
that for anyt, x

El(e +¢st(x))*)PIFs] = C(e + [X)Pas (2.1.10)
(i) Forrealpande > 0 there exist€ = C(p) such that
El(e +¢se(x) — 6s:)P)PIFs] = Cle + [x—y7)P  (2.1.11)
holds for allt, x a.s
(iif) For any positive integep there existsC = C(p) such that
Ellgst(%) = %ol?PIFs] < Clt = sP(L+ x5 (2.1.12)
holds for anyx, € R a.s
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Using Z1.ID),[2ZT1)[[(ZT12) we can show that

Ellpst(X) —¢s v (X )] < Cx=X PP+ (1+IX+|X)?P.(t—t'|P+|s— S |P))
(2.1.13)
Indeed, consider the case- S, x= X,t < t’.

E[I6s:09 — dsv (O] = E [I6s0 () — b (@1 (9)*7)]
= E{Ell¢st(X) - drr ($s:(X)PPIF]
= E{E[ly - ¢v 0)PIFtdy=pe.(0
< Clt - VPE{1 + 5 (¥)IP)P}
< C'lt—t'IP(1 + |4?)P.

The rest of the proof is exactly similar to that of Theorem.A..3We
therefore omit the details. m|

Remark 2.1.6.Assuming suitable smoothness conditions ayb) and
boundedness of their derivatives we can establish tfieahorphism
property of the flow exactly the same way as we did in Chdpter 1.

2.2 Vector Valued Semimartingales

Let (Q, F) be a standard measurable space Bral probability mea-
sure defined on it. Let there be given a filtratih},0 < t < T.
Let X(x tw),x € RY,t € [O,T] be a sample continuou&?-valued
random field. We assume that for eaxh it is Fi-measurable. Let
C = C(RY; RY) endowed with compact uniform topology.

Definition 2.2.1. X(x, t) is called a C-valued martingale if it is aR9-

valued martingale for each x. It is called ak®@alued martingale if
D¢X(x,t) is a C-valued martingale for anjyy| < k. Let Xx,t) be a
continuous random field which admits the following decoritions

X(x, 1) = X(x,0) + Y(Xt) + V(X1)

32
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whereY(x, t) is aC-valued martingaley(x, t) a process of bounded vari-
ation for eachlx andY(x, 0) = 0, V(x,0) = 0. ThenX(x, 1) is called aC-
valued semimartingale. ¥(x, t) is aC*-martingale and2V(x,1), |a| <
k is of bounded variation then it is called>%-semimartingale.

Next we will define the local characteristics of &f-valued semi-
martingale. Here we shall dispense with the continuity doomd Let
X(x, t) be anR%-valued semimartingale with parametee RY such that

X(x, 1) = Y(X, 1) + V(X 1)

where for eaclx, Y(x, t) is a martingale an®f(x, t) a process of bounded
variation. Assume that there extst/ector valued procegix, t, w) with
parametex anddxd-matrix valued process(x, Y, t, w) with parameters
X,y such thap anda are progressively measurable w.{F} and

V(xt) = ft,B(x, r)dr,
t

<Y(x1),Y(y,t)" > = f a(x,y, r)dr.

o

Then the pair ¢, B) is called the local characteristics of the semi-
martingaleX(x, t).

Remark 2.2.2.The above definition of local characteristic#éis from
that of a flow. Indeed, ifs; is a stochastic flow as described in sec-
tion[Z1, then

t
Dse(¥) = X+ Ma(¥) + f bgsr (4, F).

Here ¢5:(X) is a semimartingaleMs:(X) its martingale part and34
fst b(¢sr(X), r)dr is the bounded variation part. In this case

ﬂ(X, t) = b(¢3t(x)’ t)?
CL’(X, Y, t) = a(¢&t(x)’ ¢S,t(y)’ t)

We shall always assume thatandg are integrable,

ie., E[ft la(X,y, Ndr] < oo, E[ft 1B(%, r)|dr] < oo.
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ThusY becomes ah?- martingale.

Proposition 2.2.3. Let {Y(x,t), x € RY} be a family of continuou®?-
valued semimartingales with local characteristies 5). Suppose that

a and g are Lipschitz continuous and(|(0, 0, )], |8(0, t)| are bounded,
then Y(x t) has a modification as continuous C-semimartingale. Fur-
ther if @ andg are k-times dferentiable in each y and there exists K
such that

IDEDa(x, y, )l < K, IDX(x. )] < K, o] <k, Bl < k,
then Y(x, t) has a modification as €1-semimartingale.
Proof. Using Burkholder’s inequality, one can show that
E[IY(x t) = Y(X,t)[P] < C(t = t'|P/? + |x = X|P).
Now using Kolmogorov’s theorem one can complete the proof. o

Definition 2.2.4. Let X(x, t) be a C-valued process continuous in t. Itis
called a C-Brownian motion if fob <tp <t; <--- <ty < T, Xo, X, —
Xy =0,1,...,n—-1, are independent.

Remark 2.2.5.For (X1, ..., xn) € RN9 (X(x1), ..., Xe(X)) is anRNP-
valued Brownian motion in the usual sense, i.e., itis a Gangwocess
with independent increments.

Proposition 2.2.6.Let X(x,t) be a continuous C-valued semimartingale
with local characteristic{a, 8). If , 8 do not depend o then Xx,t)
is a C-Brownian motion

Proof. This is a straightforward implication of Levy’s charactetion
of Brownian motion. O

Example 2.2.7. Examples ofC-Brownian motions.

Let (BY,...,Bf) be anr-dimensional standard B.M. Lefo(x,t),
Fi(x1), ..., Fr(x t) beRd-valued functions Lipschitz continuous in
Let

X(x, 1) = f t Fo(x 9ds+ >’ f t Fi(x, 9dB. (2.2.1)
o k=1 <o
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ThenX(x,t) is aC — B.m. with B(x,t) = Fo(x,t) anda(x,y,t) =
;
> Fr(X )Fk(y,)*. Next consider an infinite sequence of independent
k=1

one-dimensionaB.m's(Bf}> ;. Let {Fy(x 1)} be a sequence df-
valued functions such that there exikts 0 satisfying

DR ) = F(y, D7 < Lix =y, " IFk(x P < L(L + X2

k=0 k=0

Then

X(x,t) = f t Fo(x,r)dr+i f t Fi(x, r)dB (2.2.2)
o k=1 YO

converges and is@-B.m. In this casgs(x, t) anda(x,y,t) = E Fr(x t)
k=1

Fr(y, t)*.
We will see in the next proposition that if the local charsistees of 36
a C-B.m. satisfy suitable condition then it is of the foilni(2).

Proposition 2.2.8. Let X(x,t) be a C-B.m. with local characteristics
(a,B8) and X(x,0) = 0. Assumey,f are Lipschitz continuous. Then
there exist an infinite sequence of independent standardsE{Bh}kzl
and functions k(x,t),k=0,1,2,... such that

X(x, t) = f t Fo(x,r)dr+i f t Fi(x, r)dB.
o k=1 YO

Proof. We will only consider the homogeneous case, i.e., when the lo
cal characteristics do not depend bnlLet Fo(X) = E[X(X,1)], then
E[X(x,1)] = tFo(X). Set

Y(x,t) = X(X,t) — tFo(X) O

ThenY(x,t) is a zero-mearC — B.m. Let {x,} be a dense subset
. By Schmidt’s orthog-

yaee

,,,,,,

yeen
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(=Independent) Brownian motions such that the linear spa{B{bk =
1,2,...} is equal to that of Y'(x.t),k = 1,2,...,i = 1,...,d}. Set
Fr(¥) = E[Y(x, 1)BY]. Then

Fr(X)t = E[Y(x t)BY],

Y(x 1) = Fo(t + > Fr(0BY.
k=1
Also it is easily seen that(x,y) = § Fr(X)Fk(y)*.
k=1

2.3 Stochastic Integrals

Let Y(x,t) be aC-martimgale such that the characteristi¢x, y, t, )
is integrable and continuous ix,{). Further we make the following
assumption:

Assumption 4. fot SURy i<k l(X, Y, t, w)ldt < oo for any K and t.
Let f(w) be a progressively measurati#té-valued process such that

{
f la(fs fs, 5)lds< o a.s. for each t (2.3.2)
(o]

Our endeavour here is to define the stochastic inteﬁaf(fr, dr). This
would be a natural generalization of the usual stoch?sthegral in
the sense that if (&, t) = x¥;, Y; an L2-martingale then[ Y(f;,dr) =

Ji fdY;.

Casea fiiscontinuousin t.
For a positive integeN, define the following stopping time.

inf {t €[0,T]: sup|Y(fr,t)) >N or

O<r<t
(W) = ¥ supla(f, i, ids > N}
O<r<s
o0, if the above set is empty.
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Thenty T oo asN T co. SetYn(Xt) = Y(X tArn). ThenYy(X,t)
is aC-martingale with local characteristien(X, Y, t) = a(X, Y, )lzy>t}-
LetA={0=1ty <ty <--- <1, =T} be apartition of the interval [0,T].
For anyt € [0, T] define

n-1
LY (F) = D (Yn(fuas tira At = Y(Fyan iAD) (2.3.2)
i=0
Then LNA(f) is anR9%valued L?-martingale, since fot = t, s = t;,
k>i,
E[LM(F) - LY(F)IFs]
k-1
= > E[E|Yn(fy. tjsa) = Ya(fy, t))IFy | IFs| = 0.
=i
Also 38
E[LYA(F) = LAY (F) — LY ())"IFs]
k-1

= > E[E[(Yn(fi;» tjs1) = Ya(f ti)) (Yn(fy )
=
= Yn(fy;, 1)) 1F1IF]
k= tj-¢-1
E[E[ an(fy, fiy, r)driFy]IF]
j=i {

t
E[f an(f2, £, r)dr|Fg],
S

wheref? = f if tg <r < ty.1. Therefore
t
< LNA(F), LNA(F)* >= f an(f2, £4,r)dr. (2.3.3)
(o]

Now let{An,n = 1,2,...} be a sequence of partitions of, 0] such
that|A,| — 0. Consider the corresponding sequencédmartingales
(LY (f),n = 1,2,...}. As before it can be verified that

t
< LYAn(F), LA ()" >:faN(frA”,fAm, r)dr.
(o]
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Therefore
< LYAn(F), =LA (E), (LA (F), —LYAm(£))* >

_ ft [a,N(frAn’ frAn’r) _aN(frAn’ fAm r)—aN(frAm, frAn’r)
o]

+an (frAm, fAm, r)] dr - 0 asmn —  a.s.

39 Now in view of (A4), the above also convergedihsense. We then
define

t
lim LAn(f) = L{\'(f)zfv.\.(fr,dr). (2.3.4)

ThusL](f) is anL?-martingale. FON > M it is easy to see thdtM(f)
= LM(f) if t < Tw(< 7). Define

L(f) = LN(f) if t < 7. (2.3.5)

ThenL(f) is a continuous local martingale. We write
t
L() = [ V(tuds,
[0}

Case h. f; isprogressively measurable and bounded.
. 1 S
In this case setN = N ftt_l/N fsds Then( N} is uniformly bounded
continuous process and it convergedita.s. w.r.t.dt® dP. Now since

< Ly(M) = Lo (FM) (L () = L (£Y)) >
t
:f[a(va,va,y)_a(va,va,y)_a(fVM,fVN,V)
(o]
+a/(fM fM v)]dv—>0a.s.

2

therefore{L(fN),N = 1,2,...}converges uniformly irt in probability
(see Kunital[18], Thm 3.1). Hence we set

L(f) = lim Lt(fN) = ftY(fr,dr).
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Casec.

In the general case whehis only progressively measurable, write
fN = (FAN)V(=N). then{L{(fN),N = 1,2,...} converges uniformly in
tin probability. Set

Li(f) = lim Lt(fN):ftY(fr,dr).

40
Proposition 2.3.1. Let f and g be progressively measurable processes
satisfying (2.3.1). Then

t t t
<fY(fr,dr), Y(gr,dr):fa(fs,gs,s)ds (2.3.6)
0 o (0]

Proof. It is straightforward.

Let Y(Xx, t) andZ(x,t) be continuoug-martingales with local char-
acteristicse” and o respectively satlsfylngﬁ(4) Let f; and g; be
progressively measurable processes such f iat’ (fs, fs, s)|ds < o0,

f |&%(gs, Gs, S)lds < oo for all t a.s. Thean(fr,dr) and fZ(gr,dr)

make sense. We are interested in computlng
<fY(fr,dr),(f Z(g,dr))* >.
(o] S

Lemma 2.3.2. There exists a random fietd' %(y, z t, w) which is mea-
surable and is continuous in ¥ such that

O

<Y(Y,1),Z(z )" >= fo t ¥4y, z r, w)dr. (2.3.7)
Further
12,2 < oy Y2, 052 () = o (v ), (2.3.8)
and
Y2(y,2) - ol Ay . 2) < o) Y2 (04 (2) - 2052 2) + o ()

+ 5@ o) - 20 0.y) + ol ()] 7. (2:3.9)
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Definition 2.3.3. aY4(y, z t) is called the joint local charcteristic of Y
and Z.

Proof of Lemma 2.3.2.1t is well known that for any fixed, z < Y (y, 1),
Z(zt)* > has a density function”4(y, z t) w.r.t. dt. Further

| <Y'y.0).21zt) > - < Y'(y.9.Z)(z 9 > |
<( <Yt >-<Y(y9s»Y<Zi@zt) > - < Zl(z 9 >)V2

Therefore

1 t vz 1 t v 1/2 t . 1/2
thlfsaij (y,zr)drlsth(fS a“(y,r)dr) (fs a”(zr)dr) :

Lettingt — s, we get
iy, 2 9) < o (y, 9V%afi(z 9 for ally, z a.as.

The second inequality can be proved similarly. ASQ(2.819)lies that
a"4(y, z t) is continuous iry, z

Theorem 2.3.4.We have

< fst Y(f;, dr), (fst Z(gr,dr))

The proof is simple.

*

t
>:faYZ(fr,gr,r)dr. (2.3.11)
S

2.4 Construction of stochastic Flows by Stochastic
Differential Equations

Let X
X(x,t) = Y(x,1) +f,8(x, rydr (2.4.2)

be a continuoug-semimartingale whose local characteristicg are
continuous inx, y and satisfy

t t
f sup |a(x Y, r, w)|dr < oo, sup|B(x, r)ldr < co (A4Y
o}

XL lyl<K 0 |x<K
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foranyK > 0 and anyt.
. Let fi be a progressively measurable process satisfing2.3.1) and
J; 1B(fr, 1)Idr < co. We define

f X(f;,dr) = ftﬁ(fr,r)dr + ftY(fr,dr). (2.4.2)

Definition 2.4.1. A continuous FadaptedRY-valued process is said
to be a solution of the stochasticfirential equation

dér = X(¢x, dt) (2.4.3)

starting from x at time @ > s) if
t
ot = x+f X(ger,dr) forall t>s (2.4.4)
S

Example 2.4.2 Let us consider the Examdle ZP.7, i.e.,

{ r {
X(x,t) = f Fo(x,s)ds+z f Fi(x, s)dBX.
(o] k=1 (o]

In this case th& DEreduces to the usual one, viz.
r

der = Folgr, )dt+ > Fi(r, /B
k=1

Theorem 2.4.3. Assume that the local characteristiasg of the semi-
martingale Xx,t) satisfy Lipschitz continuity and have linear growth,
then the SDR2.4.3) has a unigue solution for any x and s. Further if
#st(X) is the solution starting from x at time s then it has a modifarat
which is a stochastic flow of homeomorphisms.

