Lectures on
Stochastic Diferential Equations
and Malliavin Calculus

By
S. Watanabe

Tata Institute of Fundamental Research
Bombay
1984



Lectures on
Stochastic Diferential Equations
and Malliavin Calculus

By
S. Watanabe

Lectures delivered at the
Indian Institute of Science, Bangalore

under the

T.I.LF.R.—L.1.Sc. Programme in Applications of
Mathematics

Notes by
M. Gopalan Nair and B. Rajeev

Published for the
Tata Institute of Fundamental Research
Springer-Verlag
Berlin Heidelberg New York Tokyo
1984



Author

S. Watanabe
Faculty of Science
Kyoto University
Kitashirakawa
Kyoto 606
Japan

© Tata Institute of Fundamental Research, 1984

ISBN 3-540-12897-2 Springer-Verlag. Berlin. Heidelberg.
New York. Tokyo
ISBN 0-387-12897-2 Springer-Verlag. New York. Heidelberg
Berlin. Tokyo

No part of this book may be reproduced in any
form by print, microfilm or any other means with-
out written permission from the Tata Institute of
Fundamental Research, Colaba, Bombay 400 005

Printed by M. N. Joshi at The Book Centre Limited,
Sion East, Bombay 400 022 and published by H. Goetze,
Springer-Verlag, Heidelberg, West Germany

Printed in India






Preface

These notes are based on six-week lectures given at T.CeRre, In-
dian Institute of Science, Bangalore, during February teilAf983.
My main purpose in these lectures was to study solutionsozhsistic
differential equations as Wiener functionals and apply to tremednfi-
nite dimensional functional analysis. This idea was due tddHfiavin.
In the first part, | gave a calculus for Wiener functionals,ickhmay
be of some independent interest. In the second part, ancapiph of
this calculus to solutions of stochastidfdrential equations is given, the
main results of which are due to Malliavin, Kusuoka and Stkod had
no time to consider another approach due to Bismut, in whioterap-
plications to filtering theory and the regularity of boundaemigroups
of diffusions are discussed.

I would like to thank M. Gopalan Nair and B. Rajeev for thefiiogts
in completing these notes. Also | would like to express mytityrde to
Professor K.G. Ramanathan and T.1.F.R. for giving me thjgodpinity
to visit India.

S. Watanabe






Introduction

Let W{ be the space of all continuous functiows= (vvk(t))’k:1 from
[0, T] to R", which vanish at zero. Under the supremum novdj,is a
Banach space. L& be ther-dimensional Wiener measure t,. The
pair W, P) is usually called-dimensional) Wiener space.

Let A be a second orderftierential operator oft? of the following

form:
d

B 1 d i 62 bi a
A2 i;a (X)axiaxi * .; (X)ﬁ + ¢(X). (0.1)

wherea (X)) > 0, i.e., non-negative definite and symmetric.
Now, let

al() =" ol (Work¥
k=1

and consider the stochastidigirential equation

dy'(t) = 2 ol (X®)dWK(t) + bl (X()dt,i = 1,2,...,d, (0.2)
k=1
X(0) = X, xeRY.

We know if the cofficients are sfiiciently smooth, a unigue solution
exists for the abov& DEand a global solution exists if the dfieients
have bounded derivative.

Let X(t, x,w) be the solution of[[0]2). Theh — X(t,x,w) is a
sample path of\,-diffusion process, wherd, = A — ¢(X). The map
x — X(t, x,w), for fixed t andw from R9 to RY is a difeomorphism

Vii



viii Introduction

(stochastic flow of dfeomorphisms), if the cdicient are sfficiently 2
smooth. And the mawv — X(t, x,w), for fixedt and x, is a Wiener
functional, i.e., a measurable function fraff to RY.

Consider the following integral on the Wiener space:

ut,x) = E exp{fT c(X(s, X, W))ds} JOK(, %, W))] (0.3)

where bothf andc are smooth functions dk?® with polynomial growth
order ancc(x) < M < oo. Thenu(t, X) satisfies

ou

—=A 0.4
5 = AU (0.4)
Uli=o = f

and any solution of this initial value probleri(D.4) with poebmial
growth order coincides with(t, x) given by [O.B).

Suppose we take formallf(x) = §y(x), the Diracs-function atyeRY
and set

p(t,xy) = E ; (0.5)

t
exp{ f c(X(s, X, w))ds} Sy(X(t, X, w))

o

then we would have

u(t, %) = f p(t. X, ) F(y)dy
Rd

andp(t, x, y) would be the fundamental solution €f{D.4)1.{0.5) is thus a
formal expression for the fundamental solution[0f]0.4jenfused in-
tuitively, butdy(X(t, x, w)) has no meaning as a Wiener functional. The
purpose of these lectures is to give a correct mathematieahing to
the formal expressiody(t, x, w)) by using concepts like ‘integration by
parts on Wiener space’, so that the existence and smoothhéssfun-
damental solution, or the transition probability densay {@.3), can be
assured througH{d.5). This is a way of presenfitgliavin’s calcu-
lus, an infinite dimensional dlierential calculus, introduced by Malli-
avin with the purpose of applications to problems of padiélerential
equations like[[d]4).
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Chapter 1

Calculus of Wiener
Functionals

1.1 Abstract Wiener Space

Let W be a separable Banach space an®(#Y) be the Borel field, i.e., 5
topologicalo-field. LetW be the dual ofV.

Definition 1.1. A probability measure: on (W, B(W)) is said to be a
Gaussian measuikthe following is satisfied:

For every n andly, £o, ..., 4 in \7V L1(W), £o(W), . .., £n(W), as ran-
dom variables on (WB(W), 1) are Gaussian distributed i.e3 V =
(vij), | = 1 and mR" such that(vj) > 0 and symmetric and for ev-
ery c=(C3,Cp,...,Ch)eR",

d
1
fexp{z V—_lcifi(w)},u(dw) = exp{ V-1<mec> -5 <Vac >}
W i=1
where< .,. > denotes th&" -inner product.
We say thap: is amean zero Gaussian measifren = 0, or equiva-
lently,
f f(wu(dw) = 0 for every CeW.
W



2 1. Calculus of Wiener Functionals

Let S(u) denote the support @f. For Gaussian measur8(u) is a
closed linear subspace @ and hence without loss of generality, we
can assum8&(u) = W (otherwise, we can restrict the analysisSi)).

Theorem 1.1. Given a mean zero Gaussian measuren (W, B(W)),
there exists a unique separable Hilbert spacedHW such that the
inclusion map i: H— W is continuous,(H) is dense in W and

f eV (dw) = e31A (1.1)

where|.|y denotes the Hilbert space H-norm.

Remark 1.H c W implies\}kv c H* = H and forheH,feV*V, ¢(h) is
given by¢(h) =< £,h >y4.

Remark 2. Condition [11) is equivalent to

f (W) (W)u(dw) =< ¢, ¢’ >y for every, £'eW. 1.1y
W

Remark 3. The triple WV, H, u) is called arabstract Wiener space

Sketch of proof of TheoremI.1:Uniqueness follows from the the fact
thatH = W*™".

Existence: By deflnltlon of Gaussian measur‘e[ C Lo(u). LetH be

the completion oNV underLy-norm. Letj : W3€ — {(W)eH; then j
is one-one linear, continuous and has dense range. Thecintof
follows from the fact that (Fernique’s theorem): there txis> o such

that
f &M 4 (dw) < co.
W

Now considerj*, the dual map of,

jfrH =H > W* oW



1.1. Abstract Wiener Space 3

It can be shown thaj(H) ¢ w. TakeH = j*(H) and for f,hin H,
define
< f,h>=< f,h> wheref = j*(f),h = j*(h).

Example 1.1 (Wiener space)et W = W andy : r- dimensional
Wiener measure.

H = th = (h'(t))l_,eW; : h(t) are absolutely continuous on,[T]
with square integrable derivativé(t), 1 <i < r}

Forh = (W' (t)_;. g = (¢ (t))_,, define the inner product

r T
<hg>=>" f h(9)g'(s)ds
i=1 o

ThenH is a separable Hilbert space andl H, u) is an abstract
Wiener space which is calleddimensional Wiener space

Example 1.2.Let | be a compact interval iR? and
K(xY) = KTy oy
wherek'l (x, y)eC2™(1 x 1), and satisfies the following conditions:
() Kioxy)=Ki(y,x) ¥V xyel 1<i,j<r.
(i) ForanycyeR,i=1,w,---,r,k=12...,n, neN, zn] zr] Kl
(X, X¢)CikCje > 0,V xkel , k=1,2,...,n. .

(i) for |a| = m, there exist® < § < 1 andc > o such that

r

DK% %) + Ky, y) = 2K (x,y)] < clx -y
i=1
where K (xy) = DgDyKI (x, ).



4 1. Calculus of Wiener Functionals

(As usual,a = (a1, a2, ...,aq) is a multi-index,ja| = a1 + - + a4

and
Ola|
a1 ad °
X1 " 0YXg

Now, for feC™(I — R"), f = (f%, f1,..., f"), define

r
1fllme = D > 1Dl

D} =

i=1 |oj<m
where ) )
1]l = max|f'(X)] + supM
Xel oy |X — y|€
X,Yel
Let

C™é(l - R") = {WeC™(I = R") : [Wlme < oo}.
W = (C™,||.llme) is @ Banach space.

Fact. For anye, 0 < € < 6,4 a mean zero Gaussian measure on W such
that
f W IW (Xu(dw) = KI(x,y)i, j=1,2,...,r.
W
Then by theorerfi 111 it follows that there exists a Hilbertcgdd c
W such that YV, H, i) is an abstract Wiener space. In this cddds the
reproducing kernel Hilbert space associated with the kdngvhich is
defined as follows:
Forx = (Xg, X2, ..., Xn), Xkel, 4 = (A1, A2, ..., An),

NG i .
A = (4)_, €r", defineWrq(y) = (Wi 3 )i
r n
by Wy ®) = > D Ky, %45,
=1 k=1
andlet S-= {WW] PX = (X X, - .o Xn), Xeel, A = (Aa, ..., An),
A = (A})j_,€R" andneN}
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For Wi, Wy, €S, whenx = (Xg,X2,..., %), 4 = (A1,...,4ny),
y=U1---s¥n), V= (..., vn,), define the inner product by

ng n2 r )
< Wiy a1, Wy >= Z Z Z K (X, W)/li(vé;
k=1 f=11,j-1

then §,< .,. >) is an inner product space and the reproducing kernel
Hilbert spaceH is the completion of under this inner product.

1.2 Einstein-Uhlenbeck Operators and Semigroups

Let (W, H, 1) be an abstract Wiener space aisiB(S)) a measurable
space. Amax : W — S is called anS -valued Wiener functionaif
it is B(W)|B(S)-measurable. Tw&-valued Wiener functionals, y are
said to be equal and denoted by yif x(w) = y(w)a.aw(u). For the
moment, we consider mainly the caSe- R.

Notation Ly = Ly(W, B(W), 1), 1< p < co. 10

Definition 1.2. F : W — R is a polynomial, if3 neN and ¢4, (>, ...,
{heW and fixq, ..., Xn), a realpolynomialin n variables such that

F(w) = p(£1(w), £2(W), ..., n(W)) ¥V weW.

In this expression of, we can always assume tHag ; isanONS
in the sense defined below. We define degfee={ degree P) which is
clearly independent of the choice {@f}. We denote byP the set of such
polynomial and byP,, the set of polynomial of degreen.

Fact.® c Lp, 1< p < oo and the inclusion is dense

Definition 1.3. A finite or infinite collectior{¢;} of elements ir\?V is said
to be anorthonormal systemdNS) if < £;, £; >y4= ¢j;. Itis said to be
an orthonormal basis@NB) if it is an ONS and (£, £5,.. )M = H,

where ({1, £>,...) is the linear span ofty, {2, .. .).
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Decomposition ofL,: We now represenit, as an infinite direct sum of
subspaces and this decomposition is calledMener-Chaos decompo-
sition or theWiener-Ito decomposition

Let C, = { constantg

Suppos&,, Cy, ..., Cn_1 are defined. Then we defig as follows:

Cn:arl] “'—2@[C0@C1@---@Cn—1]

11 i.e., Cp is the orthogonal complement &, @ --- & C,_1 in 55n|| [|IL>.
Since® is dense irL,, it follows that

Lo=Cy®Cq---0ChD---
Hermite Polynomials: The Hermite polynomials are defined as
D" e d e
Hn(x)_TeX d_x”(e ),n=0,12,...

They have the following properties:
1. Ho(x) =1

2. f t"Hp(X) = e (/24

n=0

3. %Hn(x) = Hn—l(X)

1 2 1
4. [ Ha()Hm(X e X /2dx = =6nm.
JHr(9Hn(9—= ~Onm
LetA = {a= (ag,ay,...)la €z",a = 0 expect for a finite numbers

of i’s}.
ForaeA,al = [[(a),lal = X . Letus fixanONB({1, {2, ...) in W
| |
Then foraeA, we define

Ha(w) 2 | | Ha (Giw)).
i=1

SinceHy(X) = 1 anda = 0 expect for a finite number ofs, the
above product is well defined. We note thf{.)eP,, if |a] < n.
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Proposition 1.2. () { ValHa(w) : aeA}is an ONB in L.
(ii) {@Ha(w) CaeA, la = n} isan ONBin G.

Proof. Since{¢i} is anONB in W {€i(w)} are N(0.1), i.i.d. random
variables onW. Therefore,

| HatwHuiuteny = [ ] [ HaG)Hs @ )utcn

W i=1 W
~ o0 1 _X2/2
= |I:1|RfHa(x)Hbi(x) ( )e dx

1 1
= [ [ 3700 = goar

Sinces is dense irl,, the systen{ ValHa(w); aeA} is complete inL,.
O

Let J, denote the orthogonal projection frobs to C,,. Then for
Felo, we haveF = Y, J,F. In particular, ifFe®, then the above sum is

n
finite andJ,FeP, V n.

