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Preface

In the last years we have witnessed penetrations of sieve methods into
the core of analytic number theory - the theory of the distribution of
prime numbers. The aim of these lectures which I delivered atthe
Tata Institute of Fundamental Research during a two-month course early
1981 was to introduce my hearers to the most fascinating aspects of the
fruitful unifications of sieve methods and analytical meanswhich made
possible such deep developments in prime number theory.

I am much indebted to Professor K. Ramachandra and Dr. S. Srini-
vasan for their generous hospitality. I can still remember quite vividly
many interesting discussions we made on the Institute beachaglow with
the magnificent setting sun.

The whole manuscript was read by Dr. Srinivasan with utmost care,
and I wish to thank him sincerely for his help.

Chiba, JAPAN Yoichi Motohashi
October, 1983
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NOTATION

Most of the notations and conventions employed in these lectures
are standard, but the following briefing may help the readers. The letter
p with or without suffix stands for a prime number. For an integerd,
ω(d) andτk(d) denote the number of different prime factors ofd and the
number of ways of expressingd as a product ofk factors, respectively;
u|d∞ implies thatu divides a power ofd. ϕ andµ are the Eiler and the
möbius functions, respectively. For two integersd1 andd2, (d1, d2) and
[d1, d2] are the greatest common divisor and the least comomon multiple
of them, respectively. We use usual notation from that set theory; in
particular, ifA is a finite set,|A| is its cardinality.

Most of Dirichlet characters are denoted typically byχ, and
∑∗ is as

usuala sum over primitive characters.
If the lettersstands for a complex variable which will be clear from

the context, we use the convention:Re(s) = σ andIm(s) = t. The letters
ǫ andc denotea suficiently small positive constant anda certain positive
constant, respectively, whose value may differ at each occurrence.

The constants implied b the 0−, o− and≪ symols are always abso-
lute apart from their possible dependednce onǫ which is also effective,
i.e. once the value ofǫ is fixed the value of those constants is explicity
computable.
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Topics in Sieve Methods
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Chapter 1

The Λ2-Sieve

ONE OF THE primary purposes in these lectures is to appreciate the 1

power as well as the sharpness of Selberg’s fundamental sieve idea —-
theΛ2 - sieve – by employing it as a principal tool in the investigation
of the zeta- andL-functions. Our actual applications of his idea will,
however, be made not in its original form but rather in its hybridized
version with the large sieve of Linnik; indeed, there is a sort of duality
relation between these two fundamental sieve methods because of which
they admit of a fruitful unification.

In the present chapter, we shall first study this aspect of theΛ2-
sieve to some extent of generality and then, by specializingmain results,
prepare basic aids for the applications to be made in PART II.

1.1 Selberg’s Sieve for Intervals

To begin with, we shall give a formulation of Selberg’s fundamental
idea:

Let Ω be a map of{pα} the set of all prime- powers into the family
of all subsets ofZ, and for an arbitray sequenceA of integers let us
consider

AΩ = {aǫA; a 6 ǫΩ(Pα) for all pα(α > 0)}

which may be called the resulatant of siftingA by Ω. We extend the 2

3



4 1. TheΛ2-Sieve

domain ofΩ toN by putting

Ω(d) =
⋂

Pα‖d
Ω(Pα),Ω(1) = Z,

and denote byδd andω̃ the charcteristic functions of the setsΩ(d) and
ZΩ′ respectively. Then Selberg’s idea may be formulated as follows.

Theorem 1. Letλ be an arbitrary real-valued function with a compact
support and satisfyingλ(1) = 1. Then

ω̃ ≤

∑

d

λ(d)δd



2

.

PROOF is immediate.

In partticular, we have, for any finite sequenceA of integers,

(1.1.1) | AΩ |≤
∑

aǫA


∑

d

λ(d)δd(a)



2

.

Naturally, it is desirable to have the minimum value taken bythis
quadratic form ofλ under the side conditionλ(1) = 1; but obviously that
would be intractable without imposing certain reasonable conditions on
Ω,A andλ. Hence we shall introduce the following specialization of
them in order to illustrate the process leading to the determination of a
quasi-optimalλ, and thus a satisfactory upper bound for|AΩ|.

We assume thatA is in an interval of lengthNǫN, i.e., there is an
MǫZ such thatA ⊆ [M,M +N) and thatΩ is defined locally by congru-
ence relations, i.e.,

(1.1.2) Ω(pα) =



n (mod pα) belongs to a given

n;

set if residues (modpα)


3

Also, we assume, for the sake of simplicity, that for each prime p
there is anαp ≥ 1 such that

(1.1.3) Ω(pα) = empty for all α ≥ αp.
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Further, we restrictλ by requiring that its support be contained in
the interval [0,Q],Q > 1 being a parameter.

On these assumptions, we have, by (1.1.1),

(1.1.4) |AΩ| ≤
∑

M≤n<M+N


∑

d<Q

λ(d)δd(n)



2

.

However, to avoid the complexity arising from the possible inter-
relation amongΩ(pα), α ≥ 1, it is expendient to transformΩ into Ω̃
which is defined by

Ω̃(pα) = Ω(pα) −
α−1⋃

j=1

Ω(p j)

so thatΩ̃(pα), α ≥ 1, are independent of each other, i.e.,

(1.1.5) Ω̃(pα) ∩ Ω̃(pβ) = empty ifαβ(α − β) , 0.

This does not cause any change in our present sieve situation, for we
have evidentlyAΩ = AΩ̃. Thus we shall consider, instead of (1.1.4), the
expression

(1.1.6) |AΩ| ≤
∑

M≤n<M+N


∑

d<Q

λ(d)δ̃d(n)



2

,

whereδ̃d is the characteristic function of the set 4

Ω̃(d) =
⋂

pα‖d
Ω̃(pα),

i.e., δ̃d = δd

∏

pα ||d

α−1∏

j=1

(1− δ j
p).

Now we have to estimate the right side of (1.1.6). The conventional
way of doing this is to expand out the lamda-squares, change the order of
summations, and single out the main-term while estimating drastically
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the error thus caused; by an obvious reason, this does not work well in
our present situation. Thus we need to devise an alternativeargument.
To this end, we observe that since we have definedΩ by the congruence
condition (1.1.2), the characteristic functionδ̃d can be expressed as

δ̃d(n) =
1
d

d∑

ℓ=1

d∑

k=1

exp

(
2πi

k
d

(n− ℓ)
)
δ̃dℓ

=
1
d

∑

q|d

q∑

h=1
(h,q)=1

exp

(
2πi

h
q

n

) d∑

ℓ=1

exp

(
−2πi

h
q
ℓ

)
δ̃d(ℓ).

(1.1.7)

Insertion of this into the right side of (1.1.6) gives

(1.1.8) |AΩ| ≤
∑

M≤n<M+N

|
∑

q<Q

q∑

h=1
(h,q)=1

b

(
h
q

)
exp

(
2πi

h
q

n

)
|2,

where

b

(
h
q

)
=

∑

d≡0 (modq)
d<Q

λ(d)
d

d∑

ℓ=1

exp

(
−2πi

h
q
ℓ

)
δ̃d(ℓ).

Thus we have got an expression fairly familiar in the theory of the5

large sieve, and we recall the fundamental

Lemma 1. Let {xr} be a set of points in the unit interval which are
spaced byδ > 0. Then, for any MǫZ,NǫN and complex numbers{br },
we have

∑

M≤n<M+N

|
∑

r

br exp(2πinxr )|2 ≤ (N − 1+ δ−1)
∑

r

|br |2.

Applied to the right side of (1.1.8), this yields readily

|AΩ| ≤ (N − 1+ Q2)
∑

q<Q

q∑

h=1
(h,q)=1

|b
(
h
q

)
|2

= (N − 1+ Q2)
∑

d1,d2<Q

λ(d1)λ(d2) f (d1, d2),

(1.1.9)
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say; here we have

f (d1, d2) =
1

[d1, d2]

d1∑

ℓ1=1
ℓ1≡ℓ2

d2∑

ℓ2=1
(mod (d1,d2))

δ̃d1(ℓ1)δ̃d2(ℓ2).

Taking into account the multilicative property ofδ̃d, this may be
written as

f (d1, d2) =
1

[d1, d2]

∏

pα‖d1

pβ‖d2



pα∑

ℓ1=1
ℓ1≡ℓ2

pβ∑

ℓ2=1
(mod pmin(α,β))

δ̃pα (ℓ1)δ̃pβ (ℓ2)


.

If αβ(α−β) , 0 then this double sum is zero, for we have (1.1.5); on
the other hand, if, eitherα = β or β = 0, then it is equal to the number of6
residue classes (modpα) defining the set̃Ω(pα), which we shall denote
by ‖Ω̃(pα)‖, in what follows. Hence we have

(1.1.10) f (d1, d2) =
∏

pα||d1

pβ ||d2

f (pα, pβ),

where
(1.1.11)

f (pα, pβ) = f (pβ, pα) =


0 if αβ(α − β) , 0,

‖Ω̃(pα)‖p−α if eitherα = β or β = 0.

Now, let us proceed to the computation of the minimum value taken
by the quadratic form

I =
∑

d1,d2<Q

λ(d1)λ(d2) f (d1, d2)

on the side conditionλ(1) = 1. To this end, we need to havea diagonal-
ization of the infinite matrix

F = ( f (d1, d2))(d1, d2ǫN).
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Formula (1.1.10) implies thatF can be expressed as the infinite Kro-
necker product:

(1.1.12) F =
⊗

p

Fp′

where
Fp = ( f (pα, pβ))(α, β ≤ αp (cf. (1.1.13))).

This should be taken for a symbolic interpretation of the multiplica-
tive property of the functionf ; so we may neglect the question of the
order of multiplication.

Thus, it suffices to consider a diagonalization ofFP.For this sake we7

use the familiar algorithm of Gauss, and get

(1.1.13) FP = TPDPTt
P,

whereDP is diagonal, andTP is lower triangular with all diagonal en-
tries being equal to 1. To see the precise form ofDP andTP, we consider
the quadratic formK(x0, x1, . . . , xr )r = αP, for which FP is the coeffi-
cient matrix; (1.1.11) gives

k = x02 + 2x0( f1x1 + f2x2 + · · · + fr xr) + f1x21 + f2x22 + · · · + fr x
2′r

where f j = ‖Ω̃(p j)‖p− j.
We have

K = (x0 + f1x1 + · · · + fr xr )2 + f1(1− f1)

(
x1 −

1
1− f1

( f2x2 + · · · + fr xr )

)2

− 1
1− f1

( f2x2 + . . . + fr xr )2 + f2x2
2 + · · · + fr x2

r

= (x0 + f1x1 + · · · + fr xr )
2 + f1(1− f1)

(
x1 −

1
1− f1

( f2x2 + · · · + fr xr )

)2

+ f2
1− f1 − f2

1− f1

(
x2 −

1
1− f1 − f2

( f3x3 + . . . + fr Xr )

)2

− 1
1− f1 − f2

( f3x3 + . . . + fr xr )2 + f3x2
3 + . . . fr x2

r ;

thus inductiveIy we find
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(1.1.14)

K = y2
0+ f1(1− f1)y2

1+ f2
1− f1 − f2

1− f1
y2

2+· · ·+ fr
1− f1 − f2 − · · · − fr

1− f1 − f2 − · · · − fr−1
y2

r

where

(1.1.15) y0 = x0 + f1x1 + · · · + fr xr

and,for 1≤ j ≤ r, 8

(1.1.16) y j = x j −
1

1− f1 − f2 − · · · − f j
( f j+1x j+1 + · · · + fr xr).