Proof. The proof is based on the method of successive approxinsation
The steps are similar to those used in proving the existemdeaique-
ness of the solution of a usu@IDE Set fort > s

¢° = x
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t t t
o = x+ f X0 dr) = x+ f B dr) + f Y. dr)
43 O

Therefore, we have

E { sup gt - ¢P|2}

s<r<t

t
sZ{E [ sup! [ (B 1) - Be™ . r»drF]

s<r<t

g, [ Y. dn - [ t Y(¢P-1,dr)|2]}

t
SZ{E [ supl [ (Ber.T) - B, r))dflz]

s<r<t S

t
+4E f Tr{a(¢:‘,¢:‘)—2a(¢:‘,¢:‘-1)+a(¢?‘1,¢:‘-1)}dr]}

t
+ALE [ INCE ¢P‘1|2dr]}

(wherelL is the Lipschitz constant associated with the local charast

t
SZ{LZT E [ sup | |¢P— ¢ 2dr

s<r<tJs

tics)
t
< 2L(LT, 4)f E[ sup |¢4P —gb[‘,‘l]dr
S s<r’<r
< {2L(L = *4)}”n—1|(t - 9)"L(1 + |2, by induction
Hence

) 1/2
D E { sup gt — ¢P|2} < .

=1 s<r<t
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Therefore{¢} converges uniformly it in L?-sense. Let
— i n
¢r = r!m ¢t

Theng is a solution of the equatiofi.{Z4.3). The uniqueness résult4
similar. We denote the solution lag:(x). We shall now establish the
homeomorphism property of the solution. Note that

t t
Mar() = (%) — X - f Blosr(¥).r)dr = f Y(dsr(¥).dr)

is anL?-martingale and

t
< Mer(). Mag(y)” >= f (s (X, dor(y). F)d).
Therefore we get

Elpst(¥) — ¢st(IP < Clx—yIP,

whence it follows thats(x) is continuous irx. Next define

dsu(X) If s<u<t

Paul) = {qst,u(%t(x» if u>t.

Thengsy(X) is also a solution of{Z.4.3) starting frorat times. There-
fore gsu(X) = ¢su(X) a.s. Hences; has the flow property. Therefore by
TheorenfZ11%s; is a stochastic flow of homeomorphisms.

Definition 2.4.4. Fs; = o(X(x, u) — X(x, V) : s< u,v <t). Then clearly
#st(X) is Fsi-measurable.

Corollary 2.4.5. If X(xt) is a C-valued B.M. thegs; is a Brownian
flow.

Proof. Forany O<tp <ty < ...ty < T,Fyt,,,1 = 0,1,....,n—1are
independent. Henag, +.,,i = 0,1,...,n— 1 are independent. Thysg;
is a Brownian flow. |
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2.5 Representation of Stochastic Flows by SDES

In the previous section we have seen that the solution & Bt de-
fines a stochastic flow of homeomorphisms. Here we discussatie
verse problemi.e. given a stochastic flow can it be represented as the
stochastic integralv.r.t. some semimartingale? To make it precise let
¢st be a stochastic flow satisfyind\{) ~ (A3) with local characteristics

(a b).

Problem To find a continuou€-semimartingaleX(x, t) such that
t
bsu0) = x+ [ Xoar(9. ). (25.1)
S
The solution to this problem is very whare 0. Indeed,
t
Maa(9 = dsi(9 = x= [ Do (9. 1) =0
S

Thereforeps; is the solution of the stochastic ordinaryfdrential equa-
tion

dx
i b(x, t, w)
X(s) = x.

The general case is dealt with in the following theorem.

Theorem 2.5.1. Let ¢5; be a stochastic flow satisfying\l) ~ (A3)
with local characteristicda, b). Then there exists a unique continuous
C-semimartingale ¥, t) satisfying(A4) such that the representation
(&51)holds. Furthermore the local characteristics ofxXt) coincide
with a, b.

Definition 2.5.2. The semimartingale (X, t) associated withps;(X) is
called the infinitesimal generator (or stochastic velofigyd) of the flow

Pst.
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Proof of theorem 2.5.1.SetM(x, t) = Mo(X). ThenM(x,t) is a contin-
uousC-martingale with local characteristaf¢o(X), oY), t).i.e.,

t
< M(X’ t)’ M(y’ t)* >= j; a(¢o,r(x)’ ¢O,I’(y)’ r)dr

Next define .
Y(xt) = f M(q&g}(x), dr).
(0]
Then using TheorelnZ3.4, we have

<Y(x1),Y(y, )" >= ft a(x,y, r)dr.
0
We will show that
< X(%1) = Y(x 1) + ft b(x,r)dr.
0
is the required semimartingale. Define
et = | V(a0 ).
Then by Theorei Z.3.4, we have
< Mst(¥), Mse(y)* >= fs t a(¢sr(X), dsr(y), r)dr).
Also
<Y(X1) = Y(X 9), Mgt(y)" >= L t a(x, gsr(y), r)dr.
Combining [Z54) and{2.3.8) we get
< Msr(x), My()* >= fs t a(¢sr(X), dsr(y), r)dr).

Therefore

< Mgt(X) = Mg(%), (Mgt(X) — Mge(X))* >= 0.

(2.5.2)

(2.5.3)

(2.5.4)

(2.5.5)

(2.5.6)

(2.5.7)

(2.5.8)

(2.5.9)

46
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Hence
Mst(X) = Mgt(X).
Thus 47

t t
Dsi() — X f bds: (X). r)dr = f Y(dsr(¥).dr).

This completes the existence part. Now we will show the umigss of
the representation.

Suppose there exists another continu@isemimartingalex’(x, t)
satisfying @4) such that

t t
dsi(X) = X+ f X (e d) = x+ f X(dsr (%) dP).

ClaimX = X’
Indeed, we can write

xxxozjﬁwunmr+wun

whereY is a continuousC-martingale. By the uniqueness of Doob-
Mayer decomposition, we have

t t
fs b(dsr (). r)dr = f B ($er (9. 1),
t t
and | Yosut.00 = [ Vios.an,

S S

Let «¥,a” andaYY denote the local characteristics 4fY’ and
the joint local characteristic ofY(Y’) respectively. We have for any
s<txeRd

< ( f V(ger(9. ) - f t Y'(¢sr(x),dr)),

t t *
( f Y(psr (). dr) - f Y'(¢sr(x),dr)) >

S S

= ft [@Y(¢sr(x)’¢sr(x), r - QYY(¢ar(X)’¢sr(X)’ r
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—CKYY(¢sr(X)7 ¢sr(X), 1) + a¥ (Psr(X), #sr(X), r)] dr.

This implies

@’ (pst(X), ¢st(X), 1) — @¥ " (@st(X), Pst(X), 1)
— "V (@51, 5t (X, 1) + @ (Pst(X), pst(X),1) = 0

for almost allt. Puttingx = ¢5{(X), we get
@Y%) —a" Y (X, xt) —a" V(% xt) +a’ (X x1t) =0 fora.a.

Hence
<Y(x1) = Y/(x1), (Y%, 1) = Y(x 1)* >= 0.

Therefore
Y(x 1) = Y'(x1).

Corollary 2.5.3. If ¢5; is a Brownian flow then & t) is a C-B.M.

Proof. If ¢s; is a Brownian flow then the local characteristes are
deterministic which in turn implies that the local charaistiic of Y is
deterministic. Thu¥(x, t) is aC.B.m. with local characteristic a. Hence
X(x,t) isa C-B.m. O

In the light of representation of stochastic flows®{ E Swe recon-
sider the existence of a Brownian flow with given local chteestics
(a,b). It was assumed in Theordm 1]2.8 tlaaandb were twice spa-
tially differentiable and their derivatives bounded. In the next #raor
we will drop these conditions and still show the existenca Bfownian
flow using Theoreri 251 1.

Theorem 2.5.4. Suppose we are given a pair of functiof&x, v, t),
b(x, t)) such that

.....

.....

ous in X.
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Then there exists a unique Brownian flow with local charédsties
(a, b) satisfying(Al) ~ (A3)(of Chapteil).

Proof. We can find a Gaussian random fie{(, t, w)with independent
increments such that the mean of(xt, w)is fotb(x,r)dr and

CouX(x 1), X(y,9) = fomsa(x, y,r)dr. Also X(x,t) has no fixed dis-
continuity. ThereforeX(x,t) is a Brownian motion for eack. Since
a(x,y,t) is Lipschitz continuous irx, y, X(x,t) has a modification such
that it is continuous inX, t). ThereforeX(x,t) is aC — B.m. Now con-
sider theS DEbased orX(x, t)

dor = X(¢r, dt), ¢s = X, t > s

The solution of theS DE¢s(X) is a Brownian flow of homeomorphisms
with local characteristicsa( b). This completes the existence part.o

unigueness.Let ¢s; be a Brownian flow with local characteristics )
satisfying @1) ~ (A3). Then there exists an infinitesimal generator of
dst, say X(x,t), which is aC — B.m. with local characteristicsa(b).
The law of X(x, t) is uniquely determined bya(b). Hence the lawps;

is unique.

Remark 2.5.5.The law of a non-Brownian flow is not in general deter-
mined by its local characteristics. Similarly the law dEasemimartin-
gale is not determined by its local characteristics. Tafy#tis we pro-
duce a counterexample. LBE, B? be two independent one-dimensional
Brownian motions. Set

t t
Yt:f Bgdsg,ztzfsgng.
o} o

HereY; andZ; have the same local characteristics, viBtl)E, but the
laws of Y; andZ; are diferent.

Remark 2.5.6.We know that 2-point process determines the law of a
Brownian flow. But 1-point process does not determine it.act one
can find several Brownian flows with the same 1-point procdsse we
give an example which is due to Harris [9].
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Example.Let x € R! andc(x) a real, nonnegative definite function of
classcg andc(0) = 1. Seta(x,y) = c(x—Yy). Thena(x,y) is symmetric
and nonnegative definite and is Lipschitz continuous. Toesethere
exists a stochastic flow of homeomorphispag with local characteristic
a. Consider the one-point proce$§t2(x) s, x fixed). This is a dfusion

e 1d .
with infinitesimal generatot. = oy Thereforegsi(x)t € [S T], is
a Brownian motion for anyk. There may be many sualfx). Simplest
Brownian flow would bepst(X) = X+ By(B; : one-dimensional B.M). In
this casec(x) = 1.

To end this section it would perhaps be of some relevancestugs
the following problem. We know that the infinitesimal gerieraof 1-
point motion of a Brownian flow is an elliptic operator. Noweghn an
elliptic operator

L—ld--taz dbita
t= Eijzzlaj(x’ )ijﬁxj +; (%, )G_Xi
(where &) is nonnegative definite, symmetric and is continuous)jn
does there exists a Brownian flow whose 1-point motion hasrthe
finitesimal generatok;? The problem is reduced to finding;(x, y, ))
which should be nonnegative definite and symmetric with semeoth-
ness condition such thaj(x, x,t) = ajj(xt).

If &j is independent dfanda;j(x) is Cﬁ then we can find suci(x, y)
(see lkeda-Watanabe [13]). Indeed there exists a squarefrac- (ajj)
ie., aX) = oc(X)o(X)* whereo(X) is Lipschitz continuous. We then
definea(x, y) = o(X)o (y) which is symmetric and nonnegative definitel
Finally the solutionps; of

dgy = b(¢r)dt + o(¢4r)d B

is a Brownian flow with local characterista(x, y). The solution to the
problem in the general case is not known.
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2.6 Inverse Flows and Infinitesimal Generator

Let ¢t be a stochastic flow of homeomorphisms generated by a contin-
uousC-semimartingaleX(x, t) with local characteristicg, b which are
Lipschitz continuous and have linear growth. In other waggssatis-

fies the followingS DE

dosi(X) = X(gpsi(X), dt), s s(X) = . (2.6.1)

Let Vst = 7, the inverse ofps;. Then obviouslyWs;0¥y, = W, for
Ss<t<u. W is called a backward flow. In this section, we take up the
following problem.

Problem To find the backward infinitesimal generator®g;.

In other words we want to represett; in the form [Z&1). To
accomplish this we have to define backward semimartingald$ack-
ward integrals.

Let X(x, t) be a continuou€-semimartingale given by

t
X(xt) = Y(x,t)+f b(x, r)dr (2.6.2)

o

whereY(x, t) is a continuous-martingale. Set

Gst=0o(Y(,u) - Y(,v):s<uv<).

For fixeds, X(x,t) — X(x, 9), t € [S, T] is aGst-semimartingale but for

fixed t X(x, s) — X(x 1), s € [0,t] is adapted tdSs; but need not be a

semimartingale. So here we make such an assumption.

(A5) For any fixedt, Y(.,s) — Y(,,t), s € [0,1], is a backward mar-
tingale adapted t®s;,i.e. fors<u <t

E[Y(X 9) — Y(X 1)IGut] = Y(X, u) — Y(X,t).

Remark 2.6.1.Under (A.5) X(x,t) has the same local characteristics
(ab).
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Example 2.6.2(1) LetY(x,t) be aC — B.m. andb(x, t) independent of
Y. Then

t
X(xt) = Y(x.t) + f b(x, r)dr
o}
is a backward semimartingale.

(2) LetY(x, zt) be aC — B.m. with parameter € S andz(t) S-valued
stochastic process independentyofThen

I(x 1) = f Yix 2r). dn)

is a backward integral as follows;

n-1

t
[t = St - X0l 269

whereA = {s=ty <ty <...<th =1t}
Theorem 2.6.3.Let ¢s; be a stochastic flow of homeomorphisms gen-
erated by a continuous C-semimartingaléxX) satisfying (A.5) with

local characteristics ab satisfying the Lipschitz continuity and linear
growth properties. Suppose that

0
d(Xv t) = Z a_xaj (Xa ya t)ly:X
i J

exists and is of linear growth, them; = ®{ is a continuous backwards3
stochastic flow generated byX(x, t) + fot d(x, r)dr, i.e.,

t t
Veaily) =y - f X(Wray). dF) + f dwr®).ndr.  (2.6.4)

Proof. We have

t
Dgi(X) = x+f X(®sr(x), dr).
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PuttingXx = ¥s:(y), we have
t
Y= s+ [ X@siR. sty (2.6.5)
S

We shall now comput{st X(@sr(X), dr)lx=yq,(y)- LELA = {S=1g,<
t1 <---<th=t}. Then

t
f X(@sr(X), dr)lx=y(y)
S

n-1

= lim kzo (X(@s1,(9 1) = X( @, (- 1)} bes )
n-1
= iilTokZO (XW(9): et = X (W) 1)) (2.6.6)
Now
n-1
XWt(Y), thr1) — XWr(Y), )}
k=0
n-1
[X Wty 1.t ()5 e 1) = X, 1.4 ()s )]
k=0
n-1
X Wty 1.t (), thr) = Xt (Y), thrn)}
k=0
— (X(Wt.1.4(Y), t) = X1 (¥), t)}]
=18 +1%, say
54 By definition

t ~
125 f X(ra(y). ).