Definition 1.4. The function F; W — R is said to be a smooth func-

tional, if AneN, €145, ..., leW, and £C=(R"), with polynomial growth
order of all derivatives of f, such that

F(W) = f(€2(W), L2(W), . . . €n(W)) ¥ WeW.
We denote bys the class of all smooth functionals 9.

Definition 1.5. For F(w)eS and t> o, We defin€T;F)(w) as follows: 13

(TtF)(w) = f F(e™'w + (1 - e ®)u)u(du) (1.2)

w
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Note (i): If FeS is given by
Fw) = f(&a(w), ... fn(W)), feC*(R")

for someONS {1, 2, ...¢n} C \7V then

1 2
TP = [ e+ V-2 ——et2y 13
J T

whereé = (€2(W), . . ., {n(W))eR".

Note (ii): The above definition can be also be used to defyrewhen
Felp.

Properties of T{F:
(i) FeS = TiFeS
(i) FeP = TiFeP

(i) For f,GeS

f (TiF)W)GW(dw) = f F (W)(TG)Wu(dw)
W

w

(V) TusF(w) = T(TsF)(W)

(V) If FeS, F =3 JiF, then
n
TiF = ) € ™(3F)
n

(vi) Tis a contraction ofhp, 1 < p < co.

Proof. (i) and (ii) are trivial and (iii) and (iv) follow easily fron{v).
Hence we prove only (v) and (vi). m|



1.2. Einstein-Uhlenbeck Operators and Semigroups

Proof of (v): Let¢ € W and
Fw) = EV-Tew) + %Iflﬁ-
Then
TF(w) = f exp[\/—_le‘tf(w) + V=1y(1 - e )e(u) + %Ié’lﬁ u(du)
W

— — 1 - 3
= eV ertew) + 31, f eV V(L - €M) (Ul
W

= eV e t(w) + %eezt'f'a.

Let
A= (A3, 22,...,A4N) €RY,NeN
€ =211+ + Andn, {6}, an ONS,
Let X
Fw) = eV-2e(w) + S\
Then

N
P = | e a6 - 2(V-iwy
i=1

(o0

= >0 (V=1)™ - (VE1I)™ X Hiny (1(W)) -+ Hin (En(W)).
Applying T; to both sides of the above equation, we have

eV-leto(w) + %eamﬁ = TF(w) = i (V=12)™ ... (V=Lay)™

m,...mMy=0

x Ty []‘[ Hm(a(.))] (w).
i=1
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15
Hence

N N
Ti (]‘[ Hr (fi(.»} W) = [ [ "™ Hm Gw)
i=1 i=1

=e! m | | Hm (G)(W))

N N
i=1 i=1

implies
(TtHa)(w) = e_laItHa(W)-
If PeP, thenF = 3, J,F whereJ,FeC,. Then since

{@Ha(w) L aen, lal = n}
is anONBfor C,,, we finally have
(TeFY(W) = " ™I F)W).
n
Proof of (vi): Let P¢(w, du) denote the image measytie ¢tjvl\, of the
mapeiw : W - W
drw(U) = €'w+ /(1 - e?)u.

Then
(TeF)(w) = fPt(w,du)F(u),FeLp.

16 First letF be a bounded Borel function &N. ThenF € L, and

uTtFuEp={ | Pt(W,dU)F(U)IP(dW)}
J1f oo
s{ f | f Pt<w,du)F(u)|,5’(dw)}
w W

=< L T(IFI°) >1,
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=< LIFP >, (- Tl =1)
= |IFIIp-

Hence||T:F|l., < |IFll., holds for any bounded Borel functidf.
In the general case, for arfy € L, we chooseF,, bounded Borel
functions, such that, — F in L. Then

ITeFalle, < IFall, ¥ n,
=> |TeFlL, < IFL,.-

Actually T; has a stronger contraction knownkgger-contractivity

Theorem 1.3(Nelson) Letl < p < co,t>0and t) = e?(p-1)+1>
p. Then for FeLq),
ITtFllgy < IFlp.

Remark. The semigroufT; : t > o} is called theOrnstein - Uhlenbeck
Semigroup

Some Consequence of the Hyper-Contractivity:

1) Jn: Lo — C,is a bounded operator drp,1 < p < co.

Proof. Let p > 2. Choosé such that?+1 = p.Then by Nelson’s
theorem, we have

ITeFllp < [IFl2.
In particular
ITeInFllp < 1InFll2 < MIFll2 < [IFlp.
But
ITeInFllp = € ™1 3nFllp;
hence

13nFllp < €"IF]Ip.
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For 1< p < 2, Considering the dual map; of J, and applying
the previous case, we get

135Fllp < €"IFlp.
O
But, for F € P, J; = J,. Hence, by denseness pf the results
follows.

2) LetV,=Coa...Ci10C,(V, are calledWiener chaos of order)n
Then, for every 1< p,q < oo, |l.ll, and]|.||, are equivalent oV,
i.e., for everyF € Vi, 3 Cpqn > 0 such that

IFllg < CpgnllFllp-
In particular, forF € Vy, [[F|lp < 00,1 < p < 0.
Proof. Easy and omitted. m|

Definition 1.6 (Ornstein-Uhlenbeck Operator)Ve define the generator
L of the semigroup T which is called Ornstein-Uhlenbeck Operator, as
follows:

For FeP, define
L(F) = —Tcho—Z( n)JnF.

Note thatL maps polynomials into polynomiald. can also be ex-
tended, as an operator &g, as the infinitesimal generator of a contrac-
tion semigroup orp. The extension of will be given in later sections.
In particular, forlL,, let

D(L) = {FELZ : Z 13nFI2 < oo}

and forFeD(L), define
L(F) = > (~n)JiF.
n

In it easily seen that is a self-adjoint operator ol.
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Definition 1.7 (Fréchet derivative) For FeP and weW, define

DF(WwW)(u) = Z—T(W+ tu)li—o Y Ue W,

For eachweW, DF (w), which is called thd-réchet derivative of F at

w, is a continuous linear functional & i.e.,
DF(w)eW. More preciselyDF(w) is given as follows:
Let{{;} be an ONS iV andF = p(£1(w), ..., £n(w)), then

DF(W)(U) = ) i p(ea(W), . a(W)).Gi(U),
i=1
which we can also write as
DF(W) = > 3ip(ea(W), ..., £n(W)).i.
i=1

For FeP, the Fechet derivative atv of orderk > 1 is defined as
k

otq..0t
forueW 1 <i<k

D*F(w)(ug, Up, . ..., Ug) =

F(W+toug + - - + i)l = =t,=0

Explicitly, if F(w) = p(€1(W), ..., n(w))), then

n

DFF(w) = Z . zn: 01y, 01y - -+ 0, P(La(W), L2(W), . . ., Ea(W))). X £, ® .. ® b,
=1 ix=1

where A
fil ®.® t’ik(ul, Ug,..., Uk) = fil(ul), Ce t’ik(uk).

Note that for eachw, D"F(w)e\}kv ®---®W where
—_———

k times

V*V® - ®\7V 4 {V : Wx---XW — R|V is multilinear and continum}s
e ———

k times k times

19



14 1. Calculus of Wiener Functionals

20

Definition 1.8 (Trace Operator)Let{h;} be an ONB in H. For \é\fV@\fV
we define the trace of V with respect to H, denoted as {recey

tracepV = Z V(hi, hy).
i=1

Note that the definition is independent of the choiceDd B and
for Ve\7V® W traceyV exists and tragg(.) is a continuous function on
WeW.

Remark. For ¢y, t’ze\}kv,
tracentr® o =y (a(tW)la(h) = Y < b1y >n< fo,hy >n
i i
=<{1,{2 >H .
Theorem 1.4.If FeP, then
LF(w) = trace;D?F (w) — DF (w) (W), for we W (1.3)
Proof. Let{{1,¢5,..., ¢} be anONSIn \7V and

F(w) = p(£1(w), L2(W), ..., €a(W)). 0

By the remark, we see that
n
RHS of [LB) = " 3i6i p(ta(W). .. ., €a(W))
i=1

= > A W), . ., a(w)).i(w).
i=1

Now leté = (€1(W), .. ., £n(wW)), then

—Ipf?

STFW) = S [ e v - e ) et ay
Rn
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Irz\

- [ Yl etaonete + vt - e @) e ay

R” i=1
-2ty i€ Zt(zﬂ) "2y
RN
_fz f,(’), p(e §+\/(l e_Zt)n)(Zn') n2g \rJI 7 dn
R" i=1
ot —Zt( ) n/2 Lr]lz
fZa.p( §+\/(1 e )n)ﬁxa(e .
R = 1

Integrating the second expression by parts, we get
—TtF(w> = Z G THOP)(E) + Z e Ty (97 pé.

Hence we have
d
LF(W) = lim —TF(w) = RH
(1) = [ G TeF () = RHS
O

Definition 1.9 (Operators). Let P\;V be the totality of functions ) :

W — W which can be expressed in the form
n
Fw) = > Fiw)
i=1

for some BN, {iW and F(W)ep,i = 1,2,...,n. FeP\;V is called aW -
valued polynomial. The linear operatar : P\fv — Py is defined as
follows:

Letfy. by, ....0n € W and
F(W) = p(ta(w), ..., ta(W))L.

21
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Define 22
SFW) = > Gip(EW). ... (W) < . € >1 ~PILLW). ... Lo(W))(W)
i=1

and extend the definition to eveRePy+ by linearity.

Proposition 1.5. (i) For every Fep, 6(DF) = LF. More generally if
F1, F2ep, then

(5(F1.DF2) =< DF]_, DF2 >H +F1.L(F2). (1.4)
(i) (Formula for integration by parts)

In FeP and GePyy*, then

f< G, DF >y (Wu(dw) = —féG(w)F(w),u(dw) (1.5)
w W
which says tha = —Dx.

Proof. (i) follows easily from definitions. (ii) We may assume
GW) = p(ea(W), ..., taW))E  F(w) = (€2 (W), . .., tn(W))

where{¢i} is ONS in\7v. Then

n
<G,DF >4 =Y (i Qp< i, >n
i=1

n
0G.F = Z(ai pP).q < &i, £ >y —p.qL(w). m|
i=1

23 So we have to prove that

[ rionaten-pe) < . >n e % e
R i=1

T fZ [(GipE)a) < b, & >n —pE)aE) < b, € > & ei;zdg
RARE

which follows immediately by integrating tHeHS by parts
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Proposition 1.6 (Chain rule) Let Fty,...,t,) be a polynomial and
FieP,fori=1,2,...,n. Let F= P(F1,F>...Fn)eP. Then

DF(W) = > 3iP(F1(w), Fa(W), . .., Fn(W)).DFi(w)
i=1

and

n
LF(W) = >" 3id;P(F1(W),. .., Fa()). < DFDF; >4
ij=1

+ D HPFLWM. ..., Fa(W)) x LFiw).
i=1

Proof. Easy. O

1.3 Sobolev Spaces over the Wiener Space

Definition 1.10. Let Fep,1 < p < 00, —00 < S< o0. Then

A
IFllp.s = II(1 = L)¥2F]l,

where -
(I —L)%2F & D@+ ) T2YFeP,
n=0
Proposition 1.7. (i) If p < p’ and s< ¢, then 24

IFllps < IFllps ¥ Fep.

(i) V1< p<oo,—00<s<oo,l]lpsare compatible in the sense that
if, for any(p, ), (p’, s’) and Fhep,n = 0,1, 2, ..., ||Fqllps — Oand
IFn = Frllp,s = 0asnm— oo, then||Fplly ¢ — 0asn— oo

Proof. (i) Since, for fixeds, ||F|lps < [IFllp,s if p’ > p, itis enough
to prove
”FHp,s < ”FHp’sf for & > S,
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To prove this, it is sfiicient to show that fowr > o,

I(1 = L)™Fllp < IFllp ¥ FeP.

We know that|T:F||, < [IF|lp. From the Wiener-Chaos represen-
tation forT;F and ( — L)"®F, we have

- _i ( —tra—1
(I —L)™F = F(a)fe 1T, Fdt.
(o]

Hence
(o0

(1 = L) Fllp < e 't TeF |l pdt

()
[0}
<|IFllp
which proves the result.

25 (i) Let Gp = (I — L)S/?FpneP. Thereforg|Gn — Gully — 0 asn,m —
co. Therefored Gel p, such that|G, - G||y — 0. But

IFnllp.s — 0= [I(I = L)Y2)G||, — O.

Enough to showG = 0. LetHeP. Then ( — L)YV2S-9HeP.
Noting thatP c Lq for every 1< g < oo, we have

fG.Hd,u:r!im fGan,u

W W

= lim f (I - Y2961 - L)Y2EIHdu
\W

Nn—oo
=0.

Since® is hence inLp, ¥ q,G = 0.
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Definition 1.11. Let1l < p < oo,—00 < S < oo. DefineDys = the
completion ofP by the norm| ||,

2) Dpl’s/ — Dp’slf p S p’,SS S’
Hence we have the following inclusions:
Leto<a <B,0<p<(Qg<co. Then
Dpﬁ —> Dp,oz —> Dp,o = Lp —> Dp,—a/ — Dp,_ﬂ
@) ) ) @)

Dgp < Dga = Dgo = Lq = Dg-o = Dg—p

1 1
3) Dual of Dps = Dy s = Dg.-s whereB + — =1, under the standard 26

Ko}

identification(Ly)” = Lo.

This follows from the following facts:
Let A = (I — L)~¥2. Then the following maps are isometric isomor-
phisms:
and hence
A (]Dp’s)/ g Lq

. . o : 1
is also an isometric |somorph|sm%f + a =1.