It should be remarked here that in the above transformation of K we
have assumed that for 1≤ j ≤

(1.1.17) θ(p j) = 1− f1 − f2 − · · · − f j

does not vanish. This causes no loss of generality. For,p j(1− θ(p j)) is
obviously the number of residue of classes (modp j) defining the set
Ω(p) ∪ Ω(P2) ∪ · · · ∪ Ω(p j), and if θ(p j) = 0, then this sum coincides
with Z, that is|AΩ| = 0.

Using the nitation (1.1.17), we may put the transformation (1.1.15)
– (1.1.16) in the matrix from (1.1.13) with

Dp =



g(1)g(p) ©
. . .

© g(pαp),



Tp = (t(pα,mpβ))(0 ≤ α, β ≤ αp),

where

(1.1.18) g(1) = 1, g(pα) = (θ(pα−1) − θ(pα))θ(pα)θ(pα−1)−1

and

(1.1.19) t(pα, pβ) =



1 ifα = β,

θ(pα−1) − θ(pα) ifα > 0, β = 0,

(θ(pα) − θ(pα−1))θ(pα)−1 ifα > β > 0,

0 ifα < β.
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9

In particular, we have

f (pα, pβ) =
min(α,β)∑

r=0

g(pr )t(pα, pr )t(pβ, pr).

Thus, in view of (1.1.10), we obtain

(1.1.20) f (d1, d2) =
∑

u|(d1,d2)

g(u)t(d1, u)t(d2, u),

in which we have put

(1.1.21) g(u) =
∏

pα‖u
g(pα)

and
t(d, u) =

∏

pα‖d
pβ‖u

t(pα, pβ).

The formula (1.1.20) provides the quadratic formI with the diago-
nalized form:

I =
∑

u<Q

g(u)(
∑

d<Q
d≡0 (modu)

t(d, u)λ(d))2

=
∑

u<Q

g(u)ξ2
u,

say.
To proceed further, we need to express the side conditionλ(1) = 110

in terms ofξu. To this end, we compute the inverse matrix ofTp; this
may be performed easily with the aid of (1.1.15) and (1.1.16). We have

T−1
p = (t∗(pα, pβ))(0 ≤ α, β ≤ αp)

with

(1.1.22) t∗(pα, pβ) =



1 if α = β,

(θ(pα) − θ(pα−1))θ(pα−1)−1 if α > 0, β = 0,

−(θ(pα) − θ(pα−1))θ(pα−1) if α > β > 0,

0 if α < β.
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Then, putting
t∗(d, u) =

∏

pα‖d
pβ‖u

t∗(pα, pβ),

we have

(1.1.23)
∑

u|d1.
u≡0 (modd2)

t(d1, u)t∗(u, d2) = δd1,d2(Kronecker’s delta)

as well as

(1.1.24)
∑

u|d1
u≡0 (modd2)

t∗(d1, u)t(u, d2) = δd1,d2.

In view of the definition ofξu, (1.1.23) implies 11

λ(d) =
∑

u<Q
u≡0 (modd)

t∗(u, d)ξu.

Specifically, we have transformed the side conditionλ(1) = 1 into

1 =
∑

u<Q

t∗(u, 1)ξu.

Thus we have

I =
∑

d<Q

g(d)

(
ξd −

t∗(d, 1)
g(d)

D

)2

+ D

where

D =



∑

d<Q

t∗(d, 1)2

g(d)



−1

=



∑

d<Q

∏

pα‖d
(

1
θ(pα)

− 1
θ(pα−1)

)



−1

.
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Hence we find that
min
λ(1)=1

I = D,

and this is attained at

(1.1.25) λ(d) = D
∑

u<Q
u≡0 (modd)

t∗(u, 1)t∗(u, d)
g(u)

.

Summing up the above discussion, we have now established

Theorem 2 (SELBERG’S SIEVE FOR INTERVALS). Let A be a se-
quence of integers in an interval of length NǫN, andΩ be defined by the12

conqruence relation(1.1.2). Then have, for any Q> 1,

|AΩ| ≤ (N − 1+ Q2)



∑

d<Q

∏

pα‖d

(
1

θ(pα)
− 1
θ(pα−1)

)

−1

whereθ is defined by(1.1.17).

Remark. By the exclusion-inclusion principle, we can show easily that

θ(pα) = 1+
α∑

r=1

(−1)r
∑

1≤ j1< j2<···< jr≤α
‖Ω(p j1) ∩ · · · ∩Ω(p− jr )‖p− jr

where‖Ω(p j1)∩ · · · ∩Ω(p jr )‖, j1 < j2 < · · · < jr , denote the number of
residue classes (modp jr ) defining the setΩ(p j1) ∩ · · · ∩Ω(p jr ).

1.2 The Hybrid Dual Sieve for Intervals

Next, we shall show a hybridization of THEOREM 2 with the multi-
plicative large sieve inequality, and by doing so, we shall stress that the
occurrence of the additive large sieve inequality (LEMMA 1)in our dis-
cussion on the Selberg sieve for intervals is by no means accidental;
in fact, as already mentioned in the introduction to this chapter, behind
this phenomenon is an important relation between Selberg’sand Lin-
nik’s sieve methods which may be termed a duality.
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In the present section, we shall retain the notation and conventions
introduced in the above; in particular,Ω is defined by the congruence
relation (1.1.2).

First, we make an observation on the nature of the optimalλ which 13

has been obtained at (1.1.25). It gives

(1.2.1)
∑

u<Q

λ(u)δ̃u(n) = D
∑

d<Q

t∗(d, 1)
g(d)

Ψd(n,Ω),

where

(1.2.2) Ψd(n,Ω) =
∑

u|d
t∗(d, u)δ̃u(n).

Recȧlling the definitions of̃δ andt∗, this may be written as

(1.2.3) ψd(n,Ω) =
∏

pα‖d
Θ(pα−1)−1

{
△pα−1(n)Θ(pα) − △pα(n)Θ(pα−1)

}

where

△αp =
α∏

j−1

(1− δp
j).

And we have actually proved in the preceding section the inequality:

∑

M≤n<M+N



∑

d<Q

t∗(d, 1)
g(d)

Ψd(n,Ω)



2

≤ (N−1+Q2)
∑

d<Q

(
t∗(d, 1)
g(d)

)2

g(d).

This relation raises the anticipation that the norm of the matrix

(Ψd(n,Ω)g(d)−
1
2 )(d < Q,M ≤ n < M + N)

may not exceed (N − 1+ Q2)
1
2 , i.e., for any complex numbers{bd}

∑

M≤n<M+N

|
∑

d<Q

ψd(n,Ω)
√

g(d)
bd|2

≤ (N − 1+ Q2)
∑

d<Q

|bd|2.
(1.2.4)

In order to press the matter further, we quote the well-knownduality 14

principle:
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Lemma 2. Let (ci j ) be a matrix, and E be such that for any complex
numbers{xi} ∑

j

|
∑

i

ci j xi |2 ≤ E
∑

i

|xi |2.

Then we have, for any complex numbers{y j},
∑

i

|
∑

j

ci j y j |2 ≤ E
∑

j

|y j |2,

and vice-versa.

Thus, if (1.2.4) is true, then its dual

∑

d<Q

1
g(d)
|

∑

M≤n<M+N

ψd(n,Ω)an|2

≤ (N − 1+ Q2)
∑

M≤n<M+N

|an|2
(1.2.5)

with arbitrary complex numbers{an} will also be true. We should note
the strong similarity of this to the multiplicative large sieve inequality.

Now we shall develop a descussion to confirm that (1.2.5), andin-
deed a much more general result actually hold. To begin with,we intro-
duce the expression

D =
∑

qr<Q
(q,r)=1
(qr,k)=1

∗∑

X (mod q)

q
ϕ(q)g(r)

|
∑

M≤n<M+N
n≡ℓ (mod k)

χ(n)Ψr (n,Ω)an|2,

wherek, ℓ,Q,NǫN,MǫZ are arbitary. But the direct estimation ofD is15

tedious if not difficult; so we consider, instead, the dual

D∗ =
∑

M≤n<M+N
n≡ℓ (mod k)

|
∑

qr<Q
(q,r)+1
(qr,k)=1

∗∑

χ (mod q)

(
q

ϕ(q)g(r)

) 1
2

X(n)Ψr (n,Ω)b(r,X)|2,
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where{b(r, χ)} are arbitrary complex numbers. Inserting the expression
(1.2.2) forψr (n,Ω), we have

D∗ =
∑

M≤n<M+N
n≡ℓ (mod k)

|
∑

qd<Q
(q,d)=1
(qd,k)=1

∗∑

X (mod q)

(
q

ϕ(q)

) 1
2

X(n)δ̃d(n)S(d,X)|2,

where

(1.2.6) S(d,X) =
∑

u<Q/q
u≡0 (modd)

(u,qk)=1

b(u,X)t∗(u, d)g(u)−
1
2
, (X (mod q)).

Recalling (1.1.7), we transfromD∗ further into

(1.2.7) D∗ =
∑

M≤n<M+N
n≡ℓ (mod k)

|
∗∗∑

u,h,q,X

(
q
ϕ(q)

) 1
2

χ(n) exp

(
2πi

h
u

n

)
y(u, h,X)|2

where
(1.2.8)

y(r, χ) =
∑

d<Q/q
d≡0 (modu)

(d,qk)=1

s(d,X)
d

d∑

ℓ

= 1 exp

(
−2πi

h
u
ℓ

)
δ̃d(ℓ), χ mod q.

and
∑∗∗ denotes the sum overu, h, q, χ satisfying the conditions:uq < 16

Q, (u, q) = (uq, k) = 1; 1≤ h ≤ u, (h, u) = 1;χ primitive (modq).
Then, regarding the right side of (1.2.7) as an Hermitian form of the

variablesy(u, h, χ), we its dual:

(1.2.9)
∗∗∑

u,h,q,χ

q
ϕ(q)
|

∑

M≤n<M+N
n≡ℓ (mod k)

χ(n) exp

(
2πi

h
u

n

)
cn|2,

where{cn} are arbitrary complex numbers. as usual, we expressχ(n) as
a linear combination of additive characters via Gauss sum, and by the
orthogonality of characters, we infer that (1.2.9) is not larger than
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∑

up<Q
(u,p)=1
(uq,k)=1

u∑

h=1
(u,h)=1

q∑

a=1
(a,q)=1

|
∑

M≤n<M+N
n≡ℓ (mod k)

exp

(
2πin

(
h
u
+

a
q

))
cn|2

≤
∑

f<Q

f∑

s=1
(s, f )=1

|
∑

M−ℓ
k ≤M<M+N−ℓ

k

exp

(
2πi

s
f
m

)
c′m|2,

wherec′m = ckm+ℓ. Thus, by the dual of LEMMA 1, we see that (1.2.9)
is not larger than (N

K
+ Q2

) ∑

M≤n<M+N
n≡ℓ (mod k)

|cn|2,

whence we obtain, by LEMMA 2,

D∗ ≤
(N
K
+ Q2

) ∗∗∑

u,h,q,χ

|y(u, h, χ)|2.