Using mean value theorem, we have

15 =15() = ZZ{ X (W tY): thrt) — xwtkt(y) tk)}
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X Wt O) — 14 ))
225.1k(‘ﬁtk+1t(Y) ‘ﬁtkt(Y))(lﬁtkﬂt(Y) ‘ﬁtkt(Y))

i,j,k
_ 1A
=30+, say

where£? | is a random variable given b
i,j,k

2 2

0
A
fi,j,k %0, ———— Xk, te1) — %0,

Xk tk)

where|nk = Ytetl < Wy — Yt 16k = Yl < Wy, — Y- Hence
SUDIf.,kI -0 as [A/—> 0. Thus J2 -0 as |Al—> 0

and
B@09) = - ZZ{ XD 9. tr) - X (0,80

X (D, (9 = Dy, (X)

Z f—X((Dsr(x) dr), @4 (x) -

|Nﬁ0

=_Z<£ a—XiX(CDSr(x),dr),j; X (g (%), dr) >
= Z a% j:ai@sr(x),q)sr(x), rydr

- f t d(@sr (X), r)dr.

Therefore

t t
B0 - f d(@sr (3. NNy = — f d(r(y). ).

|Al—

Hence

f d(wr(y). 1.

W 0
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Combining all these results, we get

t . t
Y= va®) + f X(Wra(y). dr) - f d(r(y). 1)

2.7 Appendix

Generalized ITO Formula, Stratonovich Integral
and Stratonovich Stochastic Dfferential Equations

Let X(x, t) be a one-dimensional continuous random field. Itis saieto b
a continuousCk-process if it isk-times continuously dierentiable in x
a.s. and*X(x, t) is continuous inX, t) a.s. forla| < k. Itis called a con-
tinuousCK-martingale ifD*X(x, t) is martingale for any, |o| < k and

a continuousCK-process of bounded variation [f*X(x, t) is a process
bounded variation for eackand|a| < k. Finally X(x,1) is said to be a
continuousCK-semimartingale iX(x, t) = Y(x, t) + V(x, t), whereY(x, 1)

is a continuousCX-martingale andv(x,t) a continuousC*-process of
bounded variation. Leta(x,Y,t), b(x,t)) be the local characteristics of
X(x,1). We make the following assumptionsA4), a(x,y,t) andb(x, t)
are k-times continuously fierentiable inx andy (respectivelyx), and
for ||, |8] < kand for anyK > 0

t
f sup |D¢DSa(x,y, r)ldr < co as.
o |x,lyi<K
t
f sup|Dgb(x, r)ldr < co as.
0 |Xx<K

We shall now present aftiérential rule for the composition of two pro-
cesses, which is a generalization of the well known Ito fdemu

Theorem 2.7.1(Generalized Ito Formula.l)Let F(x, t) be a one-dimen-
sional C- process and a &Esemimartingale with local characteristics
satisfying(A4); and % anR%-valued continuous semimartingale. Then

t d t _
F(Xt,t):F(XO,O)+f F(Xt,dr)+Zf(%F)(Xr,r)dX§
0 o1 Jo i
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d t 9 '
+Z<f(;F)(Xr,dr),X{>
A

Ijl

nNd < X, X! > (2.7.1)

Proof. For a partitiolrA = {0 =t; <t; <--- <t, =1}, set

n-1

F(X0 1) = F(X0,0) = > {F (X4 tsrn) = F (X )}
k=0

n-1
+ D F (K thit) = F (e )
k=0

l>

A
=17 + 15, say

We have by the definition of the stochastic integral
t

1A —— | F(X.dr).
v (X, dr)

The second term is written as

o
Il
M7
i
©
> IMe

=

0
0%

r—"«

a .
— F(Xg» the1) — F (Xt tk)} (X, — X4)

T
o

-F (X (X, — X1,

o
I
iR

[
'bfg

(92
6&6&

NI~

F (& te )%, — XX = X))

=

1]

o
>

+  _
o =
N> .[\
T
G O

wherelé — X | < [Xg,,, — X |- Set

n-1 9 9
Lé = é {aF(thAs, tk+1AS) F(thAS)}
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S0
and L:f—FX,dr.
s= | gF0edn

ThenL4 converge td_s uniformly in sin probability agA| — 0. On
the other hand,

n-1
D L = L) (K, = X4) —<L X! > in probability.
k=0 -

These two facts imply

n-1
k;(l_tm - LK, = %) =< L, X' >in probabilty
Hence
A : ) i
Jyp —— < —F (%, dr), X! > .
D) [ R an.x
Also
A SHAK: i
)y — —F (X, dr),dX.
S 2, perocean.ox
Set
1 d n-1 (92 ) )
o . o i
‘J3 - E Z MF(XM tk)(xtlk+1 - thk)(th+l - th)'
i,j=1 k=0
Then

jA_>Ezd:<ft & F(X,r),dXi, X! >
8 2 £ o OXOx; Tt

Now set

A 62 2
ik = MF(&(, tir1) — e

F (th N tk)

Then
suplgiAjk| —-0 as |A|—0.
ik
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Note that

|‘J3 ‘]3| <z Z Suplgukl {Z(th+1 th } {Z(th+1 th)z}

SinceY (X, , —X{ )? tends to afinite value in probability &5 — 0,
the above converges to zero in probability. Hence

F(X, XX >,
3 IA|—0 2Zfax.a, (X, r)d < X, X >r

Combining all these results, the desired form[a{2.7.0)vic.

1

Remark 2.7.2.If F(x,t) is a deterministic function twice continuously
differentiable inxand once continuously flierentiable irt, then the last
but one term in the right hand side 6f{217.1) vanishes. Thigesponds
to the well known Ito formula.

Stratonovich Integral

59
Let X(x,t) be a continuousC?-valued process and a continuoGs-

semimartingale. Lef; be anR%valued continuous semimartingale. We
shall define the Stratonovich Integral fifbased orX(x, t). For a parti-
tionA={0=ty <ty <--- <ty =t}set

KE = 3 (K te) = XCFy1080) + X ton) = X(Fy )
(2.7.2)

- 0
Lemma 2.7.3. Suppose that the local characteristics of X aaﬂgx
i
satisfy(A4)]. ThenliilmO KA exists and

t 1 t o j
lim KA _foX(fr,dr)+§zj:<fo(a—xjx)(fr,dr), fl>. (27.3)
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Proof RewriteK{ as

n-1
K = > {X(fie tien) = X(fy 1))
k=0
1 n-1
+ > {(X (P15 terr) = Xy, tia1)) = (X(Fy, 5 t) = X( e, 1))}
k=0
=L+ M, say O
We have

{
LA — X(fr, dr).

|Al— )

By the mean value theorem,

) Z Z {6 X; X(Fy, then) — X(ftk, tk)}

(tk+1 fti Z‘fljk tk+1 ftk (ftk+1 tjk)

Ijk

60 where su@ﬁ“ — 0 as|A| — 0. Then as in the proof of generalized Ito
k

formula we get

M o IAl—0 22 f( )(fr,dr)f >

The lemma is thus proved.

Definition 2.7.4. The limit of KtA as|A| — Ois called the Stratonovich
Integral of f based on Xx, t) and is written asfot X(f;, odr).

Proposition 2.7.5. Let X(x,t) be a continuous &process and a &
. , - 0 .
semimartingale. Let the local characteristics of X agg—x satisfy
i
(A4),. Let £ be anR%valued continuous semimartingale. Then the
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Stratonovich integral is well defined and is related to Ittegral by

fX(fr,odr)_fX(fr,dr)+ZZ f(—x)(fr,dr)f > .

(2.7.4)

Theorem 2.7.6(Generalized Ito Formula Il)Let F(x,t) be a continu-
ous C-process and &semimartingale with local characteristi¢s, 3).
Suppose that these are twice continuousfjedintiable and both, 8
and their derivatives satisffA4);. Let X be a continuous semimartin-
gale. Then we have

F(xt,t)—F(xo,O)zfotF(xr,odr)+Zfot(aixj|=)(xr,r)od>¢.
| (2.7.5)

Proof. Rewrite the right hand side 6 2.F.5 using Ito integral. Bg th
generalized Ito formula |, we have

0 0
c’)_ij(Xt’t) - —_F(Xo, 0)

f—F(Xr,dr)+Zfa
+Z f IaJF(Xr,dr) X >

a3
— F(X X1, xk
ZZax,axjaxk (X 0 <. %>

r)dx;

Therefore 61

t
[ (rJocrroax = [ Zroxon+ 2 < x>
9]

f—F(Xr,r)erJ"‘_<f 1% o F (%, dr), th
J

zzfa F(X,1)d < X, X/ > (2.7.6)
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On other hand

t t 1 ti g ,
foF(xr,odr)zfoF(xr,dr)+§zi:<j;(a—)qF)(xr,dr),x;>

(2.7.7)
Finally combining [Z7Z1) [[Z.716) and(ZV.7) we det(3)7. i

Stratonovich Stochastic Diferential Equation

Let X(x,t) be a continuousC?-process and &'-semimartingale with
local characteristicsa(b) satisfying @4);. A continuousRP-valued
semimartingaled; is called a solution of the Stratonovich Stochastic
Differential equation

d¢t = X(d)t, Odt) (278)

starting fromx at timesif it satisfies

t
¢t:X+fX(d>r,odr)
—x+f X(¢r,dr)+—Z f—X(¢r,dr),¢tj>. (2.7.9)

62
Note that

Z—<f _X(¢r,dr),¢tj>
t .
_Z f—x(¢r,dr),fxl(¢r,dr)>
- EZJZL a_xjaij(x’y’ M)lx=y=¢, dr.

Therefore, setting

i 0
d(xt) = ) = aj(x Y. Dlyox. (2.7.10)
i J
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we see that if a solutiop; of (Z_Z8) exists then it satisfies

t t
¢t=x+f X(¢r,dr)+%f d(¢r,r) dr. (2.7.11)

Consequently we have the following theorem.

Theorem 2.7.7.Let X(x, t) be a continuous &process and a Esemi-
martingale with local characteristics, & which are continuously ffer-
entiable in xy and their derivatives are bounded. Suppose further that
d(x, 1) defined inZ_ZID)is Lipschitz continuous. Then the Stratonovich
SDE (Z.Z.8) has a unique solution and it defines a stochastic flow of
homeomorphisms. Furthermore iflad are k-times continuously dif-
ferentiable and their derivatives bounded then the sotutiefines a
stochastic flow of €1 difeomorphisms.






Chapter 3

Limit Theorems for
Stochastic Flows

This Chapter is devoted to the study of limit theorems foclséstic 63
flows. In sectiori-3]1, we introduce the notion of weak andrgfroon-
vergence of stochastic flows. In sect[onl 3.2 we discuss theetgence

of random ordinary dferential equations to a filision process. We
state a theorem in this regard and elucidate it with varioasnples. In
sectiorZ3.B we state the main limit theorem. The proof of tie®tem is
very long. We develop it in the subsequent sections. Ineedi4 we
discuss the tightness dii(+ M)-point processes and in the next section
the weak convergence oN(+ M)-point process is dealt with. In sec-
tion [3.8 we describe the tightness of Sobolev space-valuecepses.
We conclude the proof of the main limit theorem in secfion &nirsec-
tion[3:8 we complete the proof of the approximation theoréates in
section[3R. In the next two sections we treat the ergodicraixihg
cases. Finally, conclude the chapter with tightness andkweaver-
gence of inverse flows.

63
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3.1 Weak and Strong Convergence of Stochastic
Flows

Suppose we are given a family of filtratiofis} ..o and X = X*(x,t)
a continuous C-semimartingale adaptedrfowith local characteristics
having “nice” properties. Legs; be the stochastic flow generated by

Xt i.e.,
d ¢si(X) = X (¢si(X), db),t > s
Pss(X) = X.

We write ¢f = ¢5,(X). Our aim is to study the convergence of
(¢¢, X¢) as stochastic flows. We will introduce three notions of con-
vergence, viz, strong convergence, weak convergence amvergence
as difusion processes. Of these, the weak convergence plays tte mo
importance role and we discuss it in detail. Before givirgydiefinitions
of various convergence we shall introduce some functiooespa

LetC™ = c™(RY: RY). Let f € C™andN a positive integer. Then

I llmn = Z sup D f(X)LN=21,2,.........

lel< mX=N

defines a family of seminorms and with this family of seminsi@i"
becomes a complete separable space Wt C([0,t]; C™) be the set
of all continuous maps from [0] to C™. Forg¢,X € Wy let ¢, X;
denote their values ate [0, T]. Define

llglimn = sup llétllmn, N=1,2,.......
t € [0,T]

The above family of seminorms mak#g, a complete separable
space. LeWW2 = Wp, x Wi, and letB(W?2) denote its topological Borel
o-field.

Assume that the local characterist&s b of the flow are (n+ 1)-
times continuously spatially fierentiable and the derivatives are boun-
ded. Then in view of Remark.26 (¢°(.,w), X? (., w)) € W2 asIn
other words, it is &V2-valued random variable. Let

PE) (A) = Pw : (¢° (), X?(w)) € A),A e BW2)).
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Definition 3.1.1. Let PO be a probability measure on 3V The family
(¢%,X8),& > 01is said to converge weakly td®as stochastic flows if

the family(P®), & > 0} converges to ) weakly.
65
Definition 3.1.2. Let (¢, X;) be pair of stochastic flow of Gdiffeomor-

phism and continuous Csemimartingale. The@f, Xf) is said to con-
verge strongly tdg¢, X;) as stochastic flows [fi¢® — ¢|llmn and|||X® —
Xlllmn converge to O in probability forany N 1,2,.......

Remark 3.1.3.We shall show later that i, X?) converges weakly to
(61, %), i.e., P® converges weakly to the joint law o X, [lIX¢ —
Xlllmn — O in probability and some other conditions are satisfied then
llg® — #lllmn — O and therefored(, X{) converges tod;, Xt) strongly.

Definition 3.1.4. Let XN) = (xq,...,xn) € RNOVM = (y1, ... ym) €
RMd, " Consider the(N + M)-point process(¢? (xV), Xe(y™)). Let
Vn = C([0, T]; RNY), Vi = C([0, T]; RM9). On the measurable space
(VnXVm, B(Vn X V) we define the law of th@N + M)-point process
as follows:

Qo yony (A = Pleo (@8 (XN XE (™) € AL A € B(Vn X V).

If the law of every N+ M)-point process converges weakly, then we
say that the flow converges adfdsion process. Obviously, i#f{, X?)
converges weakly as stochastic flows, then the lawhbf-(M)-point
process converges weakly.

Proposition 3.1.5. The family of lawgP®)},.q on (W2, B(W?2)) con-
verges weakly if we following two conditions are satisfied:

(i) {P®! istight, i.e., for any > O there exists a compact subset
>0
Ks of W2 such that #)(K;) > 1 — ¢ for anye > 0.