Also, from the relation

f FW)G(W)u(dw) = f (I = YP2F@)( — L) 2G(w)u(dw).
w

w

it is easy to see thdty_s C (D), isometrically.
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Definition 1.12.

Do, = |Dps
p,s

D—oo = Up’st’s
(Hence D, =UDps=D_s.)

ThusD,, is a complete countably normed space @&nd, is its dual.

Remark. Let S(RY) be the Schwartz space of rapidly decreasiit-
functions, Hp s the (classical) Sobolev space obtained by completing
S(RY) by the norm

Ifllp.s = 1047 = 2)2Fllp, feS(RY)
wherea denotes the Laplacian. Then it is well-known that

ﬂ Hp,s = ﬂ H2,s
p.s s

Up,s Hp,s = = Us H2,s-

Thus every element im Hp s has a continuous modification, actu-
P,S

ally a C* - modification. But in our case, the analogous results are not
true.

First, in our casef\sD2s # Ds. Secondlyd FeD., which has no
continuous modification oW, as the following example shows.

Example 1.3.Let W = W3 = {weC([0,1] - R?),w(0) = O}u = P =
2 — dim. Wiener measure. Let, fov = (w1, Wo)eW,

1

1
F) = 51 [ w99 - [ wa(gaw(s

(o]

(stochastic area of Levy) where the integrals are in theesefdtd's
stochastic integrals.
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ThenFeC, c D.. But F has no continuous modification: suppose
3 F(w), continuous and such the{w) = F(w) a.a. w(p). Let

T

(W)

1
2

1
f (W(Wa(8) — WS (9)ds

for weC2([0, 1] — R?). Note that? has no continuous extension\. 28
On the other hand, we have the following fact: Bof o,

P{IFW) - F@)l < dllw - gl < e} - 1
as €l 0o, V¥ peC3([0, 1] — R?).
Hence
F = F onC([0, 1] — R), a contradiction.
Definition 1.13. Let FeP. Then

DKFW)eW* ® - - - @ W*
—

K times

and we define the Hilbert-Schmidt norm dffw) as

- 2
D*FWEs = > {DFW) [hi,...,h )
where{h;}2, isan ONB in H.
Remark. 1) The definition is independent of ti@&N Bchosen.
2) If k=1, thenDF(W)[2g = IDF[W][Z.

Theorem 1.8(Meyer) For1 < p < co,keZ*, there exist Ay > apx > 0
such that

apkllID¥Flusllp < IFllpk < Apk(lIFllp + IIDXFlusllp)  (1.5)

for every FP.
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Before proving this result, let us consider the analogogsiltén 29
classical analysis, which can be stated as:
For 1< p < oo, there exists, > 0 such that

2

d
T o < 18T, ¥ eSER). (1.6)

apl|

where S(RY) denotes the Schwartz class ©f - rapidly decreasing
functions.

Proof of (T.8): Let p = 2, then

d%f
8mam

I ll2

H&af@ﬂb,Whaef@)=kfevzfxﬂﬂdx
Rd

IA

Collé? f(@)I13
Cpllafllz.

For the general case, we need Calderon-Zygmund theory of sin
gular integrals or Littlewood-Paley inequalities. We heomsider the
Littlewood-Paley inequalities.

Consider the semigroupg® andQ; defined as follows:

széa
ie. P ENE) = e f(&), feSRY
and Q = e ta”
e, QfNE) = e¥1(0), feSRY)
where f&) = f eV-LEXE (x)dx
Rd

The transition fronP; to Q; is calledsubordination of Bochnesind
is given by
Q= [ Puds

[o]
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wherey; is defined as

(o0

f e (d9 = e VI,

[o]

Note thatQ; can also be expressed as

~ Cat
Qaf9- [ e 0
Rd
1
_l _
where C, _f—(1+|y|2)(d+l)/2dy.
Rd

Now, we defineLittlewood-Paley functions GandG; —, feS(RY)
as:

(o0

5 d 1/2
f t {|aQtf(X)|2 + zl: Qtf(x)F} dt‘

[o]

00 1/2
and Gi-(X) = If{u%Qtf(x)F} dt‘ .

Fact. (Littlewood-Paley Inequalities)For 1 < p < co,30 < ap < Ap
such that

Gt(x) =

apllGt (Mllp < Ifllp < ApllGi-(Nllp, ¥ FeSE®RY). (1.7)
Define the operatdr; by 31

e = ST
(Rif)(¢) = i f(é)

R; is called theRiesz transformatianin particular, wherd = 1, it is
calledHilbert transform It is clear that
(92
0Xj0X;

f(x) = RRjaf(X).
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Fact. For 1 < p < c0,30 < ap < oo such that
aplIR;j fllp < [Ifllp. (1.8)

Note that [T.B) follows from{118). Hence we pro{e{1.8). Vewdn

RQME = e 1o
= (QR; ).
Also 5 5
VEIZRIQINM = 5 Q).
Hence we get
G- <Gy,
ij
which gives[I.B), by usind(1.7). Now, we come to Meyer'siieen.

Proof of theorem 1.8.

Step 1. Using the0 — U semigroup T, we define @by

(o0

Q= f Teu(d9

[o]

(o0

where f e Sy (d9 = e V.

(o]

32
Note that

Qt = Z e ﬁtv.]n
n=0

FeP, we defineGg andy e as follows:

[o9)

[ G oFmy

[o]

12
Gr(W) =
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1/2

and vr(W) =

f T(< DTF, DTF >HAw)” dt
0

Then the following are true:
For 1< p < oco,30< ¢p < Cp < oo such that

CollFllp < lIGEllp < CpllFllp,

CollFllp < ll¥ellp < CpllFllp, ¥ FeP such thatl,F = 0. (1.9)
Proof. Omitted. O
Step 2(An Ly-multiplier theorem) A linear operator | : # — P is
said to be given by a multiplies = (¢(n)), if

T,F = Z #(N)InF, ¥ FeP.
n=1
Note that the operators{JQ; and L are given by the multipliers33

e, eVt and (-n) respectively.

- k
Fact. (Meyer-Shigekawa)lf ¢(n) = 3, ak(n—la) ,a > o forn>n,for
k

k
oo 1

some g and > |ax (F) < oo, thend ¢, such that
k

=0 (0]

ITsFllp < CollFllp, ¥ FeP. (1.10)

Note that the hypothesis in the above fact is equivalent heret
existsh(x) analytic, i.e.h(x) = Y axX¥, near zero such that

é(n) = h(n—la) for n > n.
Proof of (I.I0): First, we consider the case= 1. We have

no—1 00
To= > ¢+ > ¢y

n=no
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_ 1@ 2
=T p +T Pt

We know thatT! is Ly-bounded as a consequence of hyper con-
) p
tractivity, i.e.,
ITOFIp < colIFllp.

Hence it is enough to show that

ITPFI < collFllp.

Claim:  |ITe(l = Jo—J1— -+ = In—1)Fllp < Ce™IF|lp.  (1.11)
Let p > 2. Choose, such thatp = €% + 1. Then by Nelson’s
theorem,
T Te(l = Jo = J1 =+ = In,1)FII3
<IT(l = Jo = Ja =+ = Ine2)FI3
=1 )" eM3FI3
n=nq
= > e RIS
n=ng
< e |F|.
34
Therefore
ITe(l = Jo = Jp = -+ = Jno-1)Fllp < Ce™YIF |y

whereC = gob,
For 1< p < 2, the result[{T111) follows by duality. Define

Rn, = th(| ~Jo—J1—- = Jn1)dt.
(o]
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From [I.11), we get

1
IR0, Fllp < C—IIFllp
No

and it is clear that

27

Rﬁonfth(l—JO—J1—~-~—JnO,1)TS(I—Jo—-~-—Jn0,1)thds
o o

=fth+s(l—Jo—Jl—---—Jno,l)thds
(o] (o]

Hence 1
IR3,Flip < C.=IIFllp
N5

and repeating this, we get

1
IR Fllp < C.IIFlIp.
No

Also, note that ifFeC,,,n > n,

R, F :thJant

o
1
= _JnF
and
K 1
Ry F = —-JiF
Therefore
2
TOF =" aRk iF =
n=ny k=0 k=1

Hence

k
1
@)
Ty Fllp<U { gk |ak|(no) ]

aRE F.

IFlp

35
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which gives the result.
For the general case, i.e.< a < 1, define

(o)

Q= Y e = [ Tl

o

where

(o)

fe_/lsﬂga/)(ds) — e—/l“t‘

(0]
As in the caser = 1, write

_ 1@ 2
Ty = T¢ + T¢ .
In this case also, we see ﬂTEE) is Lp - bounded. Usind{T11),
Q{1 = 3o = 31—+ = Jn,1)Fllp
<C f IFllpe™%u{(d9)
(0]

= Ce™Y|F|lp.

36 Define
Re, = f Q1 = Jo =y = -+ = Jn_1)dt
(o]

and proceeding as in the cage= 1, we get thatTf) is alsoLp -
bounded. Hence the proof @I {1110).

Remark. (Application of L, - Multiplier Theorem)

Consider the semigrouf®;}-o. For FeP, we have

QF = Z e Mty F.
n=0
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The generato€ of this semigroup is given by
CF = ) (- V)&, Fep.
n=o0

If we definel||.|l|p s for FeP by
IFlllps = Il = C)°Fllp,1 < p < o0, —00 < S< 00

where (—C)SF = Y72 o(1 + vn)3JuF, then|| || s is equivalent tdil. | p.s,
V 1 < p < 00, =0 < S < 00, i.e.,a ap’s, Ap’s, o< ap’s < Ap’s < 00 >
apsllIFlllps < IFllps < ApsllIFllips-

Proof. LetT4F = . ¢(n)InF, FeP, where
n=0

1++/n )S
n)= ,—00 < S< 00
o) ( V1l+n
1/2
RCN
n
S
with h(X) = (\/ﬁ) which is analytic near the origin. O

1 12
-1 _ R S -
Note thatT;* = T, where¢™"(n) = o) h [(n) ]wnh

h™(x) = % also analytic near the origin. Thus bdtip andT,* are 37

bounded operators dry,. Further,

(I =C)SF = (I = L)¥?T4F = Ty4(1 - L)*?F
and ( - L)%?F =T,(1 - C)°F = T4u(l - C)°F.

Hence our result follows easily from the fact that
ITgFllp < CyllFllp and”qule”p < CpllFllp.

To proceed further, we need the following inequality of Kudfiine.
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Kchinchine’s Inequality: Let (Q,F, p) be a probability space. Let
{ym(w)}n_, be a sequence of i.i.d. random variablestowith P(yy, =
1)=P(lym=-1)=1/2,i.e.,{ym(w)} is a coin tossing sequence.

a) If {am} is a sequence of real numbers, thérd, < p < co,Jo < Cp <
C, < « independent ofam} such that

) p/2 00
Cp (mzl |am|2) <E (| mZ‘i amym(wnp)

o p/2
<Cp (Z |am|2] . (1.12)
m=1

b) If {amn} is a (double) sequence of real numbers, thed, < p <
00,30 < ¢p < Cp < 0 independent ofamy} such that

0 p/2 0 oo p/2
o[ ] <[5 ]|
mn

m=1nr=1

0 p/2
gcp[ > laﬁwl) . (1.13)

mm=1

c) Let (@nm)) = o1i.e., for any finitemy < m, < --- < my,, the matrix
((@mm;))1<i.j<n is positive definite. Theny 1 < p < 00,90 < Cp <
Cp < oo independence offyy) such that

p/2 p/2
Cp (Z an] <E [Z &ji (w)yj(w)] ‘
i i,
p/2
< Cp(z aii] : (1.14)

Step 3. (Extension of L-P inequalities to sequence of functionals)
LetFhoeP,n=1,2,...with J,F, = 0. Then

IV [Z(Fn)2]||p <AV (Z G%n] llp ¥ 1< p < oo
n=1 n=1
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Proof. Let {yi(w)} be a coin tossing sequence on a probability space
(Q,F,P). O

Let y(w, W) = 3 y(w)Fi(w), w € Q1, weW.

We first consider the case whéh = 0, V¥ n > N. (Hence the
above sum is finite). Then the general case can be obtainetirbifiag
argument. By Kchinchine’s inequality] constants,, Cp, independent
of w such that

p/2
Cp [Z Fi(vv)z] < EX(w,w)P

p/2
< cp(z Fi(\/v)Z] V = weW.

Integrating w.r.tu, we get

1/2
cpn[z F?] 15 < E {IX(w, WiIE} (1.15)
| 1/2
< Gyl (Z F?] 15,
But by steflL, we have 39
Iy (w, )llp < ApliGx(w, )llp ¥ we. (1.16)
Now
© 2
d
Gptw))? = l | [d—tQt (Z 7 (w)Fi(.)]] dt‘
= Z Yi(w)yj(w)aj,
i
where

r(d d

(o]
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Also
t d 2
Zaij :th(d_tQtFi) dt
| | )
=) GE.
i
Then Kchinchine’s inequalityc] implies

p/2
Cp (Z Gr, (\/\/)2) < ElGx(wl?
i

p/2
<Cp (Z Gr, (\/\/)2]

whereo < ¢p < Cp < 0.
Integrating ovey, we get

%W[Z G%i] 15 < ElGy(.)llp < CpllV (Z G%i] [j: (1.17)

@C19), (II6) and{IL17) together prove dikp 3.

Step 4(Commutation relations involvin®). Let{(}°, W c H, {¢}
an ONB in H. Let BF =< DF,¢ >, for FeP. Then DFeP, V i.

Further,
< DF,DF >y= ) (DiF)? = |DF3s.
40 I
In fact,
D*Fls = D, (Diu(Dip(--+-+ (Di(F)) -+ )
1,00 0ik
Let

T¢ = i ¢(n)\]n,
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Tye = > ¢+ 1),

n=0

Fact.Vi=12,...,DiTy =T, +Di.