17

Recalling (1.2.8), we can compute the last sum just as (1.1.9), get-
ting

D∗ ≤
(N
K
+ Q2

) ∑

d1q<Q
d2q<Q

(d1d2,q)=1
(d1d2q,k)=1

∗∑

χ

(mod q)s(d1, χ)s(d2, χ) f (d1, d2).

Thus, by virtue of (1.1.20), we have

D∗ ≤
(N
K
+ Q2

) ∑

dq<Q
(d,q)=1
(dq,k)=1

∗∑

χ (mod q)

g(d)|
∑

u<Q/q
u=0 (modd)

(u,qk)=1

t(u, d)S(u, χ)|2.

But by (1.1.24) and (1.2.6), the last sum overu is equal tob(d, χ)
g(d)−

1
2 , whence

D∗ ≤
(N
K
+ Q2

) ∑

dq<Q
(d,q)=1
(dq,k)=1

∗∑

χ (mod q)

|b(d, χ)|2.
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Therefore, appealing to LEMMA 2 once more, we obtain

Theorem 3 (The Hybrid Dual Sieve for Intervals). LetΩ be defined by
the corgruence relation(1.1.2), ψd(n,Ω) by (1.2.2), and g(d) by (1.1.18)
and (1.1.21). Then we have, for arbitrary k,ℓ, Q, N, ǫN, MǫZ and
complex{an},

∑

qr<Q
(q,r)=1
(qr,k)=1

∗∑

χ (mod q)

q
ϕ(q)g(r)

|
∑

M≤n<M+N
n≡ℓ (mod k)

χ(n)ψr (n,Ω)an|2

≤
(N
K
+ Q2

) ∑

M≤n<M+N
n≡ℓ (mod k)

|an|2.

18
The sieve-effect of this remarkably uniform result is embodied in

Corollary to Theorem 3. Let Ω be defined by (1.1.2), andΘ(pα) by
(1.1.17). Let{an} be an arbitrary sequence of complex numbers satisfy-
ing an = 0 whenever there is apα(α > 0) such thatnǫΩ(pα). Then we
have, for arbitraryk, ℓ,Q,NǫN andMǫZ,

∑

qr<Q
(q,r)=1
(qr,k)=1

∗∑

χ (mod q)

q
ϕ(q)

∏

pα ||r

(
1
Θ(pα)

− 1

Θ(pα−1)

)
|

∑

M≤n<M+N
n≡ℓ (mod k)

χ(n)an|2

≤
(N
K
+ Q2

) ∑

M≤n<M+N
n≡ℓ (mod k)

|an|2.

To deduce this from THEOREM 3, we need only to note thatψr

(n,Ω) = t∗(r, 1) if an , 0.
Specializing THEOREM 3 and the Corollary to it, we can deduce

various important inequalities known at present in the theory of the
large sieve; for instance, THEOREM 2 is contained in the corollary.
Also, a special attention should be paid for the case arisingfrom the
simplest choice ofΩ : Ω(pα) is empty forα ≥ 2 andnǫΩ(p) is equiv-
alent to p|n. For thisΩ, we haveg(r) = µ2(r)ϕ(r)r−2 andψr (n,Ω) = 19
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u(r)u((r, n))ϕ((r, n))r−1. thus THEOREM 3 gives, for arbitraryk, l, Q,
NǫN, MǫZ and complex numbers{an},

(1.2.10)

∑

qr<Q
(q,r)=1
(qr,k)=1

∗∑

χ (mod q)

u2(r)q
ϕ(qr)

|
∑

m≤n<M+N
n≡ℓ (mod k)

χ(n)Ψr (n)an|2

≤
(N
K
+ Q2

) ∑

M≤n<M+N
n≡ℓ (mod k)

|an|2,

where

(1.2.11) ψr (n) = µ((r, n))ϕ((r, n)).

Also, recalling the well-known estimate

(1.2.12)
∑

r<R
(r, f )=1

µ2(r)
ϕ(r)

≥ ϕ( f )
f

logR

for arbitrary f ,RǫN, we see readily that the Corollary to THEOREM 3,
or rather (1.2.10), gives rise to the assertion that ifan = 0 whenevern
hasa prime factor less thanQ, then we have, for arbitraryk, ℓ, Q, NǫN
andMǫZ,

(1.2.13)

∑

q<Q
(q,k)=1

log
Q
q

∗∑

χ (mod q)

|
∑

M≤n<M+N
n≡ℓ (mod k)

χ(n)an|2

≤ 1
ϕ(k)

(N + kQ2)
∑

M≤n<M+N
n≡ℓ (mod k)

|an|2.

Specifically, we get, forM ≥ Q,20

(1.2.14)

∑

q<Q
(q,k)=1

log
Q
q

∗∑

χ (mod q)

|
∑

M≤p<M+N
p≡ℓ (mod k)

χ(p)|2

≤ 1
ϕ(k)

(N + KQ2)(π(M + N; k, ℓ) − π(M; k, ℓ)),



1.3. An Auxiliary Result Relating to theΛ2-Sieve 19

which is a refinement of the Brun-Titchmarsh theorem:

(1.2.15) π(M + N; k, ℓ) − π(M; k, ℓ) ≤ (2+ 0(1))N

ϕ(k) log N
K

asN/k tends to infinity.

1.3 An Auxiliary Result Relating to the Λ2-Sieve

In the above, we have seen that the optimal lamda-weight (1.1.25) has
an important arithmetical property which makes it possibleto unite Sel-
berg’s and Linnik’s sieve methods. In the present section, digressing
somewhat from the main theme of this chapter, we shall take upa subject
related to the asymptotic behaviour of the optimalλ which the simplest
choice ofΩmentioned above; this will also have important applications
in PART II.

Thus, letΩ be such thatΩ(pα) is empty for allα ≥ 2, andnǫΩ(p) is
equivalent toP/N. Then we have the simplest case of the Selberg sieve:
the number of integers≤ N which are free of prime factors less thanz is
bounded by

(1.3.1)
∑

1≤n≤N



∑

d|n
d<z

λ(d)



2

(λ(1) = 1);

here, for our convenience, we usez> 1 instead ofQ. (1.1.25) gives the 21

optimal weight

(1.3.2) λ(d) = µ(d)
d

ϕ(d)



∑

r<z/d
(r,d)=1

µ2(r)
ϕ(r)




∑

r<z

µ2(r)
ϕ(r)

 − 1

which gives

(1.3.3)
∑

1≤n≤N



∑

d|n
d<z

λ(d)



2

≤ (N − l + z2)/ logz..
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On the other hand, if we fixd and letz tend to infinity then (1.3.2)
becomes the asymptotic relation:

λ(d) = (l +O(l))µ(d)
logz/d
logz

.

Now the new weight

λ̃(d) =


µ(d) logz/d

logz i f d < z,

0i f d ≥ z

has a striking property: we have, for anyN ≥ z,

(1.3.4)
∑

1≤n≤N


∑

d|n
λ̃(d)



2

≪ N
logz.

The significance of this result lies in that, apart from a constant mul-
tiplier to the main-term, the error-term corresponding toz2 of (1.3.3)22

does not appaer at all. Because of this uniformity, (1.3.4) has some im-
portant applications especially to the theory of the zeta-and L-functions.
In our later discussion on these functions, however, we shall not require
(1.3.4) in its full force, but rather the following consequence of it:

(1.3.5)
∞∑

n=1


∑

d|n
λ̃(d)



2

n−ω = O(l),

providedω ≥ 1 + c(logz)−1. And for some special problems onL-
functions, it is more desrable to heve a similar result in which the factor
τk(n) occur in a sum corresponding to the left side of (1.3.5). Forthis
sake, it would be expedient to consider the Selberg sieve problem:

∑

m≤N

τk(n)



∑

d|n
d<z

λ(d)



2

(λ(l) = l).
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The standard argument shows that the quasi-optimalλ is such that,
for each fixedd,

λ(d) = (l +O(l))µ(d)

(
logz/d
logz

)k

asz tends to infinity.
Thus we are led to the problem of estimating

(1.3.6) J =
∞∑

n=1

τk(n)(
∑

d|n
ξ(d))2n−η,

whereη = 1+ c(logz)−1 and

ξ(d) =


µ(d)(log z/d)k if d < z,

0 if d ≥ z.

23

Expanding out the squares and changing the order of summation,
we see that

(1.3.7)
J = ζ(η)k

∑

d1,d2<z

ξ(d1)ξ(d2)
∏

p|d1d2

(1− (1− p−n)k)

= ζ(η)kE,

say. To diagonalizeE, we employ a well-known device of Selberg, gett-
ing

(1.3.8) E =
∑

d<z

µ2(d)
∏

p|d
(1− p−n)k(1− (1− p−n)k|Rd(z/d)2,

where
Rd(x) =

∑

u<x
(u,d)=1

µ(u)(log
x
u

)k
∏

p|u
(1− (1− p−n)k).

There is an elementary argument to estimateRd(x) which relies on
the elementary prime number theorem with remainder term (cf. § 4.1).
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But, for the sake of simplicity, we take here an alternative way, an ana-
lytic one. We note first that

Rd(x) =
k!
2πi

2+i∞∫

2−i∞

ζ(s+ η)−kPd(s)
xs

sk+1
ds,

wherepd(s) =
∏

p|d
(l − l

ps+n )−k
∏

p∤

(
l − l

ps+n

)−k l −
l
ps

l −
(
l − l

pη

)k

 ,

which converges absolutely for Re (s) > −c. Then we quote an elemen-24

tary estimate ofζ−1(s) (cf. §4.1): in the region

Re(s) > 1− c(log(|t| + 2))−9

we have
ζ−1(s)≪ (log(|t| + 2))7.

Thus shifiting the line of integration to the left appropriately, we get

Rd(x) = k!Ress=0

{
ζ(s+ η)−kPd(s)xss−k−1

}
+ 0


∏

p|d

(
1+

1
√

p

)
k

 .

After some elementary estimations of derivatives ofζ−k(s+ η) and
Pd(s) at s= 0, we obtian

Rd(x) <<
∏

p|d

(
1+

1
√

p

)k k∑

j=0

((η − 1) logx) j .

Inserting this into (1.3.8) we see, via (1.3.7), that

(1.3.9) J≪ (logz)2k.

After these preparations, we can show

Theorem 4. Let z> 1 andϑ > 0, and let us put

(1.3.10) Λ
(k)
d =

1
k!

(ϑ logz)−k
k∑

j=0

(−1)k− j (k
j )λ

( j,k)
d ,
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where

λ
( j,k)
d =


µ(d)

(
log z1+ jϑ

d

)k
if d < z1+ jϑ,

0 otherwise.
25

Then we have

(1.3.11) Λ
(k)
d = µ(d) for d < z.

Also

(1.3.12)
∞∑

n=1

τk(n)


∑

d|n
Λ

(k)
d



2

n−ω = O(l),

provided
ω ≥ 1+ c(logz)−1.

In fact, the second statement follows immediately from (1.3.9). As
for the forst we note that ford < z

k∑

j=0

(−1)k− j (k
j )λ

( j,k)
d

= µ(d)
k∑

ℓ=0

(−1)k−ℓ(k
ℓ)(logz)ℓ(logd)k−ℓ

k∑

j=0

(−1)k− j (k
j )(1+ jϑ)ℓ.