(ii) {QE‘QN)’W))}&O converges weakly for any®™,yM M, N

9 Ly o o

The proof is based on standard arguments. See Billingsley [2 66
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Sometimes it is convenient to consides (X{) as a process with
values in Sobolev spaces. So we will now introduce a few Ssbol
spaces. For a positive integdrlet By denote the ball iiR? with centre
at the origin and of radiubl. Letp > 1. Let f : RY — RY be a function
such thaD?® f € LP(By) for all @ such thata| < m. For such functions
we define the following seminorm

1/p
ummpN=[§] |DIH@Pd4 .

la<m BN
where the derivatives are in the sense of distributions. &¥ae
HIC, = {f 1 RY — RY) [Ifllmpn < oo for anyN}.

The family of seminormg|| - lnpn.N = 1,2,...} makesH[SS, a
complete separable space. Mé,, = C([0, T]; HRCp). Forg € Winp
define

ll¢lllmpN = sUP ll¢llmpn, N=1,2,.......
t € [0,T]

With this family of seminormsWi,,, is a complete separable space.
For p = co we write Wiy, instead oMe. Let W3, = Winp X Wi p.
We usually supposp > d. In such cases we have

W2

2 2 2
mitp © Win © Wiy p © Wiy .

These inclusions are consequences of the well known Sobolev

imbedding theorem. Indee#%¢, ,cCMc H%%,. We shall now define
the weak topology oW, p.

Definition 3.1.6. Let{., .)ny denote the canonical bilinear form onﬁ;ﬁ,
restricted to B. We say that¢",n=1,2,...} € Wy, , converges weakly
top € Wnp if (¢, f)n converges tdey, f)n uniformly in t for any

f e (Hl?lcp). The space W, equipped with the weak topology is a
complete separable space.

Remark 3.1.7.Let A be a bounded subset blﬂ%cp, i.e., for any positive
integerN there exists a constaftty such that sup, A [lfllmpn < Kn.
ThenA s relatively compact iri-l!?LCP w.r.t. the weak topology.
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We are now in a position to describe a criterion under whiah th
family of measure$P?},. is tight.

Proposition 3.1.8. Let {P®)},. ¢ be a family of probability measures on
Wﬁlp. Suppose for any positive integer N there exist positivegart N
there exist positive numbets s, K such that

() E@lgell2, o + IXdIZ o] < K,
(i) E@[llgr — ¢elldp + 1% = X2 p ] < Kt = g2

hold for any ts e [0, T] and for anye > 0. Then{P®)},.q is tight in
W3, , W.rt. the weak topology.

The proof is similar to that of Kolmogorov's criteria for tighess
and is therefore omitted.

Remark 3.1.9.The above Proposition is not true fpr= o, ie.
E@ [llgtllzn + Xl | < K for allt € [0,T]

and E@ [llgr — st + 1% = Xdllo | < Kit = s,

forallt,s € [0,T], do not imply the tightness dP®},.o in W2,

If (P} is defined as a family of probability measures\Wf, then
it can be extended tw,%p as follows: Consider the class of sets

[ANWE: A € BWE )} = BIWZ p)lwg € BWS).
Define 68
Pep(A) = PR(ANWE), A e BIWRp).
Similarly P, can be extended %, , onW?2 ..

Proposition 3.1.10. Suppose m- 1, p > d. Then{Pfﬁ)_l}8>0 is tight in
W2 | if {Pg, pleso is tight in WE jw.rt. the weak topology.

Proof. The proof follows from Kondraseev's theorem which stated th
any relatively compact set HL‘{‘}, w.r.t. the weak topology is embedded

in C™1 as a relatively compact set. See Sobolev [30]. O
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3.2 Approximation of Stochastic Dfferential Equa-
tions

Letv(t,w) = (Vi(t,w),...... , VE(t, w)) be anr-dimensional piecewise
continuous stochastic process such tBf’(t)] = O for all i. Let
Fr(xt),k=0,1,...,r be continuous function&* in x and the deriva-
tives bounded.

Consider the following stochastic ordinaryfdrential equation
X S E (Vi) + Fo(x 3.2.1
a—; (O OVEL) + Fo(x,b). (3:2.1)

Let ¢%,(X) denote the solution starting fromat times. We now
consider the following problem.

Problem. If {v¢(t)}.-0 tends to a white noise or more precisel\Bf{t) =
t
fvs(s)dstends to a Brownian motioB; = (By(t),..., B:(t)) weakly or

o

strongly thenpg (= ¢g,) tends to a Brownian flow; weakly or strongly
and the limiting flow¢; satisfies the following stochastic fi#irential
eqguation

der = > Felgr, 1)odBe(t) + Fo(er, t)dlt. (3.2.2)
=1

The solution of the above problem is not always ffirmative. In
fact, we need some additional term in the right hand sidEE&Z43 To
solve the problem in concrete terms we make the followingmagtions:
LetGf = o(V¥(9) : 0 < s<1t).

t
(Al)(a) [IE[v*(r)|GE]ldr — O uniformly ins,tin L?-sense.
S

T t
(b) E|[vi(r)dr f\/?((r)drﬂGé — [vij(r)dr unifomly in s, t, wherey;;
s i s

is a deterministic measurable function.
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(c) there existy > 1, K > 0 such that

E <K

t
| [ EnsOGIar v

Remarks 3.2.1. (i) (a) and ) roughly show tha{B?(t)} converges to
t
a zeromean, martingale with quadratic variatﬁ(m i(r) +vii(r)
S
dr. Hence{B?(t)}.-o converges to a Brownian motion with mean
t

0 and covarianc (vij(r) + v;i(r)) dr.
S

(i) (C’) ensures the tightness of the law BF(t), 5 (x)). SinceV*(t)
converges to a white noise its moment tends to infinity. The co
dition (c) shows that the rates of divergence of the moment (j

t

and convergence oflE[W(r)|G§]|dr are balanced. In fact, in all
S
examples given later the fourth momenwd(t) = 0(1/£?) and the
t

fourth moment of[ |[E[v*(r)|GE]|dr = 0(c?).
S

We shall now that state the main result of this section. \Wgt =
C([0, T;C™, V" = C([0,T];R"). Let P¥) Senate the law of¢f, B?)
defined onW, x V'.

Theorem 3.2.2. Assume (Al). The{rPﬁﬁ)}»o converges weakly for any
m > 0. Further the limit F‘nﬂ)) has the following properties{(i) B(t)
i? an r-dimensional Brownian motion with zero mean and ciavare

[ (r) + vii(r))dr. (ii) ¢ satisfies

dge = " Felgr YOdBH() + Folgr, 1) dt

=1

+ > SemlFe, Frl(gn tydt (3.2.3)

I<t<msr
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. 1
where odB stands for Stratonovich integral anghs= E(Wm - Vm), 70

d P d P
[Fe, Ful¥(6 ) = > FL ) —FK(xt) = > FL(x t)—FX(x,1).
¢ ; ¢ 0% ; ox ¢

Further, if {B*(t)} converges to 8) strongly then{¢{} converges to
¢t strongly. We do not give the proof here. We will do it later imare
general setup. Approximation theorems for the solutionta€restic
differential equations have been discussed by several authMwShane
[27]. Wong-Zakai [34], Stroock-Varadhan [32], Kunita L 9[20], [21].
Ikeda-Nakao-Yamata [12]. Malliavin [25], Bismutl[3]. Dow¢s]. We
shall wlucidate the theorem with the help of a few examples.

Example 3.2.3. Polygonal approximation of Brownian motion
Let B(t) = (Bai(t),...,B(t)) be anr-dimensional Brownian mo-

tion.Set
1., ,
Vi (t) = ;5kB[ if ek<t<ek+1)
where ALBe = Be(e(k + 1)) = Be(ek).
Then

t
B®(t) = f\ﬁ(s)d5—> B(t) uniformly int.
(0]

All we have to do is to verify the assumptions iAl). Sincev®(t)
andvé(s) are independent |t — § > &, we have

t
| f [ENV(WIGE]IAU < [AZB,| i sk < s< ek + 1),
S

71 Also
variance A;B;) = ¢ — 0.
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. i 1
Therefore §) is satisfied. Novwar(v?(s)) = —, therefore
E

1 1/2
E 5(332.3—2) =3,
&

t
| [ Enficaivr?

which verifies €). Also itis easy to verify ) with vj;(u) = E(Sij . Hence
S[’m = O

Example 3.2.4. McShandHere we consider the approximation of two
dimensional Brownian motion by continuouslyffdrentiable function.
Fort € [0, 1], let ¢1(t) and ¢»(t) be continuously dferentiable func-
tions such that1(0) = ¢2(0) = 0 and¢1(1) = ¢2(1) = 1. LetB(t) =
(B4(t), B2(t)) be a two dimensional standard Brownian motion. Set

Vi =

Lh((t-ke)/e)ALBi  if  ASB1ASBp > O,
1p3-i((t—ke)/e)AfBi if  A;B1A;By <O,

if ke <t<(k+1)e,k=0,1,..., Then
t
B®(t) = fvs(s)ds—> B(t) uniformly int.
[0}

As in the previous example, we can verify) @nd @). Also it can
be shown that

j‘\fig(T)de‘V?(O')dOﬂG‘;

Example 3.2.5. Mollifiers approximation (Malliavin)
Let B(t) = (B1(t), ..., Br(t)) be anr-dimensional standard Brownian
motion. Let¢ be a nonnegativ€*>— function whose support is con-

t
£ = 50+ [ 109196y (9o(Slds

1
tained in [0,1] and/ ¢(s)ds = 1. Set
(0]

1
8.0 = S0(t/e). & >0
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and Bs(t):f%(s—t)B(s)ds: f¢s(s)B(s+t)ds
i (o] (o]
Then
B®(t) — B(t) uniformly int.
Set .
VE(t) = —f(z;s(s—t)B(s)ds
Then

t Ste
f E[V(WIGE]du = f EV(WIGE]du

sincev’(u) is independent o& if u> s+ . Also

1
var(v®(u)) = % f #(s)°ds

Therefore
Ste
var( f Ve (u)du) < e.
S
I . 1
Now it is easy to verify ), (b) and €). For (), vij = Eéij.
Example 3.2.6. Approximation by Ornstein-Uhlenbech proceses
(Dowell)
Let B(t) be anr-dimensional standard Brownian motion. Lef(t)}
ne given by

dve(t) = —1ve(t)dt + 1dB(t)
v¥(0) = a Gaussian random variable with mean zero and covariance

z(éij)-
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Then {V¢(t)} is a stationary Gaussian process with mean zero and
. 1 L
covarlancez—s(é(i i))- AlsoV°(t) is given by

t
V(D) = e X9y (g) 4 1 f e (g B(U).
&

S

Therefore 73
t
BE(t) — BE() = s(1— e :I)(9) + f (1 - e =EYdB().
S

Since the variance of the first term in thh.s. is Of) and the integrand
tends to 1 as — 0, we have

B°(t) — B5(S) — B(t) — B(S).

The assumptions inXl) can be verified.

t t
Lf\Ehfo)dnezndr=‘jke%“-$dnhf(9|
S S
=e(1-e+I\F(9) > 0 ase— 0.
Also

fwwwfﬁmw@z

S

E =E

fmwwffww%

-E f Vi(o)dor {s (1 - e‘%(t“’))vi"‘(cr)} G

:sj(l—e%“@)EN%ﬂﬁ@ﬂGﬂda
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t

=z f (1- et |eHrIvgvi(s| + % [(1-e79) 5 |dor

S

1
- E(t - 9)dij.

3.3 The Main Limit Theorem

In this section, we will state the main limit theorem for dtastic flows
and the proof of the theorem will be developed in the subgsgsec-
tions.

Let for eache > 0 there be given a continuo@*- semimartingale
X?(x,t) such thatX?(x,0) = 0 and it is adapted t&¢. Let (@°(Xy,t),
b?(x, 1)) be the local charactersistics ¥f(x,t). Suppose tha® andb®
are Lipschitz continuous arai is k-times continuously dierentiable in
x, t, b? is (k+ 2)- times continuously direntiable inx. Also assume that
b?(x, t) is F5- measurable. We can wridé(x, t) as

t
XE(x,t) = Yo(x, 1) + f b®(x, t) dt (3.3.1)
o}
whereY?(x, t) is a continuouCk! -martingale. Set

G? = o(Y?(x,u),b°(x,u) : O<u <t xeRY).

ThenX?(x, t) is G¢-adapted contonuou@*1-semimartingale. Now
we introduce the following quantities:

bP(x, t) = E[bP(x, t)], BF(x, t) = bP(x, t) — bP(x, 1),
{
At 9 = | [ Brxnanes] o,

a E
c(xt 9 = A (XY L, 9)ly=x,
axj
j

Byt 9= E %9

t
f b (x, r)driGS
S
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We next introduce two sets of assumptions. The first is comckr
with the convergence and the second with moments essgmnigdided
for tightness. _

_ (A2)¢ There exist continuous functions = (a&;(x,y,t)), b =
(b'(x. 1), ¢ = (¢ (x 1)), A= (Aj(x Y, 1)), which arek-times continuously
differentiable inx, y or X, as the case may be, and satisfy the following

properties: 75

t t
(1) E [sup|E [fafj (XY, r)dr|G‘;] - [a(xy. r)dr|] — O ase — 0,

[X<K

2) sup|ft58(x, rydr — Bft(x, r)dr| — 0,

X<K s

[ rt
(3) E|sup|E| [ Dyb*(x, r)drle‘g] |] — 0 for|e] <k
LS

LIX<K

[ [t t
(4) E|suplE| [ AZ(x V., r)drng] - [ A%, r)dr|] — 0,

LIXI<K

B) E _sup|E »ftcs(x, t, r)drle‘g] - ftc(x, r)dr|] — 0.

LIX<K s

All the above convergences are uniformtjis for anyK > 0.

(A3)k For anyK > 0 there exist constangs> 1 andL > O such that
foranyxy,t, s

6) E[ sup  IDDJas (%Y, t)v] <LVe>0,lal <klg <k
[X<K,lyl<K
(7) sup|Deb(x,t)| < Lforalle > 0,]a| <k

IXi<K

(8) E[ sup |D‘;D€Aﬁ. (XY, t, s)|7] <LVe>0,lal <k+1,|8 < k+1,
IXI<K,lyi<K

9 E[ sup |D§(’D§fdfjk(x,y, t, s)|7] <LVe>0,]a <k+28 <k
IX<K, Iyi<K
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Let g7 (X) = ¢5,(X) be the stochastic flow generated X§(x, t). Let
P, m< k-1, be the law of ¢, X¢) defined orw2,

Theorem 3.3.1.AssuméA2), and(A3) for some k> 2. Then{ Pff_)z}»o
converges weakly to® as stochastic flows. The limits measur® P
satisfy the following properties:

(@) X(x 1) is a ¢~ — B.m. with local characteristic§a + &, t_)) where
aij (%Y, 1) = Aj(x Y, 1) + Aij (Y, X 1),

(b) ¢ is a Brownian flow of & 1-diffeomorphisms genereted by

t

X(%y) + fc(x, rydr.