Proof. We have seen that the spt/aHx(w), acA} is anONBin L.
Therefore it sffices to prove

DiTyHa = T4 + DiHa, V a€A. O

If a=(ag,a,.....) With g > o, then leta(i) = (ag,a2,...,8_1,8 —
1,841, ...). FromHa(w) = [THg (¢i(w)), it can be easily seen that
i

DiH, = Ha(i) i.f a >0
0 ifa=o0

Note that, ifla] = n,
TgHa = ¢p(MHa (. HaeCp)
implies
DiT¢Ha = ¢(n)Di Ha.
If & > o, thenDjHa = Hyg) wherela(i)] = n— 1. Therefore
DiT¢Ha = ¢(n)Ha(i).
= T¢+Ha(i) = T¢ + DiHa,.

If & = 0, this relation still holds since both sides are zero.

Corollary. T;D;F = €D;T;F, V i and hence

(o9

QiDiF = D; fﬂt(ds)esTsF, Vi, V FeP.
0

Step 5. Now we use the previous steps to get the final conclusion.

41
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In the followingcp, Cp, a,, Ap are all positive constants which may
change in some cases, but which are all independent of ticédarf.
1 < p < xis given and fixed. First we shall prove

cpll < DF,DF >1/2 ||, < |ICFllp < Cyll < DF,DF >H/? I, (1.18)
where

C=lim %i.e., Cf= Z(— Vi) JoF.

t—o
n

From corollary of stefl4, we have

T.D;F = €D;TF, V¥ FeP.

T {[Z fiz)l/z} > [Z (T, fi)l/zl, v fiep

implies
1/2 1/2
T {[Z(DiF)Z] } > [Z(TtDiF)Zl
i i
1/2
> ¢ [Z(DtTiF)zl
i
i.e TiV(< DF,DF >) > éy/(< DT{F, DT{F >p).
42 ChangingF by T:F,

Ti(v(< DT{F, DT{F >h)) > €(< DTxF, DTxF >p).

Now

0 1/2
el f{Tt(\/(< DTF,DTF >H))}2dt‘

) 1/2
> {ert < DTxF, DTxF >4 dt}

o
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) 1/2
= const{fet < DT{F,DT;F >4 dt} )

(0]
Therefore, by the Littlewood-Paley inequality (Skép 1),

1/2
IFllp > Cp||{fet < DT{F,DT(F >y dt} llp- (1.19)

(o]
SubstitutingT,F for F in (C19),

00 1/2
e2|ITuFllp = Cpll {fes < DTsF, DTF >4 ds} llp.
(o]

Therefore

o o o 1/2
fe“||TuF||pduz Cpfe“/zll{fes < DTsF, DTsF >4 ds} [lpdu

[o] o u

) ) 1/2
> cp||fe“/2 {fes < DTsF,DTF >4 ds} dullp
o u

o0 1/2
00 2
= Cpn{ f dS[ f *Tiuegdux €¥?y/(< DTsF, DTF >H)] } llp
o]
o

oo 1/2
= Cpll{ f [2(e° - €¥%)V(< DT,F, DTF >H)]2ds} llp

1/2

> 2C,|| llp

erS < DTSF, DT<F >y ds|
o]

o

1/2
fes < DT<F, DTF >4 ds} llp-

o

- 2C,ll

Hence by[T.19),

[ee)

o0 1/2
||l\fe2s < DTsF, DTsF >4 d% llp < dpllFllp +Apfeu||TuF||pdu.
o

o
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By step2, we know that if(Jo + J1)F|| = O, then
ITuFllp < Cpe2|IF|Ip.

Therefore, if 0o + J1)F =0,

0 1/2
IFllp > c,o||{fe2S < DTsF, DT<F >4 ds} lp- (1.20)
(o]

Supposd-eP satisfies J, + J1)F = 0. By stefB,

o 1/2
| < DF,DF >? ||y = ||{Z(Di|:)2} lIp

i=1

o 1/2
scpn{Z(GDiF)z} lp
i=1 . 12
> (o d
= Cyll t(=—-QDiF)%dty  ||p. *)
i[5 goorr)

By step#, N
Q:DiF = D;GF whereQF = 3 e V-1t implying
n

dQoiF =D (EQt) ~ DG\ CRF

dt
where RF = i V(@ - })JnF.
n
n=1
Hence

o 1/2
() - cp||{ft < DQICRF, DQCRF >y dt} lip (%)

[o]



1.3. Sobolev Spaces over the Wiener Space 37

44 since

G = f 1(d9e°Te,

= = 1/2
< DQCRF, DQCRF >

(9

< f,ut(ds)es < DTSCRE DT CRF>!?ds

(o]

(o)

1/2
fyt(ds)ezs < DTSCRE DT,CRF >y ds‘ .

(o]

<

Since

(o)

ftyt(ds)dt:ds[ follows from ffte‘*syt(ds)dt: %]
[ 2 e]

o

we have

S 1/2
(+%) < cp||{fe25 < DTCRF, DTCRF >4 ds} llp
(o]

< CplICRAIp < CylICFllp
(by (I20) and sinceRC = CRand||R||, < .)

Hence we have obtained
| < DF,DF > |lp < CplICFllp if (Jo + J1)F = 0.
ForFeC, @ C4, it is easy to verify directly that
|| < DF,DF >/ || < CplICFllp.
Hence we have proved

| < DF, DF >/? || < CplICFllp, ¥ FeP. (1.21)
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The converse inequality oE{T121) can be proved by the faligw
duality arguments: we have fér, GeP,

fovs

=| f CFCGdu| [G =C!(I - J,)G|
W

IV[CF.GWI = IfCF(I - Jo)Gdu|

:|fCZF.(§dy|:|f<LF,G>du|

= |f< DF,G >y dy| | "< DF,G >y

- %{L(FG) - LF.G-F.LG} and fLF =0V FeP
W

< f|DF|H|Dé|Hdu

< || IDFIullpl |D<§|H||q(5Io + % = 1)
< Cqll IDFIullpll ICGllq by (C22)
= Cqll IDFIullpll(l = Jo)Gllq

< agll IDFInllplIGllg-

45
Hence taking the supremum w.riGllq < 1, we have||CF||, <
apll IDF|Hllp- The proof of [I.IB) is complete.
Now we shall prove that

I ID*Flusllp < CplICXFIlp V FeP (1.22)
1 ID*Flusllp < CHICKFIlp ¥ FeP if (Jo+di+--- J1)F =0 (1.23)

Then, since

Cpll(l = C)%Fllp < Cyli(l = L)¥?Fllp < Cyli(l — C)°Fllp
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and aplIC*Fllp < II(1 = C)*Fllp + lIF llp,

TheorenLI8 follows at once.

Proof of (L.Z2): (By induction). Suppos€{T.P2) holds far2l.. . k. Let 46
{Ym(W)}menk DE COiN tossing sequence indexedy (i1, o, . .., ix)eN¥
on some probability spac€(F, P). LetDy = D, Dj, - - - Dj,. Then

ID*FiAs = > (DmF)2.

melNK

Set
X(@) = ) Ym(w)DwF.

meNK

Then

Dix(w) = ), ¥m(w)DiDnF

melNK

and Cx(w) = ) Ym(@)CDuF.

meNK

we know that, by (i),
IV (Z |Di><(w)|2] llp < ColICX(@)llp ¥ w.
i=1
Therefore

E {nx/ [Z |DiX(w)|2] ||E} < CpEIICX(@)llp. (1.24)

i=1

Therefore, by stefd 3,

E {n Z(DiX(w))ZHB} > aplly/ [Z(DiDmF)Z] Ip (1.25)

i,m
k+1
= ap|| D' Flusllp.
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On the other hand, by stép 3,
EICX@)II = Ell D Ym(w)(CDmF)II}

melNK

1/2
< cpn{ > (CDmF)Z} I

melNK

1/2
= cpn{z (DmcaF)Z} I
meNk

N k
( by stef#, wherd}F = nzzé V- )3F

= Cyll ID*CRFluslip
< AIC*IR¢FIIb (by induction hypothesis)
< AIICKIF|IE (. lIRlp < ap by sted®)

This together with[[T.24) an@{1125) proves that
1D Flusllp < CplIC***Flly

i.e., (LZ2) holds fok + 1 and the proof of{L.22) is complet&{1.23) can
be proved in a similar manner.
Corollary to Theorem 1.8. Let FeDpk, 1 < p < oo, keZ*; then
DiFelo(W — H®) are defined for = 0,1, ...k, where
H¥=Hg---®H
e
£—times
is the Hilbert space of all continuod#smultilinear formson Hg --- ® H
B

£{—times

with Hilbert-Schmidt norm. Note that®¥ = R and H®1 = H.

Proof. For FeDpk, 3 FreP 3 ||[Fn — Fllpk — O which implies{F} is
Cauchy inDp k. Hence using Meyer’s theorem, we get

I1DFn = DFlisll < ClIF = Frllpk — 0

which gives the result. m|
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Recall that ifFeP\;v then
n *

F(w) = X Fi(w)¢ for somen, {ieW andFieP.
i=1

For
F(W) Zn: Fi(w)tieP;,
i=1
define LF(w) = Zn: LF;(W)¢;
i=1
and (1- L)2F(w) = Zn:(l — L)S2Fi(w)¢.

i=1

For 1< p < co and—oo, s < oo, define the normg||}s on Pa by

IFllps = 1101 = L)¥2Fi(W)lullp.

LetDM p, sdenote completion cSP\;vw.r.t. the normi|.||ij. Itis clear
thatDH s ¢ Lp(W — H) for s> 0 and in facD}, = Lp(W — H).

Proposition 1.9. The operator D: £ — P\fv can be extended as a

continuous operator frorp s, to DE',S foreveryl < p < o0, —o0 < S<
00,

Proof. Let{¢)} c \7V be aONBin H andFeP. Now 49

(o9

1/2
Il = L)¥2DF|y = [Z - L)S/ZDiF]Z) . O

i=1
Using stefi 4 above, we get

o 1/2 - .
(1 = L)?DFy = (Z {DIR(I - L)S/ZF}Z) whereR = Z( n ) ?3
i=1

i=1 n+1

= |DR(I — L)¥?F|y.
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Therefore
(1 = L)¥2DF|ullp = IIIDRI = L)¥2Flullp

< CplIR(I = L)S™2E1 ) (by Meyer's theorem)
< Cyli(t = LE2F|, (by Lp multiplier theorem)

= C’p||F||p,s+1-
ie., IDF|5s < CplIFllpse1
from which the result follows by a limiting argument. m|

From the above proposition, it follows that we can define thal d
mapD* of D, as a continuous operator

D*: (D';,s)' - (Dp,s+1)’
ie., D* :DE’S+1—>Dp’S,1< P < 00,—00 < S< o0

And we know that forFeP, D*F = —6F. Hence we have the fol-
lowing corollary.

Corollary. ¢: P\;V — P can be extended as a continuous operator from

D — Dpsforeveryl < p < oo, —00 < S< co.

H
Ps+1
Proposition 1.10. Let FeDpk, GeDqx(Dyg,) for keZ*,1 < p,q < o and

1 1 1
letl < r < oo, such thatB + a = Then FGDyk (resp. Dﬁk) and
3 Cp gk > Osuch that

||FG||r,k < Cp,q,k”F”p,k”G”q,k
(resp.lIFGI} < CpqulFllpxlGlIE)-

Proof. Let F, GeP; then we have
D(FG) = F.DG + G.DF

Therefore
ID[FG]|4 < [FIIDG|H + |G||IDF|H.
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Similarly

D2FG = FD%G + 2DF ® DG + G.D%F
and ID?FGlys < |F|ID?Glys + 2|DF|4|DG|y + |G||D%F|ys. o

In this way, we obtain for everk=1,2,.. .,

k k k
D ID'(FG)Iks < Cx [Z |D'F|Hs] [Z |D"G|Hs].
£=0 (=0 {=0

Applying Holder’s inequality, we get

k k k
1 ID (FG)Ihsllr < Cull ) ID“Fluslipll ) ID‘Glislla:
{=0 {=0 =0

Then the result follows by using Meyer’s theorem. And thee@éDqu 51
follows by similar arguments.

Corollary. (i) D is an algebra and the map
Do X Dood (F,G) —» FGeD,

is continuous.
(i) If FeDw,GeDY = DS]D';’S, then FGeD!Y and the mapF,G) —
FG is continuous.
Hence we see thal,, is a nice space in the sense that
L : Ds — D is continuous

D : Ds — DY is continuous
5 : DY - D, is continuous

Proposition 1.11. (i) Suppose C*(R"), tempered and EF»,
...,Fn€eDw;then F= f(F1,Fy,...,F)eDs and
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n
(@) DF = 3 8, f(F1,Fa,. .., Fn).DFi
i=1

n
(b) LF = Z aiaj f(Fl, F2, ceey Fn) < DFi, DFJ’ >H
i,j=1

N é 8 f(F1, Fa....Fn).L(Fy).
(i) For F,GeDx,
< DF,DG >y= %{L(FG) - LF.G-F.LG}
and hence < DF,DG >H eD.
(iii) If F,G, JeDo, then

< D < DF,DF >u,DJ >y=< D°F,DG ® DJ >us
+ < D?G,DF ® DJ >s .
(iv) If FeDe, GeDY, then
§(FG) =< DF, G >y +F.6G.
In particular, ifF, GeD,, then
§(F.DG) =< DF, DG >4 +F.LG.
These formulas are easily proved first for polynomials aed ten-

eralized as above by standard limiting arguments.

1.4 Composites of Wiener Functionals and
Schwartz Distributions

ForF = (FL,F2,...,F% : W — RY we state two conditions which we
shall refer to frequently.

FleDe,i=1,2,...d (A.1)
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Setting

ol =< DF',DF/) >y €Dy, f(det(r)_p(w)dy(w) <oV 1<p<oo.
(A.2)
We note that (&ij)) > 0.