But the last sum overj is equal toϑkk! if ℓ = k, and to 0 ifℓ < k,
whence we have (1.3.11).

1.4 The Hybrid Dual Sieve for Multiplicative Func-
tions

In the first two sections, we were concerned with problems of sifting
integers in an interval to each of which the simplest weight i.e. 1 is 26

attached, and we had a very powerful tool: the additive largesieve in-
equality. We are now going to investigate a similar problem on the as-
sumption that weights not necessarily equal to 1 are given tothe el-
ements to be sifted. Then we have no longer such useful an aid as
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LEMMA 1, but can appeal only to the conventional way of manipu-
lating theΛ2-sieve.

Let us denote byf the weight function, and consider

K =
∑

n<N

f (n)



∑

d|n
d<R

λ(d)



2

.

HereR> 1 is a parameter. We look for the optimalλwhich makesK
as small as possible on the side conditionλ(1) = 1. We may discuss this
problem on some fairly general assumption on the average property of
the sequence{ f (n)}. But, since we have particular applications in mind
which will be made in PART II, we shall confine ourselves to those f
which satisfy the following practical conditions:

(C1) f is a non-negative multiplicative function such that

f (n) = O(nǫ )

for all nǫN.

(C2) There existA > 0 andα ≥ 1 such that for all primep we have

Fp − 1 ≥ Ap−α,

where Fp =

∞∑

m=0

f (pm)p−m.

27

(C3) There existβ ≥ 0, 0, 0 < γ < 1,F > 0, D ≥ 1 such that

∑

n<y

χ(n) f (n) = E(χ)F K(q)y+O(Dqβyγ),

whereχ (mod q), K(q) =
∏
p|q

F−1
p ; the constant implied by theO-symbol

is absolute.
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Now let us estimateK on these assumptions. As usual, we may
restrictλ by

(1.4.1) |λ(d)| ≤ |µ(d)|;

in fact, this will be confirmed later for the optimalλ. Expanding out the
lamda-squares and changing the order of summation, we have

(1.4.2) K =
∑

d1,d2<R

λ(d1)λ(d2)
∑

n<N/d

f (dn),

whered =[d1, d2] is square-free. Introducing the convolution inversef1
of f , the last factor is expressed as

f (dn) = µ(d)
∑

u|n
u|d∞

f
(n
n

)
f1(du).

This and (C3) with the trivial character give

∑

n<y

f (dn) = µ(d)
∑

u|d∞
u<y

f1(du)
{
F y

u
+ o

(
D

(y
u

)γ)}
.

We note that we have 28

∑

u|d∞
u<y

f1(du)
u
=

∑

u|d∞

f1(du)
u

∑

u|d∞
u≥y

f1(du)
u

= µ(d)d
∏

p|d
(1− F−1

p ) + o


yγ−1

∑

u|d∞

| f1(du)|
uγ


.

Hence

∑

n<y

f (dn) = F yd
∏

p|d
(1− F−1

p ) + 0


(D + F )yγ

∑

u|d∞
| f1(du)|u−γ


.

Inserting this into (1.4.2) and reacalling (1.4.1) we have
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(1.4.3) K = FN
∑

d1,d2<R

λ(d1)λ(d2)
∏

p|d1d2

(1− F−1
p )

+O
{
(D + F )NγR2(l−γ)+ǫ

}
,

where we have used the fact that (C1) implies f1(n) = O(nǫ) for all n.
Then, by a routine argument, we can conclude that the optimalλ is

given by

(1.4.4) λ(d) = µ(d)
Gd(R/d)
G1(R)

∏

p|d
Fp,

where

(1.4.5) Gd(x) =
∑

r<χ
(r,d)=1

µ2(r)/g(r)

with29

(1.4.6) g(Γ) =
∏

p|Γ
(Fp − 1)−1.

And this choice ofλ gives

(1.4.7)
∑

d1,d2<R

λ(d1)λ(d2)
∏

p|d1d2

(1− F−1
p ) = G1(R)−1.

Also, we have

(1.4.8) Gd(R/d) ≤ G1(R)
∏

p|d
F−1

p

which implies, in particular, (1.4.1) for theλ defined by (1.4.4). Further,
we should note that we have

(1.4.9) Gd(R) ≥ K(d)G1(R).

Now, let us observe that the optimalλ defined by (1.4.4) yields the
relation ∑

d|n
d<R

λ(d) = G1(R)−1
∑

r<R

µ2(r)
g(r)

Φr (n),
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where

(1.4.10) ΦR(n) = µ((r, n)) g((r, n)).

This should be compared with (1.2.1); we may expect that for this
Φr there will be an analogue of THEOREM 3. The object of the present
section is to show that this is indeed the case.

To this end, we shall consider the estimation of the expression 30

J =
∑

q<Q
r<R

(q,r)=1

µ2(r)
K(q)g(r)

∗∑

χ (mod q)

|
∑

M≤n<M+N

χ(n)Φr (n) f (n)
1
2 an|2

with {an} being arbitrary complex numbers; we assume (C1), (C2), (C3)
naturally, and also

N = O(M).

But, as before, it is advantageous to estimate, instead, thedual form

J∗ =
∑

M≤n<M+N

f (n)|
∑

q<Q
r<R

(q,r)=1

(
µ2(r)

k(q)g(r)

)1/2

Φr (n)
∗∑

χ (mod q)

χ(n)b(r, χ)|2,

where{b(r, χ)} are arbitary complex numbers. Expanding out the squa-
res and changing the order of summation we have

J∗ =
∑

q,q′<Q
r,r ′<r

(q,r)=(q′,r ′)=1

{
µ2(r)µ2(r′)

K(q)K(q′)g(r)g(r′)

} 1
2

×
∗∑

χ( mod q
χ′ (mod q′))

{
S(M + N, χχ̄′) − S(M, χχ̄′; r, r′

}
b(r, χ)b(r′ , χ′)

(1.4.11)

where
S(y, χ; r, r′) =

∑

n<y

χ(n)Φr ′(n) f (n).
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In order to estimate the last sum, we consider first the function 31

(1.4.12)
∞∑

n=1

χ(n)Φr (n) f (n)n−s,

which converges absolutely forRe(s) > 1. Recalling thatΦr is multi-
plicative, andr, r′ are square-free, this can be decomposed as



∑

(n,rr ′)=1

χ(n) f (n)n−s





∑

n|( [r,r′ ]
(r,r′) )∞

χ(n)Φr (n)Φr ′ (n) f (n)n−s



×



∑

(n,rr ′)∞
χ(n)Φr (n)Φr ′ (n) f (n)n−s



= P1P2P3,

say. Introducing the functions

(1.4.13)

F(s, χ) =
∏

p

Fp(s, χ),

Fp(s, χ) =
∞∑

m=0

χ(pm) f (pm)p−ms,

we have
p1 = F(s, χ)

∏

p|rr ′
(Fp(s, χ)−1,

if Re(s) is sufficiently large. Also (1.4.10) implies

P2 =
∏

p| [r,r′ ](r,r′ )

(1− (Fp − 1)−1(Fp(s, χ) − 1))

and P3 =
∏

p|(r,r ′)
(1+ (Fp − 1)−2(Fp(s, χ) − 1)).

Thus, we see that (1.4.12) is equal to32

F(s, χ)Ar,r ′(s, χ),
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where

(1.4.14)

Ar,r ′(s, χ), = P2P3

∏

p|rr ′
Fp(s, χ)−1

=
∑

n|(rr ′)∞
χ(n) f2(n)n−1,

say; hereRe(s) is only to be positive. In particular, we have

Φr (n)Φr ′ (n) f (n) =
∑

d|n
d|(rr ′)∞

f
(n
d

)
f2(d).

This and the condition (C3) give, forχ (mod q),

S(y, χ; r, r′) =
∑

d<y
d|(rr ′)∞

χ(d) f2(d)
{
E(χ)F K(q)

y
d
+ 0(Dqβ

(y
d

)γ}
,

whence

S(y, χ; r, r ′) = F E(χ)K(q)Ar,r ′(1, χ)y+ 0


(D + F )qβyγ

∑

d|(rr ′)∞
| f2(d)|d−γ


.

By the definition (1.4.14) off2, the last sum overd is equal to

∑

P|
(

[r,r′ ]
(r,r′ )

)∞

1+ (Fp − 1)−1
∞∑

m=1

f (pm)
pmy


∏

P|(r,r ′)
1+ (Fp − 1)−2

∞∑

m=1

f (pm)
pmy

 ×
∏

p|rr ′


∞∑

m=0

| f1(pm)
pmγ

 ,

and, by (C1) and (C2), this is 33

0((rr ′)α+ǫ [r, r′]−γ).

We should remark also that ifχ is principal (modq) and (rr ′, q) = 1
them, by (1.4.14), we have

Ar,r ′(1, χ) = g(r)δr,r ′ (Kronecker’s delta).
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Inserting these into (1.4.11), and recalling thatN = O(M) we obtain,
after some elementary estimations,

J∗ =
{
FN + 0(D + F )M2(1+β)+ǫR2α+ǫ

Q

} ∑

q<Q
r<R

(q,r)=1

∗∑

χ (mod q)

|b(r, χ)|2.

Hence, returning toJ via the duality principle (LEMMA 2), we get
the following hybridization of the Selberg sieve for multiplicative func-
tions and the multiplicative large sieve inequality:

Theorem 5 (THE HYBRID DUAL SIEVE FOR MULTIPOICATIVE
FUNCTIONS). On the assumptions(C1), (C2), (C3) we have, for any
N = O(M) and arbitrary complex numbers{an},

∑

q<Q
r<R

(q,r)=1

µ2(r)
K(q)g(r)

∗∑

χ (mod q)

|
∑

M≤n<M+N

χ(n)Φr (n) f (n)
1
2 an|2

≤ {FN + 0(Yf (M; Q,R))}
∑

M≤n<M+N

|an|2,

where g(r) andΦr (n) are defined by(1.4.6)and (1.4.10), respectively,34

and
Yf (M; Q,R) = (F + D)MγQ2(1+β)+ǫR2α+ǫ .

Next we turn to the basic lemmas which will be utilised in PARTII
when we make important applications of THEOREM 5 TO Dirichlet’s
L-functions.

First we qote the fundamental

Lemma 3. We have, for T≥ 1,

T∫

−T

|
∞∑

n=1

annit |2dt << T2
∫ ∞

0
|

∑

y≤n<ye1/T

an|2
dy
y
,

provided the right side converges.
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The combination of THEOREM 5 and LEMMA 3 yields immedi-
ately

Lemma 4. We have, for T≥ 1,

∑

q<Q
r<R

(q,r)=1

µ2(r)
K(q)g(r)

∗∑

χ (mod q)

T∫

−T

|
∞∑

n=1

χ(n)Φr (n) f (n)annit |2dt

≪
∞∑

n=1

(F n+ TYf (n : Q,R)) f (n)|an|2,

provided the right side converges.