(o]

Further if Xf converges strongly theff also converge strongly.

In the next section, we will prove the tightness &f ¢ M)-point
processes under an additional assumptiéd).( In section 3.5, we will
first prove the weak convergence assumiAd)(and then we will drop
the assumptionA4) and prove the same in the general case. In sec-
tion[3.8, we prove the tightness of Sobolev space valuedepsas and
in sectior 3.7 we conclude the proof of the main theorem.

3.4 Tightness of (N-M)-Point Processes

Let XN) = (xq,...,%xn) € RN“,X(M) = (Y1,...,ym) € RM4. Consider
the of the N + M)-point processd ((xV)), X¢(y™), t)). As before we
denote the law of theN + M)- point process by ) yany Which is
defined orVy x V. For fixedx™ andy™ we shall drop the subscript
from Q@ (x yoy @nd write simplyQ®). We shall show the tightness of
these lawgQ?},.o under the following condition:

(A4) There exists & > 0 such that

axytw) =0 if X>Kly=>K,
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bP(xtw)=0 if XK.

Under the above conditiok?(x,t,w) = 0 if |X| > K and the associ-
ated flowgy(x) satisfiedey(X)| < K if [X| < K andgf(X) = xif [x] > K.
Lety = y(K) be the positive constant as iA3).

Lemma 3.4.1. For any pe€ [2, 2y] there exists a positive constant<
C(p) such that

E[IXF(¥) — XE(X)IP] < Clt - slz‘% foralle >0andforall x (3.4.1)

Proof. We will consider the case fad = 1 only for implicity. We 77
suppresx from X£(x), a®(x, x, t) etc. For fixedx. We have

a
f a(nIYy - Y§|p‘2dr\

S

t y-1

1
ElIYs-TelPl = Bp(p - 1)E

1 1 )X |7
< Sp(p- 1LY f E[ive - vel® 275 Tar oy (A3)6)
S
1 t
< SP(P- L7 fE [IYE - YEP# dr (3.4.2)
S
p-2
since p - 2) Zl < p. Now foranya>Owe havea P <1+a
Therefore

t
E[IYf - YEP < %p(p—l)ﬁ{a—sn f E1Yf - YEIP] dr}. 0

S

By Gronwall’'s inequality, we geE[|Yy - YE|P] < clt—9. Substituting
this back to (34.2) we have

t
& &P p2 ’ 2_2
E[|Yt—YS|]scflr—sjpdrsclt—sj b, (3.4.3)
S



78 3. Limit Theorems for Stochastic Flows

Next, note that

|fb8(r)dr|p = pfb‘g(r)|fb8(r)dr|IO L sign ¢)dr

+ p(p1) f b () f b (o) f o (r)drP-2der

= If+|§,say

where signf) = signfbs(r)dr. We have
S

E[IIS]] < pL

t T
E|l f bg(r)dr|p‘1‘ dr (by(A.3)(7))

S

t
E[15]] < p(p—1)|fE

AS(t, o)l f b‘g(r)drlp‘zl do|

y-1

t T >
Ell f b@(r)dn(P‘z)ﬂ dor
S

78 by (A.3) (8). These two imply

E Iftbg(r)drl”} <c j[E Ifabg(r)drlpl

S
Then we obtain similarly as the above

t
E |fb8(r)dr|IO
S

1
< p(p)L”

S

+E

|fb8(r)dr|p} ]da )

<Clt—g25.
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1 . .
Lemma 3.4.2. For any p> 3(2- F) there exists a positve constant
C = C(p) such that

_1
E[lpf(¥) — 65(9I°] < Clt - 5777, (3.4.4)
for all £ > 0 and for all x.

Proof. We prove the case fat = 1 only. In view of A4) (3.43) is
obvious if[x > K. So we assumg < K. We suppress from ¢7(X).
We have

t

t t
gbf—qbé:ft?(¢f,r)dr+f68(¢f,r)dr+ng(qs;?,dr).D (3.4.5)

S
Using Ito’s formula forF(x) = |x|” and writing signr = sign ¢ —
%), we get
t
05 - 057 = p [ B 16 - o5 sigrtryr

S

t

+p [ B6.010% - 57 sign e
S

t
ip f 10 — 9%1P Lsign(r)y* (¢ dr)

t
1 _
+ 5P~ 1) [ a6 0108 - 5P Zar
S
=17+ 15+ 15+ 13, say (3.4.6)

Note thatl¢;| < K. Then from A3)k

t
EQIET) < pL f El6¢ — 93P, (3.4.7)
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We have 79
E[l5] = 0. (3.4.8)

By (A3)«, we have
t

E[I5] < C f Elgf — 92" 271]'7 o, (3.4.9)

S

We shall now calculaté. By Ito’'s formula

b (g2, NlgE — ¢ZIP~L sign )
t
2

0 0 e (e 18_~‘9 £ E(oC . p°
= f{a_xb (¢o‘?r)b (¢(r70-) + ZC')XZb (¢o-’r)a (¢(r’¢(r’o-)}

S

x 195 - 5P signr)der
+(0=2) [ [BF 000 0) + S0 05050
s X |65, — ¢%IP2dor
:
# 5= 1(p-2) [ B8N0 05 ) - 5P signer)dr

+ a martingale with zero mean (3.4.10)

Therefore

t
E['§]=pf
S
17,

E [(cg(qﬁfr, t,o)+ =

3 0 Ot o~ o7 signer)| o

t
0
+p(p- 1)fE[{A8(¢3, $or b 0) + - 0BG 05 L G ¢2IP1do

t
1 .
+ 5= )(p-2) [ E[d6f ottt - 657 *signen)]
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Applying Holder inequality and using the tightness assuomptve 80
have

t
e[1g]1 < 2pL [ g -5 07| 7 o

S

y-1

; 1
+2p(p- LM [ i - 05 271] 7 ao
S
t

+p(p- -2 [ Eligr - o507 dr @)

S

Summing up these estimates, we obtain

t y-1
E|igs - 37| <C f {E |lgs - 9P| + E [|¢§ - <z>§|“"1’%1]T

+ Eigs - 092717+ E|p - 9237 7 }dr. (3.4.12)

Sincelgy — ¢l < 2K, E[l¢7 — ¢%IP] < CJt — . Substituting this
in 3.4.12), we obtain

t

E[|¢f—¢§|p]sCf{r—smr—ﬁl}dr.

S

Hence
£ g1p 2-1
Ellgr — "] <Clt — 9.

The following proposition is clear from Lemm&s_3J4[T_3. 4
Kolmogorov’s theorem

Proposition 3.4.3. The family of measure%}&)(mw)}mo is tight for
any XN and y™).
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3.5 Weak Convergence of (MM)-Point processes

Let XN = (xq, Xo,...,xn) € RNYand yM = (y1,...,ym) € RMI. As

before IetQ&)(N)y(M)) be the law ofp? (xN), X¢(yM)) defined orVy x V.

In this section we discuss the weak convergenC%Q%‘;f()(N)’ y(M))}8>O-

Theorem 3.5.1. AssumdA,)k, (A3)k for some k> 2 and(A4). Then for

each %V and y™ the familyf] {QE;)(N) Y‘M))} , converges weakly to a
257 &>

probalility measure @)(N),W))' Further let F9) = Pfg)l be a probability

measure on \W; satisfying(a) and (b) of TheoreniLZ3.3]11. Then the law

of (e (xXN), X (y™), P©) coincides with @(an» for any XN, yM),
The proof of the above theorem will be developed throughraéve

Lemmas. By Proposition3.4.3 the fami{lQ&)(N) M(M))}”O is tight. Let

Q© be an accumulation point QQS}QO ase — 0. Therefore{Q*}
converges along a subsequerge, 0. Leth be a bounded continuous
function onRN+M) 'wheret is a positive integer. Let X) € VX V.
ForO< s < << 5 < s define

3(6, X) = (st . .. b, Xets - - ., Xst). (3.5.1)

Theng is a bouded continuous function &y x V. Also set

¢ (@) = higy M, 0), .., g5, XN, ), X5 (™, 0) ., XG ™), w))

(3.5.2)
¢° is a measurable function defined @, f, P), the basic probabil-
ity space.
We have

E = EQ(g)

t ¢ t ¢
[f (o7, r)dr] [ff(qﬁr,r)dl’] ‘ (3.5.3)

for any functionf for which the above makes sense.
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Lemma 3.5.2. Let {g?(X, t, w)}.>0 be a family of G valued processes
satisfying

(a) for any K> Othere existy > 1 and L> 0 such that

E [sup|D“g‘9(x, t)|7] <L, lal<], (3.5.4)

[X<K

(b) there exists a deterministic functioxgt) such that for any K> 0

t

t
E|suplE[ | ¢°(X r)dr|G§]—fg(x,r)dr| —as— 0. (3.5.5)
IX<K
S S

Then

t t
[fg‘sh(qfn,r)dr] ¢€n‘ m Eqo [fg(qsr,r)dr](ﬁ
whereg?" = ¢ (x(V).

Proof. By the tigtness of¢{}.-o, for anyé, n > 0 there existg > 0 such
that the set

E ,  (3.5.6)

A(¢.m) = {w sup Igy — ¢l < n} (3.5.7)
ft-si<¢
satisfies
P(A*(¢,n) > 1-6.0 (3.5.8)

This is a consequence of the well known Arzela-Ascoli theorBy
(a), for any¢ > 0 jthere existg > 0 such that

El sup [0°(xt)-g°(y.t)I| <. (3.5.9)

X=yi<n
X=K,yi<K

11) We suppress (¥, y™) from Q&)(N),y(w)-
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This follows from mean value theorem. We fjx Let A be a par-
tition of [St] given byA = {s =1, < t1--- < t, = t},|A] < . We
have

t n-1
|E g (¢, r)dr —
(o3
t -1 At
< IE[[L g (¢r,f)dr—§j:k g (¢tk,r)df}¢ } LA )

Tt 1

9 (¢t r)df] ¢>8]|

t n-1 tirl
+E[[ f ga(cb‘?,r)dr—Z t g‘g(aﬁti,r)dr}aba : (A°(Zm)°)
S k=0 'l
< 6(t — 9ligll + 2L7 (t — 9)ligllo (3.5.10)
83
Again e have
n-1 thr1 n-1 ki1
E [Z ga(aﬁfk,r)dr} ¢°| - Eqo { gg(qbfk,r)dr} ¢”
k=0 vt k=0 Y&

<

n-1 i1
D { £ [(E [ Fw. r)drleK] |y:¢fk) ¢8]

k=0 k
1y
e [ o))

n-1 i1 thr1
> e[ st |- o |( [ st rrer) o
I

t

5, say. (3.5.11)

Now I{ — 0 ase — 0 by (b) andl§ — 0 along a subsequence by
the weak conver of®). Therefore

t n-1
E[( f g (", r)dr) ¢8"]—Eq<o> [Z
S k=0 |1

< 8(t— gl + 2LF (t — plo7 -

el
lim

en—0

s

k
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Sinced, § are arbitary, we lel, 6 — 0 and conclude the assertion of
the lemma.

We make the following convention as a definition.
84
Definition 3.5.3. If E[f*n¢*n] — Eqo[f¢] asen — O0then we say that

fen — f weakly.

Lemma 3.5.4. The following are B martingales with respect to ®

t_
Mi(X) = ¢i(X) - fo (b(gr (). r) + c(¢r (x), r)dr (3.5.12)

if X € {Xq,..., %N}

t_
Yiy) = %) - fo b(y. r)dr (35.13)

ify e{ys,....ym},

Proof. We will consider the caseé = 1 only. Take a subsequeneg | O
such thaQé) — QO weakly. We have

t_ t
E[(¢f”— ?‘—f b‘g"(¢‘?”,r)dr—f b‘?”(«bf”,r)dr)wn]:o. (3.5.14)

S S

O

Now ¢;" — ¢ — ¢t — s Weakly. By (A2)c and the previous lemma

t_ t_
fb‘f”(¢‘f”,r)dr—>f b(¢r, r)dr weakly. (3.5.15)
S S

Using Ito’s formula we have
t t t
fbsn(qﬁ;?”,r)dr:fbsn(¢‘§",r)dr+fdr
S S s
I a . .
(f a_><b£”(¢3"’f)bs”(¢fr”,cr)d‘f)

t r a2
5 [ ar( [ b or.oo]
S

+_
2 s OX?
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+ a martingale
= 15"+ 15" + 15" + 15", say. (3.5.16)

SinceE[fst ben(z, r)dr|G§“]z=qjgn — 0, we havel?" — 0 weakly by
lemma3.5R. UsingA2)k, we obtain

t
E[|8n|GSn — [f CSn((Z) , 0-)d0-|G‘§”] - f C(¢r, r)dr weakly.

I‘E"len = [f P 2d‘g"(qb ¢>§”,t,0')d0'|G§”] -0

0 . . ,
weakly since_—d* — 0. Alsol;" — 0 weakly since itis a martingale.

Combining all these result it follows thal;(s) is a martingale. The
same procedure matatis mutandis shows Y@ is a martingale.

In the next lemma, we shall compute the quadratic variatias
these martigales.

Lemma 3.5.5. With respect to €§) we have
{
(i) < Mi(¥), Mi(y)* >= fo(a+ 3)(¢r (), ¢r (y), r)dr, (3.5.17)
t
@iy < My(X), Yi(y)* >= j;(a+ 3)(¢r (X), Y, r)dr, (3.5.18)

(i) < Yi(X), Yi(y)" >= fot(a+ a)(x, y,r)dr. (3.5.19)

Proof. As before, we consider the cage- 1 only. Using Ito’s formula,
we have

t _ t _

FEFEW) — I5(Y) = f SO (9 (), 1) + f SR, r)dr
St i St i

+ f 5 (B (GE(y). 1) + f G5B (@5 (). 1)dr

t
+f a® (o7 (X), o7 (), r)dr + a martingale (3.5.20)

S

O
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Lete, | O be the same sequence as in Lerhmals.5.4 then
B (X" (Y) — 95" ()8 (Y) = (X e(y) — Ps(X)ps(y) weakly,
t _ t _
f o (b (¢r" (y), r)dr — f ¢r(X)b(er (y), y)dr weakly,
{ t
[ @00 ndr - [ a(609.01).1dr weakly

We next consider the third term in the right hand sidd.of 2.5Ne 86
have

HE OB (@), 1) = #E B (@2 ). )

r a -

v [ 62005 B onb@26). o)

v [ 60908 (020).
r a -

b [ 2B 09.070). )

1 ' En 82 e €n &) €n En
v 5 [ 6005 @O @O 0 0. o)

+ a martingale
=150 + 150 () +15°(r) + 15°(r) + 12" (r) + 1(r). (3.5.21)

Nowfst 17"(r)dr — 0 weakly sincepg" is G¢'- measurable. Since
t t
e| [ oaney |- €| [ e oss
S S
t t
therefore f 13" (r)dr — f ér (X)c(¢r (y), r)dr weakly.
S S

Also
t t
f 3" (r)dr — f Ao (X), o (Y), o)do weakly,

t
and f l"(r)dr — 0 weakly for k = 4,5, 6.
S
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To sum up we have
@KI0) - 6:000:0) - [ g0 (0B (), Tl
- gr ()bl 09, )l - | 206109, (), Tl
- e (r ). el — | 0ol (.1l
- 806 (9. (). )

is a martingale with respect ©©, i.e

t _
2(901(y) — Do(X)ds(y) — f 0:()(B(r(5). 1) + C(r (y). 1))dr
t _
- f 0 () (B (9. 1) + C{r (). 1))dI
t
- f @+ 8)(¢r (%) (). 1)

is aQ©-martingale.
On the other hand by Ito’s formula we have

(2) $()3y) = ds(N)ds¥) + [ (XD () + [ dr () ()+ <

$t(X), e(y) >.
Obviously

< $t(X), pe(y) >=< Mi(X), Me(y) > .
Substituting (2) in (1) we find

t
f £ ()M (y) + f o ()AM, (3)

t
- f @+ 8)(6r (3. dr(y). )r+ < My(¥), My(y) >

is a martingale. Hence

t
< M%), My)* >= fo @+ 8)(0r (%), e (y). ).
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This provesi)). The relations (ii) and (iii) can be proved similarly.