Lemma 1. Let F : W — RY satisfy [Al) and{Al2). Thep= o LeDy
and

d
D,ylj — _ Z ,ylk,yj[DO_k[.
k=1

Proof. Lete > 0. Let )
ad(w) = ol(w)+edij >0 (i.e., positive definite). O

_ Then it can be easily seen thatyif = 0.1, then3 feC®(R¥) 5 53
yd (W) = (ol (W)). ) )
Then by proposition{I11), sinee! eD., y¢ €Dw. Further, it fol-
lows from the dominated convergence theoremtats Y inLpV 1 <
P < oco.
Next we show thaD*y'leL,(W — H®) V 1 < p < co. Hence, by
Meyer’s theoremyeDpk ¥ 1 < p < co andV keZ* implying yeD.,. We

have )
D vlok =gk
]
Therefore
Z yifj Do-ik + Z UikDyiEj =0
j j
implies Dyl =- >’ yey!Do¥.
ki=1

Similarly, we get

Dk’y:fJ = — Z')/e‘»yf .. .»)/EDmlO-E R ® D"kO-E
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wherem, + - - - + m¢ = k and we have omitted superscriptsif, Y4 etc.
for simplicity. Therefore, since

yisj —>yij in Lp,
Dkyiej —>Zy.y---melo'®...®Dm‘0'
in Lp(w — H®), V1< p<oo

implies
DXyl Z yy--yDMo®-- - ® D™oel s(W — H®).V 1 < p < 0.
54 Lemma2. Let F: W — RY satisfy [A1) andTAl2).

1) Then,Y GeD,, andV¥ i = 1,2,...d.3 l;(G)eD., which depends lin-
early on G and satisfies

[@oPrcuan = [sPiEd.  @2)
W W
¥ eS(RY). Furthermore, foranyl < r < g < oo,
sup [[li(G)llr < oo. (1.27)
IGllq1<1

Hence [1.26) and{I.27) hold for everyGy;.

2) Similarly, for any GD., and 1 < ig,ip,...ix < d,keN,3 I, _j,
(G)eDs which depends linearly on 6

f (&, .. .0,¢0F).Gdu = f ¢oFl, ..., (G)du, ¥  peS(RY)
W W

(1.26)
andforl<r <q< oo,

Sup ||II1Ik(G)”I’ < 00, (127y
IGllg k=<1

Hence agailf{1.26Y] and[Z.27Y] hold for every GDg.
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Proof. Note thatpoFeD,, and

d
D(¢oF) = > di¢oF - DF'.
i=1

Therefore
< D(¢0F), DF! >y= > digoF - o'l
i=1
and OigoF = " < DgoF, DF! >y o, O
i=1
O
Hence 55

fﬁiqsoF.Gdy = Z f < D¢oF,y'!GDF! >y du
W =1 W

d
j=1
d e .
-y f(¢>oF)6(y”GDFJ)dy
j:lW
Let

d
t(G) = - ) 6()'GDFJ)
j=1

d
== >[< D(/IG), DF ! > +yIG.LF]]
=1

d d
= _Zl - > GY*y < Do¥,DF! > 4y < DG, DFJ >
=1 k=1

+9GLF!
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Therefore
6@ < D3 D W YIDe* 4 IGIDF
i=1 | |ke=1
+ [y IDF)I4IDGly + W ILFILIG]|.
. 1 1 1
Hence ifpis such thatF = 5 + a then

i=1 | (k=1

d d
@ < ) {Z ||y'ky”’||DFJ|H|Dcrk"|H||p.||G||q}

+I1 Y IDF ullpl IDGlallg + Iy ILF ] 11p.lIGllq

Now taking supremum ovéiGllq + || IDGlnllq < 1, we get[T2A7).
2) The proof is similar to that of (1) and we note that

. (G) = Gl - [6,[6,(G)]] .. ).

56 Let ¢eS = S(RY), — < k < oo, wherek is an integer. Let

I8l = (L + X% = A)*Plloo

where Il = suplf(X)I.
xeRd
Let
§||-||T2k = T2k-

Facts.(1) Sc...c Tx c...c T, c Ty = {fcont,f — Oas
IX| — oo}
C T_2 C ---T—Zk-

2 QTk: S



1.4. Composites of Wiener Functionals... 49

3 ijTk =95

Theorem 1.12.Let F : W — RY satisfy [A1) and{Al2). LeteS <
$0FeD,,). Then,V keN andV 1 < p < o0,3 C¢p > 0 such that
llpOFllp.-2k < Cpkllglir_, for all geS.

Proof. Lety = (1+ X2 — A)K¢eS. Then forGeD.., 3 n(G)eD., such
that

[ [+ 42 - awor] Guten = [ woF [524(@)] e
W

W
i.e., [ ¢oF.Gdu = [(1+1x? — A)*poF.na(G)du. O
w w
Therefore

|f¢0F-Gd/u| < NIl _s 72k (G)lla.
W

Let
K= sup [na(G)llx < eo,
IGllg2x<1

which follows easily from LemmBl 2. Note thas(G) has a similar ex-
pression ag;, _j, (G) only with some more polynomials & multiplied.

Then taking supremum ov§6||q 2« < 1 in the above inequality, we
get

lpoFllp,-2k < K.ll@llT_y-

+

, 1 1
Since we can take arty such thatF =1< =< o and

ol
ol

1, p(1 < p < =) can also be chosen arbitrarily.

Corollary . We can uniquely extengeS(RY) — ¢oFeD,, as a con-
tinuous linear mapping &T_a — T(F)eDp_2 for every kZ* and
l<p<oo.

Indeed, the extension is given as follows:
TeT_x impliesd ¢,S(RY) such thatl¢, - T|lt_, — 0 which implies
{¢n} is Cauchy inT_y and hence, by Theorem 111{2,,0F} is Cauchy
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inDp_2,1 < p < oo and hence we IeT(F) = r!im ¢noF, limit being
takenw.r.t. the norm|| ||, _2«. Note thatT (F) is uniquely determined.

Definition 1.14. T(F) is called thecompositeof TeT_» and F satisfy-
ing (&) and[[AR). Note that, since k is arbitrary, we haedirkd the
composite TF) for every TeS’(RY) as an element iD_,.

Proposition 1.13. If T = feC(RY) = T, c S’'(RY), then f(F) = foF;
the usual composite of f and F.

Proof. TeT, implies there existgneS such that

lién — flir, — O.
Obviously, we geflignoF — foF||, — 0 for 1 < p < . Hence the result
follows by definition of f (F). m|
1.5 The Smoothness of Probability Laws

Lemma 1. Letdy be the Diracs- function at ¥RY.

(i) 6yeT_om if and only if m> g
- d d . :

a -2m .
(i) ifm> > then the mapgR® — dyeT_om is continuous

(iii) ifm= S|+ 1,keZ*, then ¥RY — 6yeT_om 2 is 2k times contin-

uously diferentiable.
Equivalently,
yeRd - D"(SyeT_Zm_zk,aeNdIa/I <2k
is continuous.

Proof. Omitted. O
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2
y — 0y(F)eDp_om-o« is 2K times continuously fferentiable for every

1 < p < . In particular, we have the following:
For every GDq omy 2«

Corollary. Let F satisfy [[All) and(Al2) and =@ [9] + 1,keZ"; then

<6y(F),G > eC*(RY), where < oy(F),G >

denote the canonical bilinear form which we may write royghas B
(6y(F).G).

d
Lemma 2. Let m= E] +landl < q< . If feC(RY) with compact

support, then

ff(y) < 6yF,G > dy = E(foF.G)
R

for every GeDgom.

Proof. Let
. .. . i]_ il +1 id id +1
i = (|1,|2,...|d),Ai(”) = [? > X [? >
ip i ig ,
and X = (2—?] 2_3‘?) where ixeZ. O

d
Note thaﬂAi(”)l = (2—1n) , Where|.| denote the Lebesgue measure. For
feC(RY) with compact support, we have

>0 (™) 1aP 165y — f f(x)6xdx = f.
i o
Note that the above integral 15 ,n-valued and the integration is irnso
the sense of Bochner and hence the convergenceTisjn Therefore,
we have
1 (X)1aP 165 (F) — foF in Dpam
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for 1 < p < co. In particular,

< Z f (xl.(”)) 1AM 154 (F), G >— E(foF.G) for every GeDg-om.
i

But
< Z f (Xi(n)) |Ai(n)|5)q (F),G >— f f(X) < 6xF,G > dx .
i 5
hence the result. g

Theorem 1.14. Let F = (F',F?,..., FY) satisfy the conditiond(A.1)
and [A2). Let m= [§]+ LkeZ* and1 < q < . Set, for every

GfDq,ZrmZk
pe(dX) = EX(G(W) : F(w)edX).

ThenuE (X) has a density P(X)eCZ(R%) and F5(x) =< 6x(F), G >.
Proof. Easily follows from Lemm&ll and Lemnih 2. m|
Remark. By the above theorem, we see thabif
GEDq’oo = m Dq’kl < q < 00,
k=0

thenpg(dx) has aC*- density. Further, iG = 1D, then the probabil-
ity law of F:
pE(dX) = plw 2 F(edx)

has aC*-density. But we have
ue(dx) = EX(GIF = x)ug(dX).

Hence
P6(X) = E(GIF = x)pL (¥



Chapter 2

Applications to Stochastic
Differential Equations

2.1 Solutions of Stochastic Oferential Equations as
Wiener Functionals

From now on, we choose, as our basic abstract Wiener spé¢e (), 62
the following r-dimensional Wiener space (cf. HX11.1).
Let

W = W[ = {weC[0, T] — R"), w(0) = O}

u = P, ther-dimensional Wiener measure.
H= {hew{); h=(h*(t)),_,,

h* absolutely continuous and

T
fﬁ“(8)2d8< oo, @ = 1,2...I‘}.
(0]

53
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We define an inner product id as follows:
r T
<hh >u=)" f he () (t)dt, i, heH.
a=1 0

With this inner productH c W is a Hilbert space. Furthal c
H* = H c Wis given as follows:

t
W= {feH 0= (). (1) = f Zﬂ(t)ds}

o

andtf" is a right continuous function of bounded variation onl[Psuch
thatt*(T) =0, =1,...r}.
63 If £eW, weW, then

]
r
(==Y, [wd,o
a=1 0
and fort’ev*v, heH,

r T
i == [ rdi,o
a=1 o

;

;

=Y f ho ()6, (dt =< h, £ >y —.
a=1 0

Let B/(W[) = the completion of ther-algebras oW generated by
(w*(s)),0< s<t.

Stochastic Integrals: Let ¢,(t,w) be jointly measurable int,(w), By
adapted and

T
fqﬁa(t, w)dt < oo a.s.
(o]
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Then it is well known that the stochastic integral
t
qua(s, w)dWg, (W (w) = w(t),e = 1,2,...,r)
(0]

is a continuous local martingale.

It process:A continuousBi-adapted process of the form

r t t
f=o+ Y] [oulswang + [ go(swds
a=17% 0

where

i) ¢.(t, W) is Bi-adapted, jointly measurable with
T
f $2(t, W)dt < o a.s.
(0]

i) ¢o(t,w) is Bi-adapted, jointly measurable with

.
flcbo(s, w)lds < oo a.s.

is called an Itd process. 64

Straton ovitch Integral: Let ¢,(t,w) be an Itd process. Thef, is of
the form

t

r t
bultw) = 2o 0.0+ Y. [ Zagl(s W + [ Zuolswds
p=1y

(o]

Then the Stratonovitch integral ¢f, w.r.t W*, denoted by

t
f bo (s W)OdWE
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is defined as follows:

t t t
[outswodug = [, (s wawe + 3 [2,.(swds
(o] (o]

o

Itd Formula: Leté = (&, ... ,g{’) be ad-dimensional Itd process,
y t t
e, =&+ f¢;(sw)dmg + f¢g(sw)dsl <i<d.
=17 )

1) Let f : RY — RY be aC? function. Thenf(&) is an Itd process we
have the I1td formula:

t

f(&) = f(&) + Z Z f i f(E)ph (s W)dWE

d
i=1 a=1 o

d t
+ 3 [atesi(swas
i=17%

r d t
320 [ R fEe e wds

a=1i,j=1 0

65 2) Suppose further that, (t,w),1 <i < d,1 < a < r are Itd processes
and set

r t t
nit:ni)+2fai)(sw)osV\§+fqbio(s,w)dslsisd.
=17 o

Then, if f : R9 - R is C3, we have

d r t
)= 1) = ). Y [ af (s wodwg

i=1 a=17
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r t
+ Zl f 3 1 (19)6h(s w)ds

Stochastic Diferential Equations: Let o' (X), b'(x) be functions ofR¢
fori=12...d,a =1,...r satisfying the following assumptions:

i) O'ia,biECOO(Rd—)R)Vi =1...da=1,...r.
ii) ¥ KkeN, o0, aikO'ia,ail .. .8ikbi

are bounded oRY.
Then

() < K@A+IX), Vi=1,...de=1,...r
Ib'()] < K@+x), Vi=1,...d.

Consider the followings DE,

dX = oo (X)W + b(X;)dt,
Xo = XeRY (2.1)

which is equivalent to saying

r t t
X = X +Zfa;(xs)dwg+fbi(xs)dsi =1,....d.
a=1 0 o
Then the following are true: There exists a unique solutiern= 66

X(t, x,w) = X¢, ... X9 of @) such that
1) (t,X) = X(t, X, w) is continuous .a.w).
2) V1> 0,x— X(t, x,w) is a difeomorphism oR%(a.a.w).
3) V1t >0, xR, X(t, x,.)eLP ¥V 1 < p < .
Theorem 2.1. Let t > 0, xeRY be fixed. Then

X! = XI(t, x, WeDeo, Yi=1,...,d.
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To find an expression fot DX{, Dxtj >n let

Yo= (. vj(o = 28X,
Let also |
(00)) = a‘g;’((lx) (@b)) = )t(’j ).