In our applications of THEOREM 5, an important rôle will be played
by the multiplicative property ofΦr , which is embodied in

Lemma 5. Let r be square free and let bξd = o(|µ(d)|dǫ ). Then we have, 35

for s with sufficiently large real part,

(1.4.15)
∞∑

n=1

χ(n)Φr (n) f (n)


∑

d|n
ξd

n−s = F(s, χ)Mr(s, χ; ξ),

where
(1.4.16)

Mr (s, χ; ξ) = g(r)
∞∑

d=1

ξdµ((r, d))
∏

p|d
(1− fp)(s, χ)−1)

∏

p∤d

( fp(s,X)−1 fp − 1),

F(s, χ)andFp(s, χ) being defined by(1.4.13)

To show this, we note first that, for square-freer, we have

Φr (dn) = Φr (d)Φu(n), u = r/(r, d).

Thus, the left side of (1.4.15) is equal to

(1.4.17)
∞∑

d=1

χ(d)ξdΦr (d)d−s
∞∑

n=1

χ(n)Φu(n) f (dn)−s
n .
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Because of the multiplicativity ofΦu, this inner-sum may be written
as 

∑

(n,d)=1

χ(n)Φu(n) f (n)n−s





∑

n|d∞
χ(n)Φu(n) f (dn)n−s


.

But n|d∞ impliesΦu(n) = 1. Hence this product is equal to

ds−χ(d)
∏

p∤d

(1+ Φu(p)(Fp(s,X) − 1))
∏

p|d
(Fp(s, χ) − 1)

= ds−χ(d) f (s, χ)
∏

p∤d
p|r

(Fp − 1)−1
∏

p|d
(1− Fp(s, χ)−1)

∏

p∤d
p|r

(Fp(s, χ)−1Fp − 1);

here we have used the fact thatd can be assumed to be square free.
Inserting this into (1.4.17) and noticing that

Φr (d)
∏

p∤d
p|r

(Fp − 1)−1 = µ((r, d))g(r)

we obtain the assertion of the lemma.36

We now introduce THEOREM 4 into our discussion: but, for this
sake, we have to replace the condition (C1) on f by the stronger (C′1) f
is a non-negative multiplicative function such that there exists ak satis-
fying

f (n) = o(τk(n))

for all n.
Then we have

Lemma 6. On the conditions(C′1), (C2) and(C3)

∑

r≤z

1+ kζ
µ2(r)
g(r)

Mr

(
1, χ0;Λ(k)

)2
= O((F logz)−1)

for any z> (D+F )ǫ , whereχ0 is the trivial character, and the functions
Λ(k) and Mr are defined by(1.3.10)and (1.4.16), respectively.
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To prove this, we note first that

Mr(1, χ0;Λ(k)) = µ(r)g(r)
∑

d<z
d≡0 (mod r)

1+ kζΛd(k)
∏

p|d
(1− F−1

p ).

Hence, denoting byH the sum to be estimated, we have

H =
∑

r<z

1+ kζµ2(r)g(r)



∑

d<z
d≡0 (mod r)

Λ
(k)
d

∏

p|d
(1− F−1

p )



2

=
∑

d1,d2<z

1+ kζΛd
(k)
1
Λd

(k)
1

∏

p|d1d2

(1− F−1
p ).

37

Thus, just as (1.4.3), we have

∑

n<n

f (n)


∑

d|n
Λ

(k)
d



2

= FHN + 0
{
(D +F )Nγ

z
2(1+kζ)(1−γ)+ǫ

}

whence, by partial summation, we have forω > 1 andb > 0,

(1.4.18)
∑

n>z

b f(n)


∑

d|n
Λ

(k)
d



2

n−ω

= (ω − 1)−1
FHzb(1−ω) + 0

{
(D +F )zb(γ−ω)+2(1+kζ)(1−γ )+ǫ

}
.

If we setω = 1 + (logz)−1 and takeb sufficiently large then this is
equal to

e−bHF logz+ 0(z−ǫ ).

But, by virtue of (C′1) and THEOREM 4, the left side of (1.4.18) is
bounded, whence the assertion of the lemma.

NOTES (I)
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The origin of Selberg’sΛ2 -sieve can be found in his deep inves-
tigations [68] [71] (see also [70]) on the distribution of zeros of the
Riemann zeta-function in the vicinity of the cirtical line.Refining the
ideas of Bohr, Landau and Carleson, Selberg was led to the problem of 38

making the following quadratic for ofλ

T∫

−T

|ζ(1
2
+ it)

∑

d<z

λ(d)d−
1
2−it − 1|2dt

as small as possible on the side conditonλ(1) = 1, wherez is to be taken
suitably in connection with the sufficiently large parameterT. Applying
certain mean-value theorems forζ(s), he could reduce the problem to
the one of determining the minimum value of the quadratic from

∑

d1,d2<z

λ(d1)λ(d2)
[d1, d2]

(λ(1) = 1),

which corresponds just to (1.3.1) The sieve-effect of the argument with
which Selberg solved this extremal problem was explicitly formulated
on a general setting in his later papers [72] [73] [74]. It is noteworthy
that theΛ2-sieve was created in the course of deeper studies of the ana-
lytical behaviour of the Riemann zeta function, and that, aswe shall see
in PART II, our account of his theory has also important applications to
ζ(s) andL(s, χ); this seems to agree appreciably with Selberg’s opinion
expressed in the last lines of [73] [74].

We formulated Selberg’s idea in a generalized from as THEOREM
1, for we have hope that one may find applications of it to the problems
with Ω not necessarily defined by the congruence condition (1.1.2), on
which, however, all applications know at present are made.

One may want to see how well the right side of (1.1.4) approximates39

to the left side. For this,we refer to NOTES (II) where we shall give an
explicit representation of the difference between the two sides, revealing
the mechanisum behind the device of Selberg which at first maylook
somewhatad hoc.

It is a remarkable coincidence that two fundamental sieve ideas, Sel-
berg’s and Linnik’s were created almost simultaneously, and this fact
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becomes more interesting when we know that between them is a duality
relation as we have shown in the second section.

LEMMA 1 is the latest version of Linnik’s large sieve, and is due
to Selberg. To prove this, Selberg employed a delicately chosen func-
tion in conjuction with his inequility of Bessel’s type [[48] Lemma 1.8].
P. Cohen has shown, however, that LEMMA 1 is an immediate con-
sequence of an inequality of Montgomery and Vaughan [51] in which
occurs the factorN + δ−1 instead ofN − 1+ δ−1. For the details see the
expository article [49] of Montgomery.

THEOREM 2 is due to Selberg [77]. This remarkable result implies
as its speical cases the large sieves of Montgomery [[48], p.25], Jhonsen
[35] and Gallagher [16]. Our proof of THEOREM 2 has a difference
from Selberg’s in that we have appealed to LEMMA 1, an argument
which was employed formerly by Motohashi [[54], II] in his alternative
proof of Montgomery’s large sieve. We should point out the possibility 40

of generalizing THEOREM 2 into the directions indicated by Salerno-
Viola [67] and Gallagher [17].

The duality relation between Selberg’sΛ2-sieve and Linnik’s large
sieve was observed by not a few people simultaneously in published and
unpublished forms. THEOREM 3 which is due to Motohashi [[54], III]
summarises the former discussions on this matter each of which was
made on some special assumptions onΩ It shows that{ψr(n,Ω)g(r)−

1
2 }

behaves just like{χ(n);χ primitive}, i.e., they share the property which
may be called quasi-orthogonality. This was first observed by Selberg
[76] when he obtained (1.2.10), and called{ψr (n)} pseudo-charecters;
but the relation betwenψr and the Selberg sieve was remarked explicity
by Motohashi [[58], p. 166].

(1.2.13) and (1.2.14) are due to Bombieri and Devenport [8] (see
also Bombieri [4]), which, apart from the fundamental work [45] of
Linnik, was the first instance that the sieve effect of the large sieve was
clearly perceived (1.2.13) has had a deep application to thetheory of
L-functions, as Gallagher showed in his important work [15].The same
can be said about (1.2.10), as we shall show in § 5.2.

The Brun-Titchmarsh theorem (1.2.15) is introduced here only for
the sake of illustrating the generality of THEOREM 3; a further discus- 41
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sion on this basic sieve result will be given in §4.3.
We have seen that a drasitc specialization of THEOREM 3 yields

important results knows already. In the proop of THEOREM 3,we have
used, however, nothing deeper than the additive large sieveinequality
and the duality principle, both of which are, in fact, of veryelemen-
tary character. Thus one may expect that, on some special conditions,
more sophisticated tools will produce improvements upon THEOREM
3. In the case of (1.2.10) this was confimed by Motohashi [[54], the
first note], but the general case seems to be a difficult problem. Relating
to this question we should note that these might be a possibility to im-
prove, in some sense, upon LEMMA 1 for the Farey sequence in place
of general well-spaced sequence{xr}.

(1.3.4) is due to Barban ([2]), and (1.3.5) to Selberg [69]. Graham
[19] gave an elegant proof of (1.3.4), and even succeeded in replacing it
by an asymptotic relation. THEOREM 4 is due to Motohashi [58]; Jutila
[41] obtained an analogue of Graham’s result for the weights{Λ(k)

d }.
THEOREM 5 is due to Motohashi [58]. In deriving the important

artimitic functionΦr from f , we used the standard argument of manip-
ulating theΛ2-sieve, for, as already mentioned,we do not have anything
analogous to LEMMA 1 in the situation of the fourth section. Hence it
is desrable to have an additive large sieve inequality whichadmits the
weight f . But to this end, we would have to find first a sort additive42

characters derived fromf which substitute for exp(2πiX) of LEMMA 1.
LEMMA 3 is the famous inequality of Gallagher [15]. LEMMA 5 is

essentially due to Selberg ([50]) who showed it forψr ; this will be a key
lemma in our application of THEOREM 5 to Dirichlet’sL-functions.



Chapter 2

Elements of the
Combinatorial Sieve

WE NOW TURN to another topic in sieve methods; in the present and 43

the next chapters, we shall develop a detailed study of some important
aspects of the combinatotial sieve method, which is essentially a sys-
tem of devices of introducing effective truncations into the exact -seive
of Eratosthenes, and, as contrasted with theΛ2-sieve, the most notable
feature of which lies in that it leads simultaneously to upper and lower
sieve bounds on some fairly general conditions.

Partly because of their independent interest, we shall discuss in the
present chapter the basic combinatorial or logical identities, and then
in the next chapter exhibit their power in the particular application to
the linear sieve situation. We shall try to explain the motivation behind
those combinatorial identities, for, it seems that the combinatorial sieve
methods lacks the straight forwardness which characterises theΛ2-sieve
and makes easiers to understand it.

2.1 Rosser’s Identity

To begin with, we repeat the conventions introduced in §1.1 in a much
simplified from

We suppose that to each primep is assigned a setΩ(p) of residue 44

37
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classes (modp). For a square-freed, we denote byΩ(d) the set of
residue classes (modd) arising (in the way of Chinese Remainder The-
orem) from those ofΩ(p), p|d. We shall write, in the sequel,nǫΩ(d) in-
stead ofn (mod d)ǫΩ(d), and naturally, we havenǫΩ(1) for all integer
n.

Next letz≥ 2 be a parameter, and put

△(n, z) =
∏

p<z
nǫΩ(p)

P

and, as usual,
p(z) =

∏

p<z

p.

Let A be a finitie sequence of integers, and put, for a square-freed,

Ad = {aǫA; aǫΩ(d)}.