Proof of the Theorem 3.5.1 under (A4) Let x; N) — = (x10,...,xn0) €
RNY, Yy = (110,...,xu0) € RM? be two flxed points. Fox =

(X1, xn)e RN andy = (y1.....xv) € RM9, define the following
differential operator

9%f(x.y)
X0

of
b'(Xp, §) + € (Xp, 9} 7,0

N d
(N.M) 1 ~
L Sy f(xy) = > ; JZ:(&H a)ij (Xp, Xg, 9)

UM

9% (x,)
;Z<a+a).,(ypo,yqo, rvey)

i ]
af(xy)
ayp

I\)IH

(YpO S)

o

8 (x.y)

Z Z a, )ij (Xp» Yeps s)ﬁ (3.5.22)
Pa 1] IXp0¥q

I\)IH

By Ito’s formula, if is aC2-function with bounded derivatives, therss
using LemmaB3.8.5 and 3.5.6, we find that the following is eingale
with respect taQ©

(0 %) - f L0 (05, Xds (3.5.23)

Therefore Q0) is the solution of the martingale problem for

L™M and hence it is unique. No Q(O) y is a consistent
y( y ) @gAYM)

20
family of measures. Therefore there exists a unique prébabiea-
sure P® on W2 ; such that the law of¢(tQ<E)N),Xt(3_/g")) with respect
to PO is Q&N gy Also BEIY)3519) withk € {x10,...,xn0},

Yo

y € {y10,...,YmO} is satisfied with respect t8©). HenceX(x) is a
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C*1_ valued Brownian motion W|th local characteristiesH a, b). We
claim thatg; is generated;(x) + fo c(x, r)dr. Set

t
VI(X) = s ds.
(9 = [ ¥(@ad9
Then
. . t
< Mi(x), Mi(y)* >= j; @+ &)(#r(x), ¢ (y), rydr.
Therefore
< Mi(¥) = M), (Me(y) - Mi(y))* >= 0.
This impliesM(X) = M(X). Thuseéy is generated by (x) + ftc(x, r)dr.

(o]
Proof of the Theorem 3.5.1 (without (A4)) Let P© be a probability
measure ONVE_]_ satisfying @) and @) of the theorem. Then the law

of ($8Y), X(yM™), PO) is Q&N) Jony: We claim thatQ® — QO

weakly.

Step 1. We consider the truncated process for> 0. Letyk : RY - R

be a smooth function such that

(1 M</2,
‘[’K(X)_{o it x> K,

and 0< yx < 1. SetXsK(x 1) = X&(x, gk (X). Then the local
characteristics oK®X area?(x,y, t)wK(x)qbK(y) andb®(x, t)yk (X)
which obviously satisfy (A4) Lep; K be the flow generated by
x#K. Denote the law of g (xV), X‘BK(y('V'))) by Q=K. Then

QEK) — Q0K weakly Let us compar@(O K) and Q©@. we
K
may assume thax(V| < — |y(M>| < —. LetA e B(Vn X V).

Then clearly

QU (An{g: 1l < g}) = QU (An {4y < g}) (3.5.24)
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Step 2. In order to show the weak convergence{@*)},.o, it suffices to
show that for any closed subsgbf Vy x Vi

lim Q¥(s) < QXs).

For anys > 0, there exists & > 0 such thaQ@g,) > 1-6, 90
whereGg = {¢ : ||¢l| < K/2}.Then

Q9 (Gk) = QO(Gk) > 1 -6, by B52H)

SinceQEK) — QOK) weakly, therefore

lim Q¥K)(Gk) > QU(Gk).

-0

Hence there exists af, > 0 such that for any < ¢,, we have
QEK)(Gk) > 1 - 26. Therefore

Q¥(S) = Q¥(S N Gk) + QS NGY)
< QEKY(S N Gk) + QEN(GY)
< QEK(S N Gk) + 26.
Thus
ﬁ)Q@(s, < ﬁQ(&'Q(s N Gk) + 26
< QOK(SNGK) + 26

<QO(Ss) + 25

Sinced is arbitrary

lim Q¥(s) < Q(s)
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3.6 Tightness of Sobolev Space-valued Processes

Let Pﬁ?p denote the law of &, Xf) on W3 = (C([0, T]; Hi3%))? for
m > k — 1. We shall discuss the tightness{@f(ni)p}8>0. We begin by
considering the casa = 0, Wép = (C([0, T] : L'SC))Z. For someK > 0
consider a truncated procesg™{', X¥X). Let the law of the truncated
process be denoted tﬂé‘fb'(). Letyk : RY — RY be a smooth function
such that
~x | X X <K/2
K7 lo ifix>K

Set XK = g (XK. Let the law of ¢, X&) be denoted by
PEX). We have the following result about the tightness{liff’[f)}.

Lemma 3.6.1. {ﬁgbK)}8>0 is tight with respect to the weak topology of

1
ng for any K> 0 and p> dV3(2 - —)
’ Y
Proof. We have form Lemmg3.4.2

E [1674(0) — 62X (9IP] < Lit— §*77 forall x e RY
and E[l6f (9P| < L forall xe R O

Integrating the above relations with respect to the Lebesgeasure
on the ballB, = {x: [x < n}, we get

_1
E[llg™ - ¢5115 ] < L vol (Bo)it - 87>
E (16715 | < L VoI (Br).

We can find similar estimates fcf(f’K. These estimates imply the
tightness of P(K)g p}..0 in the weak topology.

Let pf&f) be a probability measure cwlf_l, with local characteris-
tics a(x, y, ik (v (y) andb(x, gk (X), whereyk : RY — Rl is the

smooth function described in sectionl3.5. For @ <t - - - < ty define
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ﬁ)(k(}lK)(th €A,..., XtN € AN7¢11 €By,... ,qth € BN)
= P(k(ilK)(l//K(th) €A ...,.uk(Xt,) € BN, ¢y, € Br..., ¢, € BN)

92
5(0.K) 2 RQK)
The measur®,~;” onW_; can be extended to a measmggp on

2
WG, o

Lemma 3.6.2. {F{),..o converges weakly B~

p with respect to the
weak topology of \é/p.

Proof. Fix N, taket; < t; < --- < ty. It follows from the weak conver-
gence of theN| + M)- point process that

lim ECN) i (x0) .. en )] EX) [ri (%) .- den(xn)] . (3.6.1)

1 1 .
Letn1(X),...,nn(X) € L9(By), WhereB +a = 1. Multiply the above
to the both sides of(3.6.1)) and integrate oBgr Then we get

im EEY (A, 1)@ 72) .- (rn)]

= EQO [(¢um)... (domn)] . (3.6.2)

Similarly we can show that fows,...,an > 0,81, ..., Bu > 0,
{1...,40m € LY(By)

lim BT [(@a. )™ .. B )™ k(%) 0 (G (K )-L)™

= EE}?)[(%, )™ - (B N ™ Bk (%), 22
Wk Xeyy)> MYV

= ECN (Bt m1)™ - - (B IN)™ Kty 221 - . (Kegg> 2W)P]

We can replac®) etc. byl5éf’pK) etc. and henc®& — I5g”pK)
with respect to the weak topology. O
93

Proposition 3.6.3. {Po,p(s)}wo converges weakly. The proof is similar to
that of the weak convergence{€®)} and is therefore omitted.
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Theorem 3.6.4. AssumdA2),, (A3), k > 2. Then{Py_2,p?}. is tight
with respect to weak topology ofﬁ_/\ip

Proof. Consider the system of equations ®f¢{,|a| < k - 2. Set
D?¢¢ = “¢¢ and consides® = (*¢flal < k - 2),

dgf = X*(¢f, d)
d 5 '

A7 = ), 35 X @ A0 9 ol = 1
i=1

etc. In vector notation
def = X°(¢f. dt)

whereXe(x,t) = (X*(x 1), 3 2 X?(%, )X, ...), X = (X, Xg,...). Then the
|

law of (g7, X¢), viz. Py ,© with respect to the weak topology which is

equivalent to the tightness d?(k‘i)z p}. m|

Remark 3.6.5.In view of Proposition 3.1.10, the family of measures-
{Pi-3®}e0 in tight in W2

3.7 Proof of the Main Theorem

The weak convergence ¥} ,.o(m < k—3) has already been proved.
Here we shall prove the strong convergence;ofinder the assumption
that Xf converges strongly t&°. We shall prove thapf — ¢; strongly.
Consider the stochasticftérential equation

dgp = XO(¢?, dt) + c(a)dt, ¢S = x (3.7.1)

The solution of [37]1) is denoted B§(x). Form < k — 3, let B
denoted the law ofg¢, X2, ¢°, X°) defined orW?, x W2, (whereW2) is a
replica of W2). A typical element ofV2 will be denoted asd, X). We
show that{P,®)},.o converges weakly to sonf&,©. Since{Pn®}.0
is tight, letP© be any limits point of P}, ThenPy )2 = PR©
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(= limit of P®)). By the first assertion of the theorepis generated
t

by X; + [c(x,r)dr. SinceX; = X; a.s. Pn(©@, ¢y = ¢ a.sPy@ by the
(o]

uniquene~ss of the squtioQ i.ePm@ is supported in the diagonal set
(6. X6, X) : ¢ = $,X = X}. Let pm be the metric o2, i.e., for
(¢, ¢) € C([0,T]; C™ x C([0, T]; C™),

S
pl, ) = ZN] 2V T+ 16 — dlllmn

which is a bounded continuous function B, x W2. Therefore
E [om(@°. ¢°)] = En® [om(@. )] = EOm[om(@. 8] = 0,

sincepm(e, @) = 0 a.s. Hence® — ¢° strongly.

3.8 Proof of the Approximation Theorem

In this section, we shall discuss the proof of the approxionatheorem
for stochastic ordinary elierential equations described in sectlonl 3.2
Recall

dof r . .
= kZ‘{ Fi(@f, OVE(D) + Fo(@f, 1). (3.8.1)

We assume (Al). To prove the theorem we need the following
lemma.

Lemma 3.8.1. AssumdgAl). Then for any continuous functiongxft)
and gx,t) onRY x [0, T]

E

t t
| foeovitarar [ g ovitordoie

t
- f f(x, r)g(y, r)vij(r)dr

(3.8.2)
uniformly on compact sets. 95
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Proof. Let f(t) andg(t) be bounded measurable functions.Then

E | <nK|Ifllligll lt—s (3.8.3)

t t
f f(r)v{ (r)dr f g(o)V;(o)do|Gg

Indeed, the left hand sidEZ(3:B.3) is equal to

t t
E f f (1) EVE (1)IGE]dr) g()Vf (o) deriGE

S o

< K7 |If]l ligll It - 8, [from (AL (c)]. O

So in view of [3.8B) it is enough to prove the case wHér t),
o(x, t) are step functions df Therefore assume that

f(xt) = f(x.t),g(xt) = g(x.t) for i <t <ti,q
Then

E

t T
f F(x V() f oy, )V (0)lrGE

i1

= Z f(x, t)a(y, tk)E[
. 1

+> f(x,tk)E[
k

=17 +15, say

Vi (T)dr f V‘];(O')dO'|G§
ty

—_—

k
thrl

ti
V(@)dr [ gy, o)V ()dorlGE
s

—_—

ty

Now

-1 t

i — Zk:f(x,tk)g(y,tk) f vy (ry dr = f (% gy, i (1)
tx S

i1
[ veery

t

ty
g(yo)v;(o)dor|Gg

S

I5=> f(XWE|E

k

% 0’
&—0
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i1
f\/f(T)dTthsk — ase — O‘

ty

since E

Proof of the approximation theorem
(Theorem 3.2.2)

In view of the main limit theorem, all we have to do is to ver{§2)x
and @A3). In this case, we have

(X 1) = > Fr(x V() + Fo(x,b),
k=1

B (x 1) = Fo(x, 1), B (x.1) = 2 Fi(X OVE(D),
k=1
t

f FL(x 1)V (7)drIGE

S

A (xytn = E Fa(y. VE(D)

k¢

Therefore

E

t
fAfj (X y, t,r)dr|Gg
S

:ZE
k¢

t t
[ arfinnio [Flomione:

t
j; f FL(x r)F)vij (rdr.
S

(A3) can be proved similarly. Le®,© denote the law of?, X2, Bf)
defined onW2 x V;. Then{P®)} -0 converges td, weakly. This can
be proved in the same manner as we did earlier. The limit

((¢1, %0, By), PO)
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satisfies:

(i) Xt is a C-Brownian motion with local characteristiag(x,y,t) =
> FL HF LY, vij (1), wherevi] = vij + vij, b(x, 1) = Fo(X,1).
k¢

t
(i) ¢r is generated b¥; + fc(x, rdr, where
o

c(xt) = Z %F;(x, t)F LK Ovie ().
ki

t

97 (iii) B(t) is a Brownian motion with mean zero and variarfcéj (r)dr
o
and

t
<X(9. B >= Y, [ Fulxniarydr
12 [0}

This can be proved the same way as was done in Lemma 3.5.6.
Now set

t

r t
%09 =Y f F(x 9dB(9) + f Fo(x 9ds
k=17

(o]

Then it can be shown that X; — X; >= 0 which impliesX; = X;.
Therefore, with respect ﬂ@ﬁﬁ)

r
der = > Fi(er, DAB(t) + c{g, 1) dt (3.8.4)
k=1
We shall now change the Ito form to Stratonovich form.

t t
fo Fi(@s(). 90dB(S) = f F(6<(). 9dB(9)

+12fti':(¢ (%), 9) x Fy(#s(X), 9we(ds  (3.8.5)
224 Jo o 0T IO I 8.
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Also

. 1 0 . . _
J _ = _ F! J
cl(x 9 5 k%i % F (X 9F (X Svie(9)

:% D kel —val)IF FAI(x 9. (3.86)

1<k<e<r

Combining all these results,we conclude the proof.