Then it can be shown that is given by the followingS DE

dY; = 9o (X0). YdWE + ab(X).Yedlt
Yo = | 2.2)

r d t
i. e. Vi =i+ > > f (o) (Xs) YH(H)AWE

a=1 k=1
t
+ Z f OIS, = 1....d

Fact. YieLpi.e., (3¢ hio 1(Y'(s))z)l/zeL V1<p<oco.

Also by considering th& DE

dZ = ~Z:.0076(X)dWE - Z[b(X) - Y (ra.doa)(X)ldt  (2.3)

Zo=| ’

67 and using Itd's formula, we can easily see ttgd;Y;) = 0 = ZY; = |
i.e., Zi = Yt exists, Vt.
Fact. Y el
d 1/2
ie., [Z (VX)) ] elp¥V1<p<oo,
i,j=1

since Zel p.
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Theorem 2.2. ForeverytO<t<Tandij=1,...d,

r t
< DX DX/ 5= )7 [ (Y5, (06 (Y5 o, (X ds
a=1 0
where (MeYstoa(Xs) = Y Vi HErh(Xs).
k.j

Remark. The S.D.E[[Z11) is given in the Stratonovitch form as

dX = oo (X)odW + b(X;)dt 2.1y
Xo = X
where
. . 13 S .
B =b(9-5 >0 k(o)
k=1 a=1
and correspondingly{d.2) arld{R.3) are given equivaleasl

dY; = 9oy (%) YiodW + b(X)dt 2.2y
dZ = —Z00 o (%) odW + Z:Ab(X)dt. 2.3y

For the proof if theorefi 211 and theorEml2.2, we need theWwalig:

Lemma 1. Let X be the solution of{2]1) and & (al) be a continuous
Bt adapted process. Suppose that (¢;) satisfies

dgi = ) d0a(X)EAW + db(X)éedlt + adt

a=1

&6 = 0. (2.4)

Then
t t

= | iy lads=Y; | Y:lads
S

(0] (0]

whereY, is the solution of[(Z]2).
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t
Proof. Itis enough to verify thag; = [ Y;Ys'lasdssatisfies[Z}4). Now
[0}

t
dsi = d f YiY-lagds
(o]

t
=d¥,. f Y;lagds+ VY, tadt

[0}
t
= dthYs‘lasds+ adt. O
[0}
Using [Z.2), we get

t
dé; = (904 (%). YedWE + 3b(X,)Ycdlt) f Y:lagds+ adt
(o]

= (90'Q(Xt)§td\/\1t" + (9b(Xt)§tdt + atdt,

hence the lemma is proved. m|

69 Formal Calculations:
By definitions,

DXI[H] = aﬁxi (t. X W+ eh)],—q heH.

€

But

t
X(t, X, W+ eh) = x+ Z f ol (X(s % W+ eh))d(W2 + eh?)
¥ 9

t
+ f b'(X(s, x, W + eh))ds
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Hence
DX = )} Y. [ arh(xIDXiTHdwe

a=1k=17Y

t

r
+> f ol (Xs)dHe
a=1 0
d t
+> f 8l (Xg)DXK[h]ds
k=1
This is same a${2.4) with
;
a = ) oL (Xht.
a=1
Hence formally we have
r t .
DXI[h] = Z f [thglaa(xs)]' h¢ds
=17

Now, letfori = 1,2,...d,

i a® = VYo, (X' if s<t
=0 if s> t.

For fixeds0<s<t<T, iyit’“, (9) satisfies the following:
t
9= [ oot it awg
I’

t
+ Z f ;b (X)k (9du + ol (Xs). (2.5)
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Note that this is same dS{R.2) with initial conditiof)(Xs). Now
T
DXI[H =< rjsh>u= f e (9ht(s)ds
* 9

S
where me(s) = f 7k (U)due H.

(o]

Hence
< DX}, DX} >u= )" f [Yi Y5 oo (X' [Yi Ys toa(Xs)] ds
a=1

A rigorous proof is given by using approximating argumehist

¢n(s)=£ |f£ <kL1 n=12...

2n° zn— on
k+1 . Kk k+1
and wn()_ on ,f?<357,n=0,1,2...

Using ¢, andy,, we write the corresponding approximating equa-

tions of [Z1), [ZP),[[Z]5) as

n _ () (n)
dX™ = o7y (X)) AWE + b (X ) dit (2.1)a
X0 = x
n _ (M) () ORG)
AV = 000 (Xynty) Yoty OV + 3B (X) Yoy it (2.2)a
YO =1
SKCEDWY f 0y, (X ) (9
@ Jw(S)At
(n ja(n) iy
+), f aib (XQ ) mhr(du+ ol (X)) (2.5)a
F un(S)at
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It is easily seen thdt (Z.1)a has a unique squD’ﬁSﬁeS: the space
of smooth functionals, anaX™ = Y{".
Further,

t
oXO1H = 3 [ i) (sds

Then the theoreiin 2.2 follows from the approximating theorem
Theorem 2.3. Suppose, for eR™, A(x) = (A(j,(x))eRm ®R",B(X) =
(B'(X))eR™ satisfy

IACQI+ 1Bl < K(1 + [X),
IAC) = AWl + 1B(X) — B(y)l < KnIX= YV X, Iyl < N.

Also,

(a) Supposer(t), a(t) beR™ -valued continuou®; adapted processes
such that, for some 2 p < oo,

Sup, E[ sup |an(t)|p+1] < oo,

O<t<T

E[ sup |an(t) - a(t)|p] — 0asn - o

O<t<T

and let, fori=1,...,n,

r t t
O=d®+ ) f AL E9)AW (9 + f B(&(9)ds
a=17 0

and
t

r t
00 = ah + Y [ AN + [ B @ 9)ds
a=1 o

(o]

then 72

E[ sup |§(”)(s)|p] < oo and

0<s<T
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E[ sup 1£M(s) —g(s)|p] — 0 ash — .

0<s<T

(b) Supposer,(t), a,(t), te[v, T] areRM-valued continuous;- adapted
processes such that, for som& 2 < oo,

sup sup E| sup |an,y(t)|p+1] < o0,
n o<v<T y<t<T
sup E[ sup |an, (t) — a,(t)|IP| - asn — c.
o<v<T y<t<T

Let
r t t
&) = a(t) + ALE()AWE + | Bi(E(9)ds
%/ /

and

r

£OW = ah, ) + f AL ED @n(9))AWE + f B (@n(9))ds

=1y At Un(V)AL
Then
E[ sup |§$”’(s)|P] < oo
y<s<T
and E[ sup (9 - fv(S)Ip] =0
v<s<T

uniformly iny asn — co.
Let X; = (X)), satisfy [Z1). Letr = ((o7ij (1)) where

7ij(t) =< DX, DX > .
The problem now is to prove conditignA.2, i.e.,
(detoy) elp V1 < p < co.

Let Y; satisfy [Z2). Theny; can be considered as an element of
GL(d, R)- the group of real non-singularx d matrices. Then), Y;) €
RYx GL(d,R). Letr; = (X, Y;), which is determine byi{2.1) anf(P.2).
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Definition 2.1. Let (al(x))2, be smooth functions dk and L= Y2
a‘(x)%, the corresponding vector field &f. Then for

r = (x,€)eRY x GL(d, R)

d
we define i = > EeMal(®i=12...d
=1
and £ = (LML,
Let

d
La(®) =) o-ia(x)%a =1,2,...,1.
i=1

L g
o(X) = 2. b (X)ﬁ
where bi(X) = b' — % zk: Za: Ao () (%)
Proposition 2.4. Let 74
L= Z ai(x)%

be any smooth vector field ®f. Then. fori=1,2,...,d,

r t t
HOBAOESDY f i (re)odVE + f iy (rods
a:lo P

t
r
=% [ fgtraave
a=1 0

t
i
¥ f f{['-ovl-]+% ZE,=1[L,1,[L(,,L]]}(r5)dS

(o]

where[L1, Ly] = L1Ly — LyL; is the commutator of Land Lp.
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Proof. f (r)) = [Y;*a(Xy)]' and we know that

dY; ! = —Y 200, (X)odWe — Yy Lab(X,)dt

and da(X;) = da(X;)oo (X)odWE + da(X)b(X;)dt
da
where da(Xs) = (55 (X0))-
The proof now follows easily from the 1td formula. ]

Remark. f (rs) = Yslou(Xs). Therefore

t
r
o =< DX.DX/ 1= ) [ (91T (ra)ids
a=1 0

Proposition 2.5. Let

r t .
VW =Y, [ e 69ds
a=1 0

Then
(deto)elp, V1< P < wiff(detd) telp ¥ 1 < p < co.
75

Proof. ot = Yia1Y; implies deto; = (detYy)?(detdy).
We know that| Y|, [|Y; YleLp V 1< p < oo, where

1/2
lerl = [Z |m,-|2] :
ij
Hence, if/liz,i =1,2,...,dare the eigenvalues otY; then
(detYy)? = detYy Yy = 22--- 22
and

IVIZ = )" < YiYje, & >
i
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= Ai + 4 Aﬁ
where (sq)id=1 is an orthonormal basis iR9. Therefore
(det Y)? < IVl

Similarly
(det Y, 1)2 < |42

Hence the result. m|

2.2 Existence of moments for a class of Wiener
Functionals

Proposition 2.6. Letn > 0 be a random variable o, F, P). If, Y N =
2,3,4,...,d constants ¢ ¢y, c3 > 0 (independent of N) such that

1 _ -1 C ]
P[n<m]—P[T} >N1:|SG2 ,
then Hp Pl <oco,Vp>1

Proof.

E[rP]<1+ i E[n PN <t < (N+21)%]
N=1

<1+2%P 4 Z(N + 1)C1PgCaN
N=2

< 00.

Example 2.1.Let0<t<T. Let

f
n= fIW(S)Ide y>0.
0

Then we will prove thaE[ "] < o0,V 1 < P < c0. To prove this,
we need a few lemmas.

76
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Lemma A. Let P be the Wiener measure off[€& T] — R"). Then,
¥Ye>0,0<t<T3ACq,Co > 0andindependent efand t such that

t&
P[suplw(s)| < e] <Cie €.
O<s<t

Proof. For XeR', |X < 1, let

u(t,x) = P[maxlw(s) + X < 1].
O<s<t

Then it well known that

% = %AU in{|x <1
U0 =1
Ujy=1 = 0.

Therefore, ifA,, ¢ are the eigenvalues and eigenfunctions for the
corresponding eigenvalue problem, then

u(t,x) = > egn(x) fM _, #nay.

77 Also since{w(s)} ~ {ew(iz)} for everye > 0,
€

P[sup|w(s)| < e] =P

O<s<t

sup (wW(s)| < 1]

O<s<L

= U(?,O) ~ ¢1(0) f $1(y)dy x g2

IY|<1

Lemma B. Let

SOEDY

r
a=1

t t
f da(S W)W + f (s wyds
0 0
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Let

class of Wiener Functionals 69

D 18a(s W < k(s )| < k
a=1

a

Th —
en,Ya>0and0O< € < K

such that

,dc > 0, independent o4, ¢, andk

2
P(ra <€) < e_ck_e,

where 7o = inf{t : |£(1)] > a}.

Proof. We know that we can write

&(t) = B(Aa(t)) + Ax(t)

where
r t
A =Y, [ oa(swds
a=1 0
t
Aol = [ u(swds
0
andB(t) is a 1-dimensional Brownian motion witd0) = 0. m]
Hence

{mm>wc@mmmn>%u@Mmpg}

Further|A1(t)] < kti= 1,2, and if

o8, = inf {t
then

{iB) > 2}

. a
»mm>§}

c {Al(t) > 0-2/2}

C {kt > 0'2/2}

78
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a

>
:>Ta_2k

Acl,/kas.
Therefore, if

a
O<e< E(’
B
Plra<e] < P[O'a/2 < ke]
a
< —_
< p| e 8091 5]

< ZP[ max B(s) > g]

O<s<ke

- 2«/(i) f o 02/ke) g
ke

a/2
< e—c.(a/ke).

Ex.[ZJ (Solution): Lett be such O< t < T and forN = 2, 3,..., define

O'Z/N(W) = inf {t s w(t)] > %}

and :
oy (W) = O'Z/N(W)AE-

Let —
t
Wl = {W . O-Z/N(W) < E},

then, by lemm&A, we have(w)) < e‘ClNZ, for some constant; inde-
pendent ofN. We denote the shifted path wft) as

Wg (L) = w(t + 9).

79 Define

Tn(W) = inf {t - w(t) — w(0)| > %}
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t
and let W, = {W : Tl/N(WZ_T) > F}

Note that ifweW; "W, theno-;‘ = oz)N. By strong Markov property
of Brownian motion, we get

t
P(Wg) = P(T]_/N < m)
<e N (by lemmdB)

Define

t
N _ N +
o) (W) =0 + T]_/N(WO_,l\‘)AF.
From the definition, it follows that oW\s,
t
Oy, =0 + m
. N N 3 .
Clearly, if te [0'1,0'2], then (w(t)] < N and if weW; N W, then

1 3
N < w(t)| < N’ Hence we have. foveW; N W5,

0 g?
t 1 t
> — — =
- N3 NY N3+y
Now
PWSUWY) < e &N
Hence _

—CaN _

P(n< N3+y)se M N=23,...

which gives, by propositioi 2.4, th&i(;~P) < co for everyp > 1.
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Example[Z(a):Let
T 1
n(w) = fe W) ds0<t< T,y > O;
0

thenE(nP) < o forall 1 < p < oo wheny < 2, and fory > 2 there
existsp such thatE[7P] = co.

Proof. Exercise. O

Example 2.2.Let

t

o = [

t 2
f IW(S)IVdW(s)‘ dt, forO<t<T
o Lo

fixed, thenE[P] < oo, for every 1< p < co.