Further, letΘ be an arbitrary function defined onN, and put

S(A, z;Θ) =
∑

aǫA

Θ(△(a, z)).

Then the sieve problem on which we are going to discuss is to find
a good(in one or another sense) estimate ofS(A, z;Θ) in terms of|Ad|
under suitable condition on the nature ofA,Ω, andΘ. To solve this
problem in a very special but highly important case, i.e. thelinear sieve45

situation which will be defined in the next chapter, we shall employ the
combinatorial sieve method; the whole theory of it is built on the very
simple

Lemma 7 (THE BUCHYSTAB IDENTITY). We have

(2.1.1) S(A, z;Θ) = Θ(1)|A|
∑

p<z

S(Ap, p;Θp),

whereΘ is defined by

θp(n) = Θ(n) − Θ(pn).
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To show this, let

△(a, z) = p1p2 . . . pr , p1 < p2 < · · · < pr < z.

Then we have

Θ(1)− Θ(p1p2 · · · pr ) =
r−1∑

j=0

(Θ(p1p2 · · · p j)) − (Θ(p1p2 · · · p j+1))

=

r−1∑

j=0

Θp j+1
(p1p2 · · · p j)

=

r−1∑

j=0

Θp j+1
(△(a, p j+1)),

which amounts to

Θ(△(a, z)) = Θ(1)−
∑

p<z
aǫΩ(p)

Θp(△(a, p)),

and this is apparently equivalent to the assertion of the lemma.
The Buchstab identity obviously admits of iteration. And tostate 46

the result of the infinite iteration in a compact from we introduce the
functionΘd defined by

Θd(n) =
∑

r |d
µ(r)Θ(rn).

Then LEMMA 7 yields readily

(2.1.2) S(A, z;Θ) =
∑

d|p(z)

µ(d)Θd(1)|Ad|

which is a little generalized version of the exact-sieve of Eratosthenes.
As is commonly remarked in sieve literature, (2.1.2) is a useless

identity, for, it involves too many terms to be handled with.Thus, if we
want to keep the number of terms within a manageable size, we have
to discard certain summands on the right side; the cost of doing so is
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to give up the exact identity. Since the process of casting away some
summands in (2.1.2) is equivalent to attaching the weight 1 to some
specially chosen divisors ofP(z) and the weight 0 to all other, we are
naturally led to the problem to find a weighted version of (2.1.2).

To formulate the answer to this problem, we introduce an arbitrary
functionρ definedN and satisfying

ρ(1) = 1,

and put

σ(d) = ρ(
d

p(d)
) − ρ(d), σ(1) = 0.

Here and throughout the sequel, the symbol47

p(d)

stands for the least prime factor ofd > 1.
Then we have the fundamental

Theorem 6.

S(A, z;Θ) =
∑

d|p(z)

µ(d)ρ(d)Θd(1)|Ad| +
∑

d|p(z)

µ(d)σ(d)S(Ad, p(d);Θd).

Proof. is quite simple. Inserting into the right side the expression

S(Ad, p(d);Θd) =
∑

ℓ|P(p(d))

µ(ℓ)Θdℓ(1)|Adℓ |,

which is a particular case of (2.1.2) we immediately recoverthe left
side. �

But the following alternative argument seems to be more instruc-
tive, if tedious. We introduce an arbitrary functionλ defined onN and
satisfyingλ(1) = 1, and as a first step we modify (2.1.1) trivially as

(2.1.3) S(A, z;Θ) = Θ(1)|A| −
∑

p<z

λ(p)S(Ap, p;Θp)
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−
∑

p<z

(1− λ(p))S(Ap, p;Θp).

Similarly, we have

(2.1.4) S(Ap, p;Θp) = Θp(1)|Ap| −
∑

p′<p

λ(pp′)S(App′ , p
′;Θpp′)

−
∑

p′<p

(1− λ(pp′))S(App′ , p
′;Θpp).

Inserting this into the first sum overp on the right side of (2.1.3) we48

get

S(A.z;Θ) = Θ(1)|A| −
∑

p<z

Θp(1)λ(p)|Ap|

+
∑

p′<p<z

λ(p)λ(pp′)S(App′ , p
′;Θpp′) −

∑

p<z

(l − λ(p))S(Ap, p;Θp)

+
∑

p′<p<z

λ(p)(1λ(pp′))S(App′ , p
′;Θpp′).

This is the casek = 2 of the identity

S(A, z;Θ =
∑

d|p(z)
ω(d)<k

µ(d)Θd(1)ρ̃(d)|Ad|

+ (−1)k
∑

d|p(z)
ω(d)=k

ρ̃(d)S(Ad, p(d);Θd)(2.1.5)

+
∑

d|p(z)
ω(d)≤k

µ(d)σ̃(d)S(Ad, p(d);Θd),

whereρ̃ andσ̃ are defined by

ρ̃(d) = λ(p1)λ(p1p2) · · · λ(p1p2 · · · pr ), ρ̃(1) = 1

and

σ̃(d) = ρ̃

(
d

p(d)

)
− ρ̃(d), σ̃(1) = 0
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if d = p1p2 · · · pr , p1 > p2 > · · · > pr . We may establish (2.1.5) by the
induction onk: we need only to replaceS(Ad, p(d);Θd) of the second
sum on the right of (2.1.5) by the expression

S(Ad, p(d);Θd) = Θd(1)|Ad| −
∑

p<p(d)

λ(dp)S
(
Adp, p;Θdp

)

−
∑

p<p(d)

(1− λ(dp))S
(
Adp, p;Θdp

)
,

which is a special case of (2.1.3), getting the formula (2.1.5) with k+ 149

in place ofk. We then takek in (2.1.5) sufficiently large (> π(z), say),
and obtain
(2.1.6)

S(A, z;Θ) =
∑

d|P(z)

µ(d)Θd(1)ρ̃(d)|Ad| +
∑

d|P(z)

µ(d)σ̃(d)S(Ad, p(d);Θd).

This is equivalent to the assertion of THEOREM 6, because, asis
easily seen, we can always find aλ such that ˜ρ = ρ.

Compared with the first, the second proof has an advantage in that
the procedure of truncation-iteration of the Buchstab identity is clearly
exibited in it. Moreover, it will turn out that the formulation (2.1.6) of
THEOREM 6 is more convenient for our later purpose.

We now restict ourselves to the case whereΘ is the unit measure
placed at 1 so thatS(A, z;Θ) is equal to

S(A, z) = |{a ∈ A; a < Ω(p) for all p < z}|

and
Θd(1) = 1

for all d. Then we have, by (2.1.6),

(2.1.7) S(A, z) =
∑

d|P(z)

µ(d)ρ̃(d)|Ad| +
∑

d|P(z)

µ(d)σ̃(d)S(Ad, p(d)).

Further, let us set50

(2.1.8) 0≤ λ(d) ≤ 1
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so that

(2.1.9) 0≤ ρ̃(d) ≤ 1, 0 ≤ σ̃(d) ≤ 1.

And let us try to express ‘good’ upper and lower bounds ofS(A, z)
in terms of|Ad| via the formula (2.1.7). This means, in other words, that
we have to discard the termsS(Ad, p(d)) on the right side of (2.1.7); this
should be done, of course, in the manner to keep at a minimum the loss
caused by doing so. In general, we can assume, however, nothing more
than the trivial information

S(Ad, p(d)) ≥ 0.

This implies, in particular, forν = 0 and 1,

(−1)ν{S(A, z) −
∑

d|P(z)

µ(d)ρ̃(d)|Ad|} ≤
∑

d|P(z)
ω(d)≡ν (mod 2)

σ̃(d)S(Ad, p(d)),

since we have (2.1.9). Here the equality holds if we set ˜σ(d) = 0 for all
d|P(z) such thatω(d) ≡ ν + 1 (mod 2). The simplest way to attain this
is to set

(2.1.10) λ(d) = 1 it = 1ω(d) ≡ +1 (mod 2),

which we shall impose onλ henceforth; we write ˜ρν, σ̃ν for ρ̃, σ̃ with λ
satisfying this condition. Then we have

(2.1.11) S(A, z) =
∑

d|P(z)

µ(d)ρ̃ν(d)|Ad| + (−1)ν
∑

d|P(z)

σ̃ν(d)S(Ad, p(d)).

In paticular, we have 51

(−1)ν{S(A, z) −
∑

d|P(z)

µ(d)ρ̃ν(d)|Ad|} ≥ 0;

this means that we have neglected allS(Ad, p(d)) on the right side of
(2.1.11), and thus a certain inaccuray is brought in.

Now, we note trivial but crucial fact thatS(A, z) is a decreasing func-
tion of the parameterz. Thus the negligence ofS(Ad, p(d)) with p(d)
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which is ‘small’ for Ad causes most likely a relatively ‘large’ loss, to
avoid this we should better set ˜σν = 0 for suchd. One of the most fruit-
ful devices to make explicit the ‘smallness’ ofp(d) for Ad is to introduce
two parametersy andβ > 1, and to definep(d) to be ‘small’ for Ad if
p(d) < (y/d)1/β. The simplest way to realize this in terms ofλ is to set

λ(d) =


1 if ω(d) ≡ ν (mod 2), p(d)βd < y.

0 if ω(d) ≡ ν (mod 2), p(d)βd ≥ y.

besides (2.1.10). Then ˜ρν andσ̃ν are the characteristic functionsρν(d) =
ρν(d; y, β) andσν(d) = σν(d; y, β) of the sets

(2.1.12) Dν
1(y, β) =



d = p1p2 · · · pr , p1 > p2 > · · · > pr ;

d;

pβ+1
2k+vp2k+v−1 . . . p1 < y for 1 ≤ 2k + v ≤ r



and
(2.1.13)

Dν
1(y, β) =



d = p1p2 · · · pr , p1 > p2 > · · · > pr , r ≡ ν (mod 2)

d;

ρν(p1p2 · · · pr−1 = 1, pβ+1
r pr−1 · · · p1 ≥ y


,

respectively.52

In this way, we are led to

Lemma 8 (ROSSER’S IDENTITY). Let ρν andσν be as above. Then
we have

(2.1.14) S(A, z) =
∑

d|P(z)

µ(d)ρν(d)|Ad| + (−1)ν
∑

d|P(z)

σν(d)S(Ad, p(d)).

We should note here that this is a logical dentity, so the choice of the
parmaetersy andβ is at our disposal. Since the largery and the smallerβ
give the widerD(ν)

1 (y, β), the support ofρν, as can be seen from (2.1.12)
if is desirable to takey andβ as large and small as possible, respectively.
Under a fairly general condition to be specified in the next chapter, we
shall show how to determine the smallest, i.e. the optimal value of β,
and also a very penetrating device which allows us takey unexpectedly
large in some practically important situations.
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2.2 The Fundamental Lemma

In this section, we shall first show an important applicationof Rosser’s
formula which is also a basis preparation for the next chapter. We shall
then turn to a tentative explanation of Rosser’s motivationbehind his 53

formula which was introduction rather abruptly in the above.
First of all, we have to make precise the information on|Ad|. We

assume that there exists a non-negative multiplication function δ and a
parameterX such that

δ(p) < p for all p,

and

(2.2.1) Rd = |Ad| −
δ(d)

d
X

is small, in one or another sense, ford, d|P(z), lying in a certain range.
Then we introduce the notation

V(z) =
∏

p<z

(
1− δ(p)

p

)
.