3.9 Ergodic Case

Let z(t),t > 0 be a time-homogeneous Markov process with state space
S. Let Py(x, A) be the transition probability function. Assunf(x,.)

has a unigue invariant probability measurandz(t) is a stationary er-
godic process such that

Pu((t) € A) = u(A).

98

Forze S, x € RY, let F(x,2 andG(x, 2) be R%valued functions
smooth inx and the derivation bounded and continuousXrg). Let
Y(x,zt,w) andZ(x, z t, w) be continuous random fields such that for
each fixedz, Y(., z t) andZ(., z, t) are continuou€>-valued martingales
with local characteristicaY (x, y, z) anda?(x, y, z) respectively. Assume
Z(t) and{Y, Z} are independent. Consider the following stochastiedi
ential equation

def = eF(¢f, Z(t))dt + £°G(¢f, (1)) dt
+ VEY(¢8, Z(t), dt) + £Z(¢%, Z(t), d). (3.9.1)

Let ¢f(X) denote the solution of{3.9.1) with the initial condition
£(X) = x. Thenife — 0, ¢f — trivial flow, i.e., gP(X) = x. We
will see that if we change the scale of time then the limit flaxedimes
nontrivial. Sety{ = B Then [38.]1) becomes

dyt = F(yt, Zt/g)) dt+ eGyy, Z(t/)) dt
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+ YOS, Zt/€), db) + VBZP(yS, Zt/e), d)  (3.9.2)

where
Yé(x, Zt/€), dt) = VeY(x, Z(t/¢), dt/e) }
(3.9.3)
ZE(X, Z(t/€), dt) = VeZ(x, z(t/), dt/g).
Let
G =o(Zr),Y(Xzr),Z(X, 1) : 1 <t/e).
Set

t t

Xg(x,t):f dr+st

(o]
t

ng(xz(r +\/_f Za xz dr) (3.9.4)

(o]

99 Claim: (y{, Xf) converges as stochastic flows.
Indeed, for ank > 0 (A2) can be verified as follows:

e| [ or (x2(2)arce| - o | [ x2(2are]
- (t—9 f D2F(x, 2u(d2) in L! -sense  (3.9.5)

by the Ergodic theorem

t
E[f DﬁDgaY(x,y,z(g))dﬂGg] - fDﬁD;’aY(x,y,z)p(dz).
) (3.9.6)
(A3) is clear. Thereforeyf, X) converge weakly as stochastic flow.
The limit is a pair of Brownian flow an€*-Brownian motion with
local charactenshc# a’(x,y, 2u(d2), [ F(x y)u(d?.

Special Case<Lonsider the following stochastic ordinaryfféirential
eqguation
dot

el = sF (47, 2(1)) + £°G(¢7, A1)). (3.9.7)
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In this case);y — yt such thaiy; satisfies a deterministic equation

dyy -
o = P (3.9.8)
where
F= f F(x, 2u(d2). (3.9.9)

This may be regarded as a low of large number for the #ow
Let F(x,t) be a period function of with period 1 andz(t) = t on
T! = [0, 1] (one dimensional torus), an ergodic process with invaria

measuralt. Consider d .
X _Fx D). (3.9.10)
dt £

100
0

The solution of (39 70¥¢ (X) i(; , Whereg? satisfies
E— t

d;ﬁ) —_ (40
5t - (7). (3.9.11)

where L
F(X) = f F(x, t)dt. (3.9.12)

This is sometimes called up the averaging of the equafichl®).
Let us next consider the case when

a'(x,y,2) = 0,fF(x, 2u(d? =0 (3.9.13)
In this case the limits of{ is also a trivial flow. So we have to

change the time scale in afidirent way. Se{? = Pr/c2- Theny? is
generated by where

X0 =2 [ Fxz(L)ars [o(xz(L))or
+ f Z@(x,z(é),dr), (3.9.14)
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Z¢ (x, z(é)t) =¢eZ (x, Z(t/sz) L) (3.9.15)

12
&
We now make an assumption regarding the existence of a esturr
potential. A5) There exists a unique recurrent potential, viz.

t
veA=im [(PEA - (@916)

[uniform convergencav.r.t.Z]
and

Mn@=j@@wﬁ@)

mapsC;? into C°. Itis clear that if| f(X)u(dX) = 0 then
b b

t
(N = im fo T, f(dr. (3.9.17)

101 where T, is the semigroup corresponding to the transition function
Pt(X, )

Theorem 3.9.1. AssumgAb). Then(J/f, )~<f) converge to a Brownian

flow of C*-diffeomorphism and €-Brownian flow. The local charac-
teristics are given by

a0 = [ & (xy.2u(e3

+f{lfi(x,z)Fj(y,z)+lfj(y,Z)Fi(X,Z)},u(dZ) (3.9.18)

b(x) = f G(x, 2u(d2), (3.9.19)

- & roF

cd(x) = —(x, 2)F¥(x, 2)u(d2) (3.9.20)
kZ;f e :

where F(x,2) = f ¥(z, dZ)F(x, Z). (3.9.21)
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Proof. Let Gf = 0(Z(x,2 9),Z(9) : s < t/£?). We verify (A2), for any
k> 0.

E[ fs tG(x,z(g))dnég] - gZE[ fs :G(x, z(r))dr|(§§]
— (t— s)fG(x, 2u(d2)inL! -sense,

by the Ergodic theorem
[t

E f xyz dr|G£ —>(t—s)faz(x,y,z)p(dz).

t/e?
E }fD F(x z( ))dr|G€ — ¢E ngF(x,z(r))dr|ég
E
L s s/£2
(t-9)/&?
_ s f Tr(D“F)(x z( ))dr
([oy Markov property])
[whereT,F(x,2) = fT,(z, dZ)F(x, Z)] = by (A5). 102
1 t T
Bl f F'(x, z(r/&%))dr f Fl(y, 2o /£%))dor|GE
t/e t/&?
= &°E f Fl(y, z(o))do f oFl(x, 2(7))dt|GE
s/e2

(t-9)/&2 t/e?—o

= 82 f do (f PO-(Z, dz’)FJ(y, Z,)) [ f TT(Fi)(X7 Zl)dT)zZ(S/sz)]

— (-9 [ FIg2)F e 2u),

[using Ergodic theorem and\b)] O
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Similarly

T

t .
fg_ka(X’Z(T/SZ))deFk(X,Z(O'/gZ))d0-|G§

S

1
2. =E
k
— (t- )¢ (X).

We next check A3)«.

t

el

S

1E :—LDB F(x, Z(s/&?))
E E

(t-9)/&?
= f T, (DF)(x, Z(s/&))drDPF (x, z(s/£%))

(o]

is bounded (independent of. This completes the proof
We shall next consider an example concerning the limit deer
studied by Papanicolaou-Stroock-Varadhari [29].

Example 3.9.2.Let (x(t), Z(t)) be the difusion process iiR® x RY de-
fined by the following system of stochastididrential equations:

dxX(t) = %F(xg(t),zs(t))du G(E(t), Z(t))dt
+ 0, Z(1)dB; (1) (3.9.22)
j=1

dZ(t) = 8—12I5(><‘9(t), Z(t))dt + i:L D10, ZW)dBi0)  (3.9.29)
j

103 where Bi(t),....5:(t)) and Bi(t), ..., (t)) arer-dimensional Brown-
ian motions independent of each other. HEi@) is called the driving
process and¢(t) the driven process. As — 0, the right hand side of
B2.23) diverges and hence the system of solutisi(ty, £ > 0 does
not converge. On the other hand, the first compomnéft} varies slowly
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compared withe®(t). Papanicolaou-Stroock-Varadhan have shown that
under some conditions on the ¢heients, x°(t) converges weakly to a
diffusion process. Le{ (X, 2), y{(x, 2)) denote the solution of{3.9P2),
B9.2Z3) starting fromx, 2) at timet = 0. The pair defines a stochastic
flow of diffeomorphisms, but the first componekitx, 2) = ¢{(., 2), zbe-

ing fixed, does not in general. HoweverFifx, 2) = F(2), 5(x, 2) = 6(2)
then [39.2B) defines a closed systerfi(x, z) does not depend ox In

this case the mapping (., 2) : RY — RY becomes a stochastic flow for
eachz, generated by

X(x, dt) = %F(x, ZO)dt+ Y o j(x Z(0)ds) (). (3.9.24)
,-

Now the solutior®(t) has the same law a&(t/?). Put
t
XE(x, 1) = f EF(X, Z(r/e%) + G(x, Z:(r /32))] dr

t
+Zf0-~i(x’zl(r/82))dﬁj(r)- (3.9.25)
j (0]

Let ¢7(x, 2) be the flow~generated bi(f wherezis the initial value.
Then the~ law of §i(x, 2), X7) = the law of @¢{(x 2),X{). Therefore
(#5(x, 2, X£) converges.

Remark 3.9.3.These convergence problems do not include the homog-
enization problem. In fact here our conditions are moregémt than

. L . X
those in homogenization. If we writg(x,y) = a(—, X), b*(x) = b(%),

E &
then for the convergence of stochastic flows associated atjth we 104

need boundedness conditions on the derivatives ahdb®. Such con-
dition are not satisfied for the homogenization.

3.10 Mixing Case

Suppose we are given a filtrati¢Bs}, 0 < s < t < oo such thaGs; C
Ggr if § < s<t<t. Foreach > 0 we define the strong mixing rate
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B(t) as follows

B(t) = sup sup |P(A N B) — P(A)P(B)|. (3.10.1)
S AsGyy, BeGeitoo

Not that if Go s andGs;t . are independent for ang theng(t) = 0.
Hences(t) ~ 0 meanss, s andGs,+ ., are close to being independent. In
particular, ifuis aG;-measurable random variable such tBag] = 0
thenE[u|Gy sl] ~ Oif B(t—9s) ~ 0. more precisely, we have the following
lemma.

Lemma 3.10.1.Let u be a G.-measurable random variable such that
E[u] = 0. Then for any pq > 1 with p* + g% < 1, we have

E [[E[UGos]I'T"" < CA(t - 9)/PE[ui ¥/ (3.10.2)
1 1 1
where C=C(p,g)and= = — + —.
(p.q) and - ar

Proof. (Ibragimov-linnik [11]) letv be a bounde&, s-measurable ran-

. L1 1
dom variable. For any’,q > 1 with F + a =1, we have

E[IE[U/Go.s]IM] < E[IE[UIGo,s]1Y? EIE[UGo.s]l M¥ 1YY
< E[uvy] VP E[ju] M THY, (3.10.3)

wherev; = signHu|Ggs]. Similarly we have forp”, q” > 1 with & +
1.
q/l
E[uw] = E[u(vi — E(v1))]
< Eus(va — E(v)]Y? Eflvi — E(va)| U T TV,
whereu; = sign E[v1|Gte] — E[V1]). SetA={w:u; =1}, B={w:
vi = 1}. Then
|[E[uvi] — E[w1]E[v4]| £ IP(A N B) — P(A® N B) + P(A° N BO)|
+ P(A)P(B®) + P(A)P(B) — P(A)P(B) — P(A%)P(B°)|
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< 4B(t-9).
Sincelv; — E[v1]| < 2, the above inequality implies
Efuvy] < 277 p(t — 97 E[Jul'1¥9".

Substituting the above iR {3.10.3), we get

1 1

E[E[UGos]l M] < (27 7 )Y/ g(t — 875" E[Jui TV E[MT P17

Setq = q” andp = p'p”’, thengp” = r’, wherer—1, + % =1 and
complete the proof. O

We establish a similar estimate f6t-valued random variable.

Lemma 3.10.2. Let ux, w) be a C-valued random variable, G.-
measurable and EI(X)] = O for any x. Then for any ,m > 1 with
p~t+g! < 1and for any K> Othere exists a constant € C(p, g, d, K)
such that

1/q
) sup|D“u(x)|‘1

|a|S1|XISK

1/r
E [sup|E [u(x)|GO,s]r] < CA(t - s)ﬁE

[x<K

(3.10.4)

1 1 1
where— = = + =,
r-p d

Proof. Let N be any positive number. There exigts. .., X,(n < (2N + 106
K, . K, . .
1)%) such that{B(x; N),I = 1,...,n}, whereB(x;; N) is the ball with

. K
centrex; and of radlusﬁ, covers the cubeK, K]d. Then we have
SUP|E[U(X)[Gos]| < max  sup [E[u(X) — u(x)IGos]|
IX<K ' xeB(x.£)
+ max|E[u(x)IGos]l
=11+ 15, say. (3.10.5)

O
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Using mean value theorem, we have

K
lh<Smax ) sup |E[DU(X)Gosll
N K
lo|=1 *eB(X, )
K
< N Sup [E[D*u(X)IGo s]I-

=1 M=K
Therefore

1/r

Sup|E[D*u(x)Go,s]"

1/r K
E [SUDIE[U(X)IGo,s]Ir] <—E
N |a|:1|X|SK

IX<K

+ C(2N + 1)%8(t — 9P maxE[Ju(x)[]s.
1 _r
SetN = g(t—9) PA+1) ThenNdg(t— 9P = g(t—9PA+ 1) Since
r < gthe above is bounded by
1

- - 1/q
(K +C3hst- 9P+ 1)E sup|D“u(x)|q} .

laj<1 M<K

This proves the lemma.

Lemma 3.10.3. Let u(x) (resp. \{x)) be a C-valued random variable
which is G, (resp. Gt)-measurable where< u. Suppose Ri(x)] = 0
for all x and set Wx) = E[u(X)v(x)]. Then for any pqwith p1+2q7* <
1 and for any K> 0, there is a positive constant € C(p, g, K) such
that for s<'t

1/6
E [sumE[u(x)v(x) - w(x)|eo,s]|5] < C{B(u - B(t - 97
IXI<K

1/2q

E x E

sup|D*u(x)|*
E2h MK

2q
sup|D“v(x)|2q] (3.10.6)

<1 [X<K

107 where pt+2q7t=6"1.
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Proof. Lemmda 310 with uv-w substituted far Then

1/r
E [suplE[u(x)v(X) - W(X)IGo,s]Ir]

IX|<K
) 1/q
< CA(t- 9TE| >" sup|D*(uv - w)[

[ |a<1 M<K

11/2q

< C'B.(t - §)FETE Z sup/ DU  x
o<1 X<K ]
11/2q
E Z sup|D%v(x)|%

[jaj<1 M<K

, (3.10.7)

wherep™ + g% = rL. Sinces < r,r can be replaced by in the left

hand side of[[3.1017). Next note thét! = r~! + g 1. Then by Holder
inequality

1/6
E suplE[U(X)V(X)|Go,s]|6]
IX<K

_ 1/6
-E |slu}[g|E[E[u(x)IGo,s]V(X)I(-‘vo,s]I‘S]

- g 1/5
<E Sup|E[U(X)|Go,t]|rGo.s] E[SUP|E[V(X)|Q|GO,S]%]

[ [X<K IX<K

. 1/r 3
<E SUPIE[U(X)IGo,t]I’] .E[SUIOIV(X)IQ]

1<K IX<K
1/q 1/q
1
< CB.(u-t)r@DE Z sup|D*u(x)|4| E [sup|v(x)|q] )
=1 M=K IX<K
mi
Finally we have by Lemma=3T10.1 108

W(X)| < C"B(u—t)YPE[u(IAYIELMXI T
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< C'B(u - )YPE[UITTYIEL V()Y

wherept+q 1 +r! =1 andr < g. Therefore the left hand o {3.10.6)
is bounded by

CB(u—t) p(d1+l>E[Z sup|D*u(x)|91Y9E[ sup [v(x)[9]¥9.  (3.10.8)

=1 M<K IXi<K

Hence the square of the left hand side[of (3110.6) is boungede
the product of the right hand sifie_3.710.7 ahd (3110.8). Trosgs the
lemma.