Proof. In exampldZll, we have seen stopping timsando) satisfy-
. — t

ing;0< o <ol <t o) — o) = — and

N3

3 .
w(u)| < N’ if ue [0"1\',0'2'\‘].

Now, let
_ N N _ t_
Wy =10, —07 = N[
oy
W, = W:flw(u)IZVdu> N
oy
o
By lemmdB,

P(WE) < e CiN*
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and we have seen thR{WS) < e CiN? | et

o(s) = f Iw(u)[? du.
0

Then by representation theorem for martingales, therdsegise- 81
dimensional Browniam(t) such that

t
f W(SPdWs = BO(D)).
0

ForweW; N W,
t oy
ECORE f IBlO®)et
0 oN
1
6(od)
= f IB(s)|2d6~1(s) changing the variable(t) — s
9(0'?)
O'N
_ “ﬁ’ BSP L)
0(0’2) Zy 9_1(5) d@(u)
> B(s)? d 0(s) =
J R (3] as 9= e
o) g
N 9(0”1\‘)+W s
> (3 IB(9)Pds
3) 9((,{1) of|W(9 1(U))I2
0(0_]’\.‘) N27+3
. N2 )
ie., nz(g) f IB(s)2ds (2.6)

9(0’?
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To proceed further, we need the following lemma whose pratf w
be given later.
Let | = [a,b] and for feL?(1) define

— 1
fI m\lff(X)dX

and 1
Vi(f) = —— [ (f(x) - fAdx
b-a If
V| has following properties:
(i) Vi(f)=0 V fel?()
(i) VI72(F +g) < VA(f) + V'¥(g)

@iii) Vi(f) < %If(f(x) — k)?dx for any constank.

Lemma C.Let B(t) be any one-dimensional Brownian motion o= |
[0, a]. Then the random variable/ (B) satisfies:

a
P [V[o,a](B) < 62] < V2e 27€% | for everye,a > 0.

From [Z.6), using the property (iii) &f;, we get

N \2 t
= (5) Voot iioer) B gz

Now let

L t
e = {W' WVW"?)a9(cr$)+t/(N2y+3)](B) > W}
Then by lemm&1C, we have, forféiciently largem,

PWS) < &GN
3 —_

C,
< e—C3N 4.
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Hence oWy N WL NnW3, n >

P((W1 N W N W5)°) < P(WS) + P(W5) + P(W3)
NC7
<e%
Hence by proposition 2.4, it follows that

E[7Pl<oo,V 1<p<oo.

Proof of LemmalQ: Using the scaling property of Brownian motiong3
we have
aV[o,l](B) ~ V[O,a](B).

Therefore, it is enough to prove that
p[V[o,l](B) < 62] < \/59_1(2762).

Forte[o, 1], we can write

BE) = téo+ V2> [fk {Cos(zz;kl? - 1} " nks”;j’;kt]
k=1

where{&ql, {n«} arei.i.d.N(o, 1) random variables. Therefore

1 (o)
B(t)—fB(s)ds:(t— %)§0+\/ZZ
0 k=1

Note that the function%‘t ~ 1 sin 2zrkt} are orthogonal tgcos 2rkt}
in L?[o, 1]. Therefore

&k

cosZrkt+ sin 2rkt
o7k Mo |

- 1
V=Vey(B)> » &x—=—=.
k; (2rk)?

Hence

E(e—zzzv) <E [e—zz2 Z glf/(an)z}
k
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-[Te(ea)
k

72 \ M2 z
L (1+W) _\/(sinhz)

< \/29_2/4
Therefore
P(V < &) < & E(e )
<\2e7¢ % vz
84 Takingz = ! we get
92= 1e2 V9

P(Vo,1(B) < €%) < \/Ze‘l/(27€2).

Example 2.3.Let
y t t
e =0+ Y, [ e(9ame + [ e(9ds
=179 0

and supposéd a sequence of stopping time$', o'},

N =23,...,suchthat x o)} < o} < tand

. t
() 0"2\'—0"1\l < IVeR

(ii) é 1€4(9)12 + 1€0(9)| < C1, V Sg[o-lil’o_y]’
mo#@_ﬂ<%kgw%

0'2N

(iv) P { l£()]2dt < N—lc‘ < @ 2N%

|01 4
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wherec; > 0,i = 1,2, 3,4 are all independent di. Let

t
n(t) = 7(0) + f £(9ds
0

N

t oy
and n= | P> | (9)ds.
frc

77

ThenyLelp, V 1 < p < co. This follows from the estimata cs >

0,cs > 0,c7 > 0 (all independent o) such that
O‘N
: 1
2 il —CeN°7
P f|n(t)| i< | < e
N
CE)

To prove this, we need a few lemmas:

Lemma D. Let
y t t
e =60+ ), [ & + [ a(ods
=179 0

Let
2
su (97 + 1&0(9)] < c.
sup Z Ea(I + E0(S)
Thenv 0 <y < 3,3 ¢1 > 0,¢, > Osuch that
P[ sup £(t) — £(9)l

steftit] It— 9 -

Proof. Since we can always write

t t
(1) = £(0) + B[ | Z(s)zds] + [ e9ds
o ¢ 0

>ﬂ<€W?N=zam

85
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whereB(t) is a 1-dimensional Wiener process, it is enough to prove the
Lemma wherg(t) = B(t). ForweW, let

[w(t) — w(s)|
”WH)/ = Sup M
sto,1]  [t—97

Let
W, = {weW : [[wll, < oo}

ThenW, c W is a Banach space and if @ y < 1/2, using the
Kolmogorov-Prohorov theorem, it can be shown tRatan be consid-
ered as a probability measure W, (cf. Ex. [L2 withk(t, s) = tAs).
Therefore by Fernique’s theorem,

E(eMP7) < oo
for somea > 0 = E(eVh)<*, Therefore

P(wil, > N) < e NE[e"r]

c:
< e—ClN 2

86 LemmaE. Let f(s) be continuous on [&] and let

If® - fl _
t-st3
b
and f 1f(t)]2dt > €2 wheree® < 22k3(b — a)°/2.
a
Let t
o) - 9@ + [ f(9ds
a
Then

Ell

1
29 48k8(b — a)+972°

(b-2a)Vian(9) =
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Proof. 3 toe[a, b] such that f(t,)| > m.
Therefore f(s)| = |f(to)| — | f(to) — T(9)| implies
63
1912 5=z 1 o= 5 < (g e
We denote by the interval of length

€3

= —
= e o a2

79

which is contained ind, b] and is of the form{y, to + [I]] or [to — |I], to]-

Suchl exists, since

€3 - b-a
k328(b—a)32 — 2

Note thatf(s) has constant sign ih Therefore

b
(b - 8)Viar (@) = f (9 - 9ds
> f (o9 - 9ds
|
> (o9 -@yds
/

But we can always finti el with gl = g(t1). Therefore

s 2
(b—a)Vjap(9) > f[ff(u)du] ds

2
= 4(b f(S t1)“ds

> 4(b a) dswherel = (a,B)

87
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_i 62 |||3
“8b-a

Proof of ex.[2.3: Let

£(t) — £(s)l
WZZ{ Sl,.l\llplz\‘]m < N}

ste[oy o
oy
Ws = OPdt > —
h = l£(t)“dt > N&
oy

Then by Lemm&D and assumptions (iii) and (iv), we get
P(W§uwuWs) < e®N? a > 0,8, > 0.

Hence, ifweW; N W, N W, by LemmdEE, we can choosg > 0

such that 1
N N
(o) = oY) Vierom @) > 5
and since
oy
1 2
Vieh oy (1) < NN In(t)|“dt
2 1%
e
we have

o3

1 a

2 - —a1 N2

Pl [ moPdt < | < e,
o)

t t
88 KeyLemma: Letn(t) = n(0)+X'_; [1.(S)dWE + [ no(s)dswhereno(t)
(o] (o]
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is also an Itd process given by

t

r t
o() = 10(0) (9dWg oo(9d
n n +ﬂZ::1~Oanﬂ S +f77 s)ds

o

Suppose we have sequences of stopping ti{m@s}s, {O'ZN} such that
O<ol <o) <tfor0O<t<T,N=23,...and satisfying

t
i oN_ N
(I) 0'2 1 < m
; t
(i) P(O’E' o) < N3) < eN? Jfor someCy, ¢, > 0
(iii) 3 c3 > 0 such that for a.a.w

1+ > ma®)l + D Imos(®)l < c3
=0 B=0

for everyte [}, o).

Then for any givercy > 0,3 ¢s, Cg, C7 > 0 (Which depend only on
Ci1, Cp, C3, C4) SuUch that

P fln(t)lzdt < — Zf|na(t)|2dt> —

secﬁN7,N:2,3,....

Proof. For simplicity, we takd = 1. Let

N3
t) — S
wos| sup Oy
S,te[a'y,a'N] It—9
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then, by the hypothesis (ii), (iii) and Lemrfd B,constantgd;,d, > 0 89
such that

P(WS U WE) < g diN%, 2.7)
Now, by representation theorem, Oﬁﬂ o-y], n(t) can be written as
n(t) = n(oy) + B(A®) + o(t) (2.8)
where .
A = f 3 (9Pds o) = [ noss
N a=1 oN
1
andB(t) is one-dimensional Brownian motion wit(0) = O. m|

In Ex.[Z3, we obtained that, for eveay > 0,4 a, > 0 such that

c W UWS f Ino(t)|?dt < 2Na . (2.9

0'1

[V[(Tl 5] (@ < Naz

Let

Ws = f |na(t)|2dt> —1.

Chooseas such thataz > ¢4 + 1, which implies

1 1
NG > N_%’N = 2,3,...
Therefore
O‘N
1 1
2 N
W; C flno(t)l dt >~ U A(od) = 2NC4]

C W3,1 U W3’2
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where

r N
)

1 1
— 2 N
Wiy = flno(t)| dt> o - A(0)) < N

!

1

Wz, = :A(O”Z\l) > Ni%]

920
In Z9), takinga; = c4, we get,d a, > 0 such that

N

92
Vioton(@ < o f no(Pdt > | WE U WS
0'1
So, in particular,
1
Wz1nN V[O_rl\l’o_rz\l](g) < N& @ WJC_ U W(Z: (2.10)

Let

W, = f |n(t)|2dt< ~r

wherea, is some constant which will be chosen later. ThenyfeW, N
Wi,

2
Vi o () < N oh f In(t)]2dt < —

1.
V[ay,ag](ﬂ) < INES if a4 >as+3. (2.11)

Let
1
W5=[ sup  [B(U)l < —as]
0<u<1/(N23)
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then, by Lemm&HA,
POWE) < dze™™, if ag > 2a5 + 1. (2.12)
91 Now, for weWs 1 N Wy N Wy N Ws, by (Z38),

VYE (@) < VHE ) + VYA L (BIA®))

[0"1\‘,0'?] 0"1\‘,0'2’\‘ [0'?,0"2\‘]
< 1 1
~ N&s/2 + Nas/2

(by (211) and definition afsand since, on
1
[}, o510 < At) < N_%)

B 2
T ON&s/2°

Now choosess such that2; < wi; then

1
Vieh o(9) < Ne
Hence
1
Wz1 N WanWp NnWs C V[UT,(T?](Q) < N&

which implies by [ZID) that

W3’1ﬂW4ﬂW]_ﬂW5CW](_:U

r\_%

Therefore
W3,1ﬂW4CWfUW§UW§.

So choosin@gg > c4+1,a3 > 2as+1,a5 > 2(@x+1) andag > a5+ 3,
we can conclude forni{2.7) and{2112) that

P[WEUWS UWE] < e®N® vN=23,....
for some constantd, > 0 andds > 0 and therefore

P[Ws1n Wy <e®N® vN=23. . .. (2.13)
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92 Next we prove thatVs2 N Wy is also contained in a set which is
exponentially small, i.e.,

P(W3,2 N W4) S_dGNd7
for somedg > 0,d; > 0.
into N™ subinter-

1
i N N| _ N N
ForweW;, we dIVIde[O'l,O'Z] = [0'1,0'1 + NE
vals of the same length viz.

k k+1
o + N

— _ m
Ik— W,O'l-Fw,k—o,l,...N -1

Also, we choosén > az. Then

f In(t)2dlt = f In(o) + BA() + gty (2.14)
Ik Ik
_ f n() + B9 + g(AX(S)PdA (9
A(lk)
whereA(ly) = A(o-'l\' + %),A(o—;\' + %) )
> % in(l) + B(9) + g(A1(9)ds
A(lk)
t
) _ ds
(sinceA(t) = [a(s)ds:> dA () = A1)
anda(s) = ) In.(9F < ).
a=1
Let
k
Je = [A(o-;l + N3+m)’A(O-T + N3+m) + Ni+m )

Note thatJ; s are of constant length. Then

Win |A(|k)| > cWin [A(lk) D Jk]

- Nék),+m
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c WiN f In(t)|?dt > % f () + B(s) + g(A"Y(9)I?ds| by 2.14
Ik Jk

(whereg'= g(A™"))

c WiN f In(t)?dt > %VJk(B(-) +0)
Ik

cwin| [ In@)Pdt> % (lek/z(B) - vjk/z(g))z] . (2.15)

| J Ik
93 Since

t
g= f no(9)dsandine(s)l < con [}, o],

[o]

18(t) — ()] < dATL(H) — ATX(9)!.
Therefore with

k
tOZA(UT+W),

1

V5 (@) < R

f 16() - &(to) ol
Jk

C_Z “1y _ a-ler 1\2
<= Jf (A1) - A1) %ds

2
= 1 N3+m Nas+m 1 N3+m

+1 k .
< Ao + o (N + ~EmI2(sincedi < A(ly)
C2
= o (2.16)
Hence
Wi [3Y2(B) > —< A = 2.17)
1 k N3+m’ k)l = Nas+m :
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[ 1 ’N
cWin| [ |mPdt> [cw] 'Jk'l by 2.15 and 2.16
|1k

- 2 ¢
=Win f|7](t) dtZW .