We note that we have an analogue of (2.1.1) forV(z):

V(z) = 1−
∑

p<z

δ(p)
p

V(p).

And this is utilization, in much the same way as in the same wayas
in the proof of (2.1.14), to prove the identity

(2.2.2) V(z) =
∑

d|P(z)

µ(d)ρν(d)
δ(d)

d
+ (−1)ν

∑

d|P(z)

σν(d)
δ(d)

d
V(p(d)).

We shall need also an information on the size of the elements of
D(ν)

1 (y, β).

Lemma 9. If z ≤ y1/2 andρν(d) = 1, then we have

logd <

1−
1
2

(
β − 1
β + 1

)ω(d)/2 logy.
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54
To show this, we may restrict ourselves in the caseν = 1, ω(d) =

2r, for others can be treated quite similarly. Thus letρ1(d) = 1, d =
p1p2 · · · p2r , y1/2 ≥ z > p1 > · · · > p2r−1 > p2r . By (2.1.12), we have,
for 0 ≤ j ≤ r − 1,

p2 j+2 < p2 j+1 <

(
y

p1p2 · · · p2 j

) 1
β+1

.

This implies

log

(
y

p1p2 . . . p2 j+2

)
>

(
1− 2

β + 1

)
log

(
y

p1p2 . . . p2 j

)
,

whence inductively we get

log
y
d
>

(
β − 1
β + 1

)r

logy

which gives the assertion of the lemma for our present case.
We can now prove the very important

Theorem 7 (THE FUNDAMENTAL LEMMA) . Letδ be such that, uni-
formly for any2 ≤ u ≤ v,

(2.2.3)
∏

u≤p<v

(
1− δ(p)

p

)−1

≤ C

(
logv
logu

)k

with certain positive constants C and k. Also, let z= y1/s, s≥ 2. Then
there are two sequences

{
ξ

(ν)
d

}
(ν = 0, 1) depending only on y and k such

that

(i) ξ
(ν)
1 = 1; |ξ(ν)

d | ≤ 1;ξ(ν)
d = 0 for d ≥ y,

and uniformly for q,(q,P(z)) = 1,55

(−1)ν
{

S(Aq, z) − XV(z)
δ(q)

q

(
1+O

(
exp

(
− s

2
log s

)))}
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≥ (−1)ν
∑

d|P(z)
d<y

ξ
(ν)
d Rdq,(ii)

where the constant involved in the O-symbol depends in C and kof
(2.2.3)at most.

To prove this, we put

ξ
(ν)
d = µ(d)ρν(d; y, β)

with a sufficiently largeβ. Then (i) is immediate. As for (ii) we apply
LEMMA 8 to Aq, and modify the dentity by (2.2.1), getting

(−1)ν
{

S(Aq, z) −
δ(q)

q
XUν(y, z)

}
≥ (−1)ν

∑

d|P(z)
d<y

ξ
(ν)
d Rdq,

where

Uν(y, z) =
∑

d|P(z)

δ(d)
d
µ(d)ρν(d).

Then (2.2.2) gives

Uν(y, z) = V(z) + (−1)ν−1
∞∑

r=1

∑

d|P(z)
ω(d)=2r+ν

δ(d)
d
σν(d)V(p(d))

= V(z) + (−1)ν−1Ũν(y, z),(2.2.4)

say.
We note that ifσν(d) = 1 thenρν(d/p(d)) = 1, and thus by LEMMA

9 for we have,ω(d) = 2r + ν,

log
d

p(d)
<

(
1− c

(
β − 1
β + 1

)r)
logy

or log p(d) >
c
β

(
β − 1
β + 1

)r

logy,

sinceσν(d) = 1 implies p(d)βd ≥ y. On the other hand, the last in-56
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equality implies alsozω(d)+β ≥ y, soβ + ω(d) ≥ s, for, we havez= y1/s.
Thus, on the right side of (2.2.4), we haver > (s− β − 1)/2.

Collecting these observations, we have

Ũν(y, z) ≪
∑

r>1/2(S−β−1)

1
(2r + ν)!

V
(
y

c
β

(
β−1
β+1

)r )


∑

y
c
β

(
β−1
β+1

)r
≤p<z

δ(p)
p



2r+ν

Then, noticing that (2.2.3) gives

∑

y
c
β

( β−1
β+1 )r≤p<z

δ(p)
p
≤ kr log

(
β + 1
β − 1

)
+ k log

(
β

s
c
)
,

we have

(2.2.5) Ũν(y, z) ≪ V(z)
(
β

s

)k ∑

r>1/2(s−β−1)

1
(2r + ν)!

{
k(
β + 1
β − 1

)
k
2

(
r log

(
β + 1
β − 1

)
+ log

(
β

s
c
))}2r+ν

We now suppose thats is large, and we putβ = s/3. Then we have

Ũν(y, z) ≪ V(z)
∑

r>s/3

(
ck
s

)2r

≪ V(z) exp
(
− s

2
log s

)
.

If s is not large enough then we takeβ so large that the right side of57

(2.2.5) converges. This ends the proof of the theorem.
Now, let us digress briefly from rigorous discussion and explain the

motivation of Rosser’s device introduced in the proceding section; this
may help one to see that Rosser’s seemingly complicated identity is a
sort of logical conclusion when we try to seek for optimal sieve proce-
dures.

One may have the impression that the introduction of the parameter
y andβ is abrupt and arbitrary though the idea to eliminateS(Ad.p(d))
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with p(d) ‘small’ for Ad from the identity (2.1.11) is quite natural. But
this is actually related closely to the concept of the sieving limit, which
may be roughly formulated as follows.

In many practical problems, the information on the size of|Ad| is
given in the form

(2.2.6)
∑

d<y
d|P(z)

|Rd| = o(XV(z))

uniformly for z≤ y, andδ is almost constant at primes, but, for the sake
of simplicity, we assume here that

(2.2.7)
∏

u≤p<v

(
1− δ(p)

p

)−1

≤
(
logv
logu

)k

(2 ≤ u < v)

wherek is a positive constant.
Returning to the identity (2.1.11), because of (2.2.6) we may restrict 58

λ by the condition

(2.2.8) λ(d) = 0 for d ≥ y,

in addition to (2.1.10), without loss of much generality; then we have,
by (2.2.1),

S(A, z) ≥ XV(z){Uδ(y, z; ρ̃0) − o(1)}
where

V(z)Uδ(y, z; ρ̃0) =
∑

d|P(z)
d<y

µ(d)
δ(d)

d
ρ̃0(d).

But, sinceS(A, z) is non-nagetive, we have more precisely

S(A, z) ≥ XV(z){Tδ(y, z; ρ̃0) − o(1)},

where
Tδ(y, z; ρ̃0) = max(0,Uδ(y, z; ρ̃0));

the identity

V(z) =
∑

d|P(z)

µ(d)ρ̃0(d)
δ(d)

d
+

∑

d|P(z)

ρ̃0(d)
δ(d)

d
V(p(d))
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implies
1 ≥ Tδ(y, z; ρ̃0) ≥ 0.

Next we put
ϕk(y, z) = inf

δ
sup
λ

Tδ(y, z; ρ̃0),

whereδ satisfies (2.2.7), andλ (2.1.8), (2.1.10) and (2.2.8).
Obviously we have59

S(A, z) ≥ XV(z){ϕK(y, z) − 0(1)}.

Our interest lies, naturally, in such a choice ofy andz thatϕK(y, z) >
0; so we consider the quantity

αK(y) = inf {s;ϕK(y, y1/s) > 0}.

And we point out the important fact thatαK(y) remains bounded as
y tends to infinity. This can be seen easily from THEOREM 71. Thus
we may consider, further, the quantity

β(k) = lim sup
y→∞

αk(y).

If s> β(k), then we have the possibility of

S(A, y1/s) > 0

for a sufficiently largey, but, otherwise, we can say nothing definite
about the lower bound forS(A, y1/s) than that it is non - negative. This
is the reason thatβ(k) is called thesieving limit.

Now, if we want to keep at minimum the loss caused by discarding
certain termsS(Ad, p(d)) on the right side of (2.1.11) we should, of
course, put ˜σν(d) = 0 for all d such that there is the possibility of the
existence of atleast oneA with

S(Ad, p(d)) > 0. But, if A is such that allAd(d|p(z), d < y) satisfy60

1One may say that this is a tautology, for our proof of THOEOREM7 depends on
Rosser’s sieve idea. To avoid such a confusion, we remark that we could have proved
THEOREM 7 by Brun’s (cf. [21, Chap. 2])
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the analogue of (2.2.6), i.e.,

∑

ℓ<y/d
ℓ|p(p(d))

|Rdℓ| = 0(
δ(d)

d
XV(p(d))),

then we have the possiblity ofS(Ad, p(d)) > 0 for p(d) < (y/d)
1
β(k)

providedy/d is sufficiently large. And this observation leads us imme-
diately to Rosser’s device.

We should deep it in our mind, however, that although Rosser’s
weightsρν may simulate well the extremal (or optimal) sieving pro-
cedure, there is no reason to believe that they give actuallythe optimal
estimate ofS(A, z) generally. In fact, it is known that, for the sieve prob-
lem with k > 1, the Rosser weights do not yield optimal results. But,
very fortunately, for the linear sieve problems (i.e.,k = 1) which con-
tain most of important classical problem Rosser’s method can indeed
produce optimal results as we shall show in detail in the nextchapter.

2.3 A Smoothed Version of Rosser’s Identity

Returing to the main theme of this chapter, we shall give an impor-
tant modification of the fundametal identity (2.1.7): we shall inject a
smoothing device into it. This will play a vital role in the investigation
of the error term in the linear sieve which will be developed in §3.4.

To this effect, we take up an interval [z1, z), 2 ≤ z1 < z, and dissect it 61

into smaller ones which we shall denote generally byI with or without
suffix; so, we have

[z1, z) =
⋃

I ( disjoint ).

Next, let K with or without suffix stand for the set - theoretic direct
product of a sequence ofIs’, andω(K) for the number of constituent
I ’s. If K = I1I2 · · · Ir then I < K means that (I ) < min(I j) where (I ) is
the right end point ofI ; also,d ∈ K implies thatd = p1p2 · · · pr with
P j ∈ I j . Here we have to introduce the convention that 1∈ K for empty
K. Note that we do not reject non- squarefreed; this convention will
have effect in the formula of LEMMA 10 below.
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Theorem 8. Let λ be an arbitrary function defined on the set of all K
and satisfyingλ(K) = 1 for empty K.

Putφ(K) = λ(I1)λ(I1I2) · · · λ(I1I2 · · · Ir );φ(K) = 1 if K is empty, and
ψ(K) = φ(I1I2 · · · Ir−1)−φ(I1I2 · · · Ir );ψ(K) = 0 if K is empty, where

K = I1I2 · · · Ir , I1 > I2 > · · · > Ir .

Then we have62

S(A, z) =
∑

K

(−1)ω(K)φ(K)
∑

d∈K
S(Ad, z1)

+
∑

I<K

(−1)ω(K)φ(KI )
∑

p′<p
p′,p∈I
d∈K

S(Adpp′ , p
′)

+
∑

K

(−1)ω(K)ψ(K)
∑

d∈K
S(Ad, p(d)).