Consider a stochastic flerential equation with a parameter- 0

dx(t) = eF(x(t), )dt + £2G(x(®), ydt + £Y(x(t), dt) (3.10.9)

X eR4,0<t < oo,

whereF(x, t, w), G(x, t, w) areR%-valued random fields$;,-measurable,

continuous in X, t) and k-times continuously fierentiable inx, the first

derivatives are bounded.

FurtherE[F(x,t)] = 0 for anyx, t. Y(x,t),0 <t < oo, is a continu-

ousC¥1-martingale adapted 16, with local characteristica(x, y, t, )

with properties similar to the above. The equation is sintethe one

introduced in the previous section. In fadefx, z(t)), G(x, z(t)) etc. of

the previous section correspondR¢x, t, w), G(x, t, w) etc. of this sec-

tion. Let¢;(x) be the stochastic flow determined by the above stochastic

differential equation. Then bothf and¢f/8. We shall study the weak

convergence aof; ase — 0 as stochastic flows under a mixing condition

on the stochastic dkerential equation. Such a limit theorem has exten-

sively been studied in the ca¥e= 0, i.e., in the case of stochastic or-
109 dinary diferential equation see Khasminskii[17], Kohler-Paparioal

[28], Kesten-Papanicolaol_[15]. In those works the weak/emgence

on diffusion processes has been studied. Here we shall study tte wea

convergence as stochastic flows including the das€0. Let

Gst = o(F(.,u),G(,u) = Y(.,Vv),s<u,v<t)

and lets(t) be the strong mixing rate associated wih;. We shall
introduce the assumptions:
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(A6)« There are continuous functioms= (a;j(x,y,t), A = (Aj(XY,t),

b = (b'(x, 1)), ¢ = (¢'(x, t)) which arek-times continuously dierentiable
with respect tax, y or x, as the case may be, and the first derivatives are
bounded such that the following are satisfied

t+e
Ieuj(x,y,t)—lim}fE[euj (x,y,%)]drlza
e—0¢& Fo
t
1 t+e T
Ayt — lim = f f e [Fitx SF (v, 5)] o = 0
-0 &3 & g2
t t
t+e

|bi(x,t)—Li%%fE[Gi (x,é)]drl -0,
t
t+e

1 r oo 0 . T
_ - E J ~_\_—_FI _ —
|(X’ t) ‘|9|£n>0 g3 dede- j E [F (X’ & )an F (X’ 62)]| =0,
t t

uniformly on compact sets.
Letp,q > 1 be such thap™ +q* < 1.

(A7) pq (@) [ Ar)FEDdr < oo,

(b) For anyK > 0 the 2qth moments of sup|D‘X’D€,a(x, v, l,
IX<K,lyi<K

sup|D?G(x, t)| are all bounded by a positive constant
xi<K

independent of, || < k, |8] < K.
110

Remark 3.10.4.Note that here we are assuming the existence of in-
finitesimal limits whereas in the previous cases we havenasdithe
existence of global limits.

Theorem 3.10.5. AssumgA6)x and (A7) pq for some pq such that
p~! + gt < 1. Then the conclusion of the main limit theorem is valid.
We shall give the proof of the theorem in a more general ggttin
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Let X = X°(x,t),e > 0 be a family of continuous ‘1. semi-
martingales adapted to;e > Owith local characteristics X, y, t, w),
b*(X t,w). We assume as beforé and Iy are continuous in t and k-
times continuously gerentiable in xy and x respectively. Séf =
E[b?(x,t)] andb® = b® — b?. In place of(A6)x we assume:

(A8) There are continuous functions=a(a;(x, ¥, 1)), b = (b(x 1)), c =
(c'(x 1)), A = (Aj(x Y, t)) which are k-times continuously/fren-
tiable with respect to ¥ or x and the first derivatives are bounded
and

t+e
la(x,y, t) — 1 f E[a®°(x,y,r)]dr| - Oase — O,
&

t
t+e

Ib(x, t) - }ft_f(x, rydr| - Oass — 0,
E
t

t+e T

IAG(X Y, t) - 1 fdrde'E[E)f(X, T)b?(y, o)]l - 0ase — 0,
&
t t

t+e T

i 1 c 0 >
|c'(x,t)—;fd7fd0-2 E[bj(x,o-)(,)—iji (%1)]l > 0ase - 0,
t t

uniformly on compact sets. Set

<t = o (Y(L,Uu) = Ye(,Vv),b°(,u), s<uv<t).

Let(t) be the strong mixing rate associated witfGWe intro-
duce an assumption so that as— 0,8°(t) — O, E[|b®|r]] — oo,
but the rates of the convergence and divergence are balahed
p,q > 1be such that pt + 297 < 1. We restrict the time interval
to [0, T].

y: (A pq & = (@(xY,1)) andb® = (bf(x 1)) satisfy the same mo-
ments conditions as (A7) pq independently of. Furthermore
the mixing rates®(t) satisfies: withy such that p* + g% =y 1
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Y

T T
() lim of e (r)P@ D dr = 0, gf BE(7)

T
WO i = o[ [ ﬁS(T)p«%ndr]

0
(b) Foreach K> Othere is a positive constant+ Lk such that

T 1/q
[ Be(x) @D dr.E [sup|D55£(x, t)|2<1] < Lforall e > 0.
0 |

X <K

Theorem 3.10.6. AssumgA8)x and (A9)x pq for p,q such that pt +
207! < 1. Then the conclusion of the main limit theorem is valid.
Before describing the proof of the above Theorem let us pmint
that Theoreniz3.10.5 can be deduced form The@rem 3.10.6edndet
b*(x.t) = 1F(x t/e?) + G(x,t/2),y*(x1) = %Y(x, t/£2). Then(A8),
immediately follows fronfA6)«. Set G; = G

s b
£27 62

Then we havgs®(r) = 8(r/£?). Therefore

T T
f B (r) e dr < &2 f B (r) 7 d,
0 0

. 1/q 1 1/q
E [sup|Dﬁb8(x, t)|2q] = SE [sup|DﬁF(x, t)|2q] .
&

[X<K [X<K
Hence A9)y pq is satisfied. 112

Proof of theorem 3.10.6Set Dbf(x,7) = u’(x,7). Then by
Lemma3I0R, we have forsuch thayy ™ = pt + g1

s 1/y

sup| | E[u*(x,7)IGg ]I

[x<K

E

1
Y

S
< C[fﬁg(‘r— s)p<f++1)dr] SupE
t

T

1/
Z sup|DPu?(x, T)|q] .

|B|Sl |X|§K

Now pick ¢ such thatp™ + 2q~* = 6 L and g’ = ré~. Thendq = q,
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whered’is the conjugate op."Then by Holder inequality

S

1/6
sup| E[ug(x,r)|G§,s]dr|ug(x,s)ﬂ

IX<K

E

1/q
X

1
S ¥
< C[fﬂg(r— s)ﬁdr] SUpE| Y’ sup|DAue(x, 7)[°
t

T |ﬁ|51|X|SK

1/q
E [sup|u8(x, s)|q]
X<k
<L
This proves A3)k. We next prove A2)k. Set
a(x,y,r) = E[a°(x.y,)].

Then

t t
fés(x,y, r)dr—>fa(x,y, r)dr
S S

follows immediately.

t
sup| | E[@(x Y, NIG;Jdrl - 0inL - sense

IX<K

whered® = a® — a°. Similar estimate implies

Xl

S

sup| E[us(x,r)|G§’s]dT|"

Ixi<K

s 3 1/q
< C[fﬁS(r— S)de] E Z sup|D’3us(x,T)|q‘
t

1Bi<1 [X<K

E

— Q0ase —» 0.
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113 SetK®(t, 0, X, Y) = b?(x, 7)b(y, o) andK® = E[K?], K& = K& — K®
Then by A.8)«

t+e T _
f drf o Kigj (.o, % y) = eAj(X Y, 1) + O(t, €) (3.10.10)
t t

o(t, &)

&

where

— 0 uniformly int ase — 0. By Lemmd3.1011, we have

t+e t _ t+e t ;
| f de do-Kigj (r,o, X y)| < f de dofE(r — o) p(d+ 1)
t s t s

SUPEIIBE (y, o)1 x SUpE[BE (x, 7) + P42, (3.10.11)

Note that
1

t+e t N T
f dr f doB’(r — o)P@D = 0 f (1) pd+ 1) g |
t s o

Therefore[[3.I0.11) converges to zero. Hence
t+e T _
f d‘rf do-KiSj (r,0, % y) = eAj(X Y, 1) + o(t, &).
t S

This proves

t T _ t
Iimfdrf dO’Kigj(T,O',X,y)IfAij(X,y,T)dT.
e=0Js s s

On the other hand, by Lemrha=3.710.3,

t T N 1/s
E[|E[ f dr f daK;j-(r,a,x,y)lGS,s] I‘5]
S S

< CsupE [IB (x. )] " Ellbr (y, 7)) 2

t T 1
[ [ e [ dopete - aymmgee - g
S S
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~ 2
< CsupE [[Br (x, 7)1 " EfIbr(y, 1)

T , 2y
( f B (1) @) dT) — 0ase — 0.
(0]

These two computations yield

t T t
lim E[ f dr f daK;j.(T,a,x,ynGg,s]: f Aj(xy, 7)d".
£ S S S

This completes the proof.

3.11 Tightness and Weak Convergence of Inverse
Flows

Let X?(x,t), e — 0 be afamily of continuou€-semimartingales adapted
to Fy with local characteristicsaf, b®) satisfying Lipschitz continuity
and linear growth properties. Assume ti¥&(x, t) is a backward semi-
martingale, i.e., it satisfie\b) of ChaptefR. Set

{
XE(x, 1) = —=X&(x, t) + f d*(x, r)dr,
(o]

0
where d’(x,t) = Z oy A (X Y5 Oly=x-
f J

It is a backward semimartingale with local characterisits-b® +
d®. We make the following assumption:

(A2), The tightness conditionAQ), is satisfied for the backward
semimartingale. Se¥s, = (¢5,)"* and¥§ = ¥, whereg?, is the flow
generated by<®(x,t). Then for each, {¥g;}, s € [0, T] is tight. We
claim that for eacts, {Peh te [s, T]is tight.

Theorem 3.11.1.Let k> 4. The family of laws o¥#{ on Wy, m < k-4,
is tight.
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Proof. Let ¢‘;tK be the flow generated by the truncated proc€ss(x, t)
and Iet‘I‘Z’tK = (¢‘§tK)‘1. We shall prove the tightness ¥£ in W, .
We suppresK. Lets< t. Then
PE(X) - We(X¥) = Yo (¥) — ¥e(¥)
= 0¥ (E()) (Y (¥ — %), (3.11.1)

wherelég(X)| < K. For anyp > 3, there is a positive constattt such

that
3

2——
EWS, () - XP<Clt—g P.

O

In fact¥(x) satisfies the following backward stochastiffefiential
eqguation

t t
Pi(x) = X—f XE(Pr ¢ (x), dr) +f d*(Pr¢(X), r)dr.
S S

Therefore arguing as in Lemnia_3}4.2 we get the above estimate

On the other hand, the inverse of the Jacobian matfi#; satisfies
as in the case of a usual stochastiffalential equation (see lkeda-
Watanabe[113])

t t
@065 =1 - f (06) 1 XE (9. dr) — f (06, "G (). T)dr

0 0
hereG;i(x,t) = — —a (xV,)=x. Then we can show that
w ij(x 1) %ay,- axkam(x Y, Oly=x w w

(0¢¢)~t converges weakly in the same way as we did earlier. There-

fore the associated laws are tight. Consequently, forsany0, there is
aC = C(6) such that

P| sup |(0¢5)1(x)| < C|>1-6.
¥=K
te[0,T]
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Now, sinced¥?(x) = (0¢%)~1(¥§(X)) and|¥E(X)| < K if [x| < K, we 116
get

Pl sup [0¥{(X)| <C|>1-0.
[x<K
te[0,T]

Define

Acs = {cu Doosup |09, ()] < C}.
Ix<K,te[0,T]

ThenP(A.s > 1 - ¢ for anye. Therefore

E 509 — #5017 : Ass| < CPE[I WE() — X7 : Any
<CPC|t - §2°3.

Therefore the measui®9(.) = P(.|A, ;) satisfies
ECOWE(x) - P97 < CP.C/(1 - 6) Yt — 577

Hence the family of lawgP€9)} is tight for anys > 0. Sinces
is arbitrary, we see that the family of laws ¥, > 0 is tight. Now
consider the nontruncated case. We see, as before, thawhef'¥y
converge weakly with respect to the weak topology\gf,. Hence they
are tight in the weak topology &, ,. We can prove the tightness ¥f
with respect to the weak topology W, m < k—4 in the same manner.

Remark 3.11.2.In the mixing case the tightness assumption is symmet-
ric with respect to the forward and backward cases. Henceghtmess
and weak convergence of inverse flows are always valid.

Remark 3.11.3.The limit of ¥{ is unique and it coincides with the in-
verse of the limit ofp;.
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Chapter 1

[LThe study of N-point processes was initiated by T.Erida
[9] and P. Baxendalé]1].

[L2] The local characteristics of Brownian flow was introdd
by Le Janl[Z3].

[L3] and [IT.%]. Most materials are taken from Kun[tal[18{lare
adapted to this context.

Chapter 2

[2-3] Stochastic integral based on C-semimartingale istduee
Jan [23] and Le Jan-Watanahel[24]. Also see Borkar [4] for re-
lated problems.

[Z3] The infinitesimal generators of stochastic flows webe o
tained by 23], 124] and Fujiwara-Kunit&l[8].

[28] This section is adapted fromn18].

[E4] Appendix: Generalized Ito formula presented hereniga
provement of the same titled formula [n]18]. Conditions osaed
here are much simpler.

Chapter 3

[B] Ideas of using Sobolev spaces for the tightness of ureas
originated from Kushne([22]. See also Ikeda-Watanabk [13]

[B:4] Moment inequalities in this section are some modiftaof
Kunita [20]. The method of introducing truncated procesduie
to Kestern-Papanicolaol [15].

[B:3] The weak convergence oN(+ M)-point processes is sug-
gested byl[15]. Lemnia3:8.2 is originated from Khasmin&kii][

[B8-£39] The arguments are adapted fréni [20].



120 3. Limit Theorems for Stochastic Flows

[BI0] Mixing lemmas given here are analogues of thosé_ i, [1518
although in [15] the forms are apparentlyfdrent.

[BI] The tightness of inverse flow is adapted fram [20].
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