Let
NM-1
2c
_ V12
WG - ﬂ [ (B) = N3+m]
k=0
Since
NM_1
A(O’%I) = Z AL, weWy N Ws
k=0
= Ak AW > —— Norm
B 1
= Wi N Wsp c UNGE {|A(|k)| > Naﬁm} :
Therefore

N™-1
Wi nWe W | {[|A(Ik)| > N%m] Vi) >
k=0

}ﬂWl

NT-1
C
cU lfn(t)zdt> Noramas | N Wa by 217
- |

C
- f|7](t)|2dt2 |\|6+3—m+é\3 N Wh. (2.18)

N
CE)

Therefore, if we choosa, such that

1 o

N_a4<|\]6+3—rma3’ VN:2,3,...,

94
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then [ZIB) implieW; NWeNWs2NW, = ¢, which impliesWs 2,nW,
WS U W,

2c

1/2

P(Wg) < Z P[VJk (B) < N3+m]
k

< NMgGlIMEANT™)? v k (hy | emma[T))

_ N me_d9 N6+2m—a3—m

< N™e®N° (sincem > ag)
< g doN (2.19)

95 Choosingcs = a4, (ZI3) and[[Z119) give us the required result

2.3 Regularity of Transition Probabilities

We are now going to obtain aSicient condition for[[AR) to be satisfied
in the case oK; which is the solution td(Z]1).
We recall that

d
Lo(X) = Zo-ia(x)%,a =1,2....r
i=1

d

~oo 0
Lo = ), Bi(¥)——
S OX
where 1
d(¥) =) -5 > (o).
€%
Let

20: {Lla L29"'aLI'}
%1 = {[Lo,L]: LeZo,@ = 0,1,...,1}

¥n=1{[La,L]: LeZn1,@=0,1,...,1}.



2.3. Regularity of Transition Probabilities 89

96 Therefore

LeZ = Jaell,2,...1},ai€l0,...rhi=1...n
n

such that
L =[Lo,[---[Las[Lays Laol] - - -]
Let

(Leo L) i=[Los L], @ =1,2...1
1 r
(Lo.L) = [Lo. L] + 5 > [ [ L]
p=1
Then we have

Pt t
f[(rt) - f|'_(l’0) = Z f f('l_ml_)(l’s)d\/\é’ + f f('l_o’l_)(l’s)ds
=179 o

wheref], r; etc. are as in proposition 2.3. Let

Zn={(Lo, L) Lexi 4 );

then

Lez implies

n
L = (L(lfn’ (La/nfl e (L(ll’ L(lfo)) o )
= Lo, @1+ an
for some
a06{192a' '9r}aai6{oa' ’r}al :19 7n
Let

Th=2gUZiU---UZ,

It is easy to see that the following two statements are etgniva

97
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() at xeR%,3 M and Ag, A;..., Aqesm such thatAi(X), Ax(X)...
A4(X) are linearly independent.

(i) at xeR%,AM andAq, A; ..., Agezm such thati (x), Ax(X) .. . Ag(X)
are linearly independent.

Theorem 2.7. Suppose foreR9, AM > 0and A, A,, .. .,Adei,w such
that A((X), Ax(X), ..., Ag(X) are independent. Then, for every 0,

Xe = (Xa(t, X, W), Xo(t, X, W), ..., Xq(t, X, w)),

which is the solution of{211), satisfidsS_{]A.2) and hence thbability
law of y(t, x, w) has C°-density fft, X, y).

Remark 1. p(t, X, y) is the fundamental solution of
u 1o,
i [5 Z LS + Lo
a=1
Ult=o = f

i.e., u(t, ) = [ p(t. . y) f(y)dy.

Remark 2. The general equation

u

ou

o = u, where ceC®(RY)

1 r
EZL§+LO+C(.)
a=1

has alsaC*-fundamental solution and is given by
P(t, X, y) =< Ay(X(t, X, w)), G(w) >

where t
G(W) = eb cXtxw)dspy

Remark 3. The hypothesis in the theorem 2.6 is equivalent to the fol-

lowing: ForxeD9,3 M > 0 such that

: 2

nf, Z < A(X),>%>0 (2.20)
AEZM/

where

S1 = {1eD9: |g] = 1.
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Proof of theorem 2.7.By (Z20),3 & > 0 and bounded neighbourhood
U(x) of xin RY, U(lg) in GL(d, R) such that

: —1 2
inf, Z < (€1A)Y), £ >%> & (2.21)
AEZM/

for everyyeU(x) andecU(lg). Let1eS% 1 and A be any vector field.
Define
) =< fa(r), £ >,

(cf. definition[Z1l) wheres, > is the inner product iiR%; then we have
the corresponding It6 formula as

r t t
NORINOESY f (L (TAVE + f fil) y(ro)ds
=17 0

wherer; = (Y1, Y1), X, Y; being the solution of{211)[{2.2) respectively.99

Recall that t
r
0! =Y [ Lot rads
a=1 o

and by propositiol2l5, to prove the theorem, it is enoughréeethat
(detXte)eLp for 1 < p < co. Now

d
<Gl t>= ) S0 0= )
ij=1

M-

t
IBREEE

1

<
l

Let AeS . Note thatAe3 , implies3 n, 0 < n < M andeje
{0,1,2,...,r},0<i<n,a # 0, such that

A= Lao,al,---,ozn-
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Also note that the number of elementsjm,l, is

M

D+ 1) = k(M)(say )

n=0

Define the stopping time- by

o =inf{t: (X%, Yy ¢ U(X) x U(lq)}

By lemmaB, fort > 0, we have

t 3
Plo < —|<eaV,
(‘T< Ns)—

Now in the Key lemma, set faX = 2,3,..., 0} = 0 and

t
N
0'2 IO'Am

100 Then the following are satisfied:

; N N - i N N T
() 0<oy <oy <to, —07 < 3

(i) Pley -l < L) <en,

(iii) If we set

2
c=sp sw Y [O0f,

1eS9-1reU(X)xU(lq) AeSp 11

then for 2
te[(f?',ffgl]’ Z [f£>(r)] <C< .

AEiM/Jrl
For

t
WEW1={O'2N—O'1N=N—3},

by choiceU(x) x U(l4) and [ZZ1L), we have
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oy _

. ([) 2 t

lyllflf Z [f2 (rds > eor s (2.22)
O'],\_‘ AEZM/

Choosey > 0 such that

1 eot_> 1
K(M)N3 = N7’

.....

N
)

2
WkA’g:f[f(g)l-ao,alv---v“k1(rS)] ds<

N
o

1
NCk-1’

7 .
2
Zf[f(f)La leak_m(rs)] ds> —.,k=1,23,...,n,
0,150 ch
a=0*
71

whereC, Cy_1,...C, are obtained applying Key Lemma successivelp1
as follows:
LetC, =y > 0. Then by Key Lemma] C,,_1, a, b, such that

P(W0) < e aN™,

Now again by Key Lemma, for give€,_1,3 Cn_2,an-1, bnh_1 such
that .
P(W.Y)) < ganaN™

And proceeding like this, we see that giveqn 3 C,, a3, by such that
POWA) < g N
Hence we see that

P(WA,Z) < e—aNb,k=1,2,...,n,
M) <
where a= min{aj}1<i<n, b = min{b; }1<i<n.
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Note thatCy,C,_1,...Co anda, b are independent of since they
depend only ory, C andc;. Let

n
WAL= | Jw. ThenP(WA) < e @\

k=1
and
PW(0) < &N wherew(s) = | | WA (2.23)
AEiM/
102 From [Z.2P), forweWy, we get

oN

f S0 rPds> %t_s k(M)%.

0'? AeZyy

Henced AeZy such that

N
)

f[f,g)(rs)]zdsz %

2 1
e
> f (O 9] ds> (2.24)

Now supposeveW; "\W(1)® which impliesw ¢ W, for everyAe3.
andk = 1,2,...,n. Then by definition ofAj** and by [Z2H), it follows
that

N
)

2 1
O]
f fl—ao,ol,,,,,nn,ln (r S) d Sz NCn—l

N
Sk
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and consequently

0 1
Zf f 0 0,7 yees¥— 15X S)] Ncn 1

Andw ¢ W2 together with[Z25) gives

N
)

2 1
]
Jlie, . ool oox

N
o

Continuing like this, we get

95

(2.25)

N

Now, let ¢’ = max{Co = Co(A) : AeX ). Then we havey!_; [
N

Sk

[f(") (r )] ds> . Hence we have proved that férs*1 andweW; N

W(é}C dc>o0 (mdependent of) such that

r 72 1
4
Zf[flfa)(r )| ds> <
a=1%
o1
We have
r t
L= f il (f ro)ds
=1 0
Now let

r 2
di=Y f i (9t (r9ds
a:lUN

(2.26)

103
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Note that

Z f 0P ds= 3 dlid = Q) (sa)

i,j=1

Also, det > detq > /ld whered; = |||nf Q(), the smallest eigen-

value ofg. Hence to prove that;leLp,it is suficient to prove that
A eLp, Y p.
By definition ofgl, we see thafl ¢’ such thatg!| < <;. Therefore

QO - Q) < 1t~ (2.27)

Hencedly, ls, ... Iy such that

m
U ( 20”N°) 5%,

k=1

whereB(x, s) denotes ball aroung with radiuss.
104 Also it can be seen tham < ¢”’/N34. Then,£eS% 1 implies 3 ¢

such that — & < 2c" c. Hence by[(Z27)

Q) - QI < 5

But for weW; N (NW(€x)°), Q(¢k) > Hence for

2NC
weW; N (NW(£)), Q(¢) > %

So

inf Q() < 51z onwl[ﬂ W(i) ]
e, A1 5z onWi (N W(K)E).
But we have o
PWSUW(¢)) < e 2N
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and hence
m
P [U W(lk)}] < C///N(C 3)d —aNb
k=1
m
ie., PWe [UW(lk)ﬂ g aN
k=1

which gives the result.
A more general result is given below whose proof is similathiat

of theorenZJ7.

Theorem 2.8. Let 105

Um0 = inf D<A 2,

AEEM/

Suppose foreRY, 3 M > 0 and U(x), neighbourhood of x such that for
everyt > 0

PlUm(Xt) < % for all te[O, ﬂ\ru(x)]] = 0(%) asN— coforallk >0
(wherery = inf{t : X; £U(X)}).

Then the same conclusion of theollem 2.7 holds.
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NOTES ON REFERENCES

Malliavin calculus, a stochastic calculus of variation fMiener
functionals, has been introduced by Malliavin [7]. It hasbepplied to
regularity problem of heat equations in Malliavin [8], Iket@lvatanabe
[3], Stroock [16], [17], [18]. The main material in Chapfdis2an in-
troduction to the recent result of Kusuoka and Stroock os lihe. In
ChaptelL, we develop the Malliavin calculus following tireeldevel-
oped by ShigekawaTl3] and Meyér[10].

Chapter[I:

1.1. (a) For the theory of Gaussian measures on Banach spaces, Fer
nigue’s theorem and abstract Wiener spaces, cf Kuo [5].

(b) That the support of a Gaussian measure on Banach space is
a linear space can be found in Ifd [4].

(c) For the details of EX11.2, cf. Baxendalé [1].

1.2. (a) Aninteresting exposition on Ornstein Uhlenbeck semigs
and related topics can be found in Meyerl[10].

(b) The hyper-contractivity of Ornstein Uhlenbeck semigro
(TheorenZLB) was obtained by Nelsbnl[11]. Cf. also Simon
[14] and, for an interesting and simple probabilistic proof
Neveu [12].

(c) For the fact stated in DdE._1.8, we refer to Kb [5].

1.3. (a) For a general theory of countably normed linear spacds an
their duals, we refer to Gelfand-Silowvi [2].

(b) For Ex. LB, details can be found in Ikeda-Watandbe [3],
Chap.VI, Sections 6 and 8. Cf. also Stroocki[19].

(c) Littlewood-Paley inequalities for a class of symmettiftu-
sion semigroups have been obtained by Meyer [9] as an ap-
plication of Burkholder's inequalities for martingaleshish
include the inequalitie§1l.7) and (]L.9) as special casés. C
also Meyer [10]. An analytical approach to Littlewood-
Paley theory can be seen in E.M. Stéinl [15]
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(d) Lp multiplier theorem in Stefl2 was given by Meyer. Proof
here based on the hyper-contractivity is due to Shigekawa
(in an unpublished note).

(e) The proof of Theorem 1.9 given here is based on the hand-
written manuscript of Meyer distributed in the seminars at
Paris and Kyoto, cf, also Meyer[10].

() The spaces of Sobolev-type for Wiener functionals ware i
troduced by Shigekawa[L3] and Stroo€kl[16], cf. also [3].
By using the results of Meyer, they are more naturally and
simply defined as we did in this lecture.

1.4. (a) The composite of Wiener functionals and Schwartz dhistri 108
tions was discussed in]21] for the purpose of justifying tvha
is called “Donsker’sy - functions”, cf. also Kuol[b],[5].

1.5. (a) The result on the regularity of probability laws was fbt
tained by Malliavin [[8].

Chapter2:

2.1. (a) Forthe general theory of stochastic calculus; stoahage-
grals, 1td processes and SDE's we refer to lkeda-Watanabe
[3], Stroock [19] and Varadhan [20].

(b) For the proof of approximation theordml2.3, we refef o [3
chapter V, Lemma 2.1.

2.2. The key lemma was first obtained, in a weaker form, by Malfiavi
[B]. Cf. also [3]. The Key lemma in this form is due to Kusuoka
and Stroock (cf.[118]) where the idea in EX2.3 plays an irtgoutr
role.
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