To prove this, we first modify modify the Bushstab identity trivially
as

S(A, z) = S(A, z1) −
∑

I

λ(I )
∑

p∈I
S(Ap, p)

−
∑

I

(I − λ(I ))
∑

p∈I
S(Ap, p).(2.3.1)

Also, for eachp ∈ I , we have

S(Ap, p) = S(Ap, z1) −
∑

p′<p
p′∈I

S(App, p
′) −

∑

I ′<I

∑

p′∈I ′
,S(App, p

′)

= S(Ap, z1) −
∑

p′<p
p′∈I

S(App, p
′) −

∑

I ′<I

λ(II ′)
∑

p′∈I ′
,S(App, p

′)

−
∑

I ′<I

(1− λ(II ′))
∑

p′∈I ′
S(App, p

′).

Inserting this into the first double sum on the right side of (2.3.1),
we get

S(A, z) = S(A, z1) −
∑

I

λ(I )
∑

p∈I
S(A, z1) +

∑

I

λ(I )
∑

p′<p
p′,p∈I

S(App′ , p
′)
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−
∑

I

(1− λ(I ))
∑

p∈I
S(Ap, p) +

∑

I2<I1

λ(I1)(1− λ(I1I2))

∑

p1∈I1
p2∈I2

S(AP1p2, p2) +
∑

I2<I1

λ(I1)λ(I1I2)
∑

p1∈I1
p2∈I2

S(Ap1p2, p2).

63

This is obviously the caser = 2 of the identity

S(A, z) =
∑

ω(K)<r

(−1)ω(K)φ(K)
∑

d∈K
S(Ad, z1)

+
∑

I<K
ω(K)<r−1

(−1)ω(K)φ(KI )
∑

p′<p
p′p∈I
d∈K2

S(Adpp′,p
′)(2.3.2)

+
∑

ω(K)≤r

(−1)ω(K)ψ(K)
∑

d∈K
S(Ad, p(d))

+ (−1)r
∑

ω(K)=r

φ(K)
∑

d∈K
S(Ad, p(d)).

We may establish this by induction onr; we need only to insert in
the last double sum the expression

S(Ad, p(d)) = S(Ad, z1) −
∑

p<p(d)
pd∈K

S(Adp, p)

−
∑

I<K

λ(KI )
∑

p∈I
S(Adp, p) −

∑

I<K

(1− λ(KI ))
∑

p∈I
S(Adp, p).

Having obtained (2.3.2), we taker sufficiently large and conclude
the proof of the theorem. 64

Now, let us introduce two parametersy and β ≥ 1, and imitate
Rosser’s device. We setλ = λν the characteristic function of the set
(2.3.3)

K = I1I2 · · · Ir ; I1 > I2 > · · · > Ir ,

r ≡ ν + 1 (mod 2)

or

r ≡ ν (mod )2 and (Ir)
β+1(Ir−1) · · · (I1) < y



And letΘν and∆ν stand forφ andψ with this choice ofλ, respec-
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tively. ThenΘν and∆ν are the characteristic functions of the sets
(2.3.4)K = I1I2 · · · Ir ; I1 > I2 > · · · > Ir ,

(I2k+ν)
β+1(I2k+ν−1) · · · (I1) < y

for all k with ≤ 2k+ ν ≤ r



and 
K = I1I2 · · · Ir ;

I1 > I2 > · · · > Ir , r ≡ ν (mod 2)

Θν(I1I2 · · · Ir−1) = 1

(Ir )
β+1(Ir−1 · · · (I1) ≥ y)


,

respectively. Then THEOREM 8 gives the following smoothed version
of LEMMA 8.

Lemma 9.

S(A, z) =
∑

K

(−1)ω(K)Θν(K)
∑

d∈K
S(Ad, z1)

+
∑

I<K

(−1)ω(K)Θν(KI )
∑

p′<p
p′,p∈I
d∈K

S(Ad, z1)

+ (−1)ν
∑

K

∆ν(K)
∑

d∈K
S(Adpp′ , p

′).

65
Further, in this we replaceS(Adpp,p′) by largerS(Adpp′ , z1) and dis-

card the conditionp′ < p, getting

Lemma 10.

(−1)νS(A, z) ≥ (−1)ν
∑

K

(−1)ω(K)Θν(K)
∑

d∈K
S(Ad, z1)

−
∑

I<K
ω(K)≡ν+1 (mod 2)

Θν(KI )
∑

p,p′∈I
d∈K

S(Adpp′ , z1).

NOTES (II)

In our definition of a sieve problem, we have introduced the weight
θ, but this has nothing to do with later development of our discussion.
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However, THEOREM 6 will probably serve for the future developments
of the theory of ’weighted’ combinatorial sieve methods which has been
initiated by Greaves; in fact THEOREM 6 is generalized version of his
identity [[20], (2.8)].

THEOREM 6 in its conventional form can be found in Halberstam66

and Richert [[21], p. 39], which seems to originate in Levis’s work [44]
on Brun’s sieve. On the other hand, the identity (2.1.6) withthe simplest
choice ofθ occors in Iwaniec [30].

We may call THEOTEM 6the fundamental theorem in sieve meth-
ods, for various specializations ofρ give all sieve method known at
present, except for the local sieve of Selberg. Especially,with the aid
of THEOREM 6, we can reveal the mechanism lying behind the∧2-
sieve(1).

We set
ρ(d) = µ(d)

∑

[d1,d2]=d

λd1λd2(λ1 = 1).

Then, after some rearrangement, we get

S(A, z) =
∑

a∈A
(
∑

d|P(z)
a∈Ω(d)

λd)2

−
∑

p<z

∑

a∈Ap
a<∪Ω(q)

q<p.

(
∑

a∈Ω(h)
h|p(p+ ,z)

(λh + λhp))
2

wherep, q are primes,p+ is the prime which succeedsp, andP(p+, z) =
P(z)/P(p+). This remarkable identity is due to Halberstam.1

We should remark also that, via a special case of THEOREM 6, Fou- 67

vry and Iwaniec [13] obtained a stricking result pertainingto Bombieri’s
mean prime number theorem.

In the proof of THEOREM 7, we followed the argument of Fried-
lander and Iwaniec [14] which is quick and elegant compared with the
one via Brun’s sieve; here, already we can have the glimpse ofthe power
of Rosser’s idea.

1By the courtesy of Professor Halberstam
1By the courtesy of Professor Halberstam
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In explaining Rosser’s idea, we had to appeal to a rough imageof
the concept of the sieving - limit. We stress that our definition of the
seieving limit applies to some restricted class of sieve procedures only;
for a more general treatment of the matter, see Selberg [75].

The idea of introducing a smoothing device into Rosser’s sieve
method is an outstanding contribution of Iwaniec [31] to thetheory of
sieve methods. This will result in a highly flexible error - term in the
linear sieve, as we shall see in the next chapter.

We are not in a position to speculate how Iwaniec was led to his
novel idea; readers are referred to his own account [33].

The argument developed in §2.3 is due to Motoghashi [[60], II],
which is a refinement of Iwaniec’s



Chapter 3

The Linear Sieve

THE OBJECT OF this chapter is to develop a detailed account ofthe 68

fundamental result of Rosser and Iwaniec on the linear sieve. Rosser’s
theory determines the optimal mainterm in the upper and lower bounds
for linear sieve problems, and Iwaniec’s theory enhances its power grea-
tly by introducing into it a highly flexible error - term.

We shall first study the nature of expected optimal upper and lower
bounds for linear sieve problems by employing Rosser’s sieving proce-
dure described in the preceding chapter. This will lead us toa difference
- differential equation, and solving it, we shall find the most suitable
choice of the parameterβ, which will, in turn, be fed back to a rigorous
argument to prove Rosser’s linear sieve. And an example due to Selberg
will be used to confirm that Rosser’s result is indeed optimal. Then we
will focus our attention on the error - term in Rosser’s linear sieve; we
shall inject into our discussion the smoothing device introduced in the
last section of the preceding chapter, and obtain Iwaniec’sbilinear form
for the error - term.

Throughout this chapter, we shall retain the notation and convention
introduced in the preceding chapter.

57
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3.1 A Difference-Differential Equation
69

First of all, we have to give a precise notion of the dimensionof a sieve
problem.

We require thatδ which is introduced at (2.2.1) be not wild locally,
and constant on average. Namely, we assume that there is a constant
A1 > 0 such that for all primep

(3.1.1) 0≤ δ(p)
P
≤ 1− 1

A1
,

and that there are constantsk,A2 > 0 and a positive parameterL which
is not too large such that for any 2≤ u < v

−L ≤
∑

u≤p<v

δ(p)
P

log p− k log
v
u
≤ A2.

ThenS(A, z) is called ak - dimensional sieve problem. And, in the
present chapter, we are concerned with the casek = 1 exclusively. Thus
we assume throughout the sequel the conditions (3.1.1) and

(3.1.2) −L ≤
∑

u≤p<v

δ(p)
P

log p− log
v
u
≤ A2.

for any 2≤ u < v.
It is known that (3.1.1) and (3.1.2) imply

(3.1.3)
∏

u≤p<v

(
1− δ(p)

P

)−1

≤ logv
logu

(
1+ o

(
1

logu

))

as well as70

(3.1.4)
∏

u≤p<v

(
1− δ(p)

p

)−1

=
logv
logu

(
1+ 0

(
1

logu

))

for any 2≤ u < v, where the implied constants depend onA1 andA2 at
most. In particular, (3.1.3) allows us to use THEOREM 7. Also, in our
argument, we shall make multiple use of the basic
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Lemma 11. We assume(3.1.1)and(3.1.2). Letψ(t) be a non-nequative,
monotone and continuous fuction for t≥ α > 0. Then we have, for any
2 ≤ u < v ≤ x1/1+α,

∑

u≤p<v

δ(p)
P

V(p)ψ


log x

p

log p

 = V(v)
logv
log x

log x
logu∫

log x
logv

ψ(t− 1)dt+ 0(LMV(v)
logv

log2 u
)

where

M = max
u≤ξ≤v

ψ


log x

ξ

logξ

 .

After these initial remarks, we now start the investigationleading to
the determination of the optimalβ in the Rosser weightsρν under the
basic assumptions (3.1.1) and (3.1.2).

To simplify the convergence problem which we shall encounter later,
we introduce here another parameterz1 such that

(3.1.5) z1 ≤ exp

(
logy

(log logy)2

)
,

wherey is the parameter which occurs in the definition ofρν. Further, 71

we put
z= y1/s,

and assume that

(3.1.6) 0< s<
logy
logz1

so thatz1 < z. Then we apply Rosser’s identity (LEMMA 8) to the
sequence

{a ∈ A; a < Ω(p) for all p < z1},

getting

S(A, z) =
∑

d|P(z1,z)

µ(d)ρv(d)S(Ad, z1) + (−1)v
∑

d|P(z1,z)

σv(d)S(Ad, ρ(d)),
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and thus

(3.1.7) (−1)v


S(A, z) −

∑

d|P(z1,z)

µ(d)ρv(d)S(Ad, z1)


≥ 0,

whereP(z1, z) = P(z)/P(z1). Similarly, we have
(3.1.8)

V(z) = V(z1)
∑

d|P(z1,z)

µ(d)ρv

δ(d)
d
+ (−1)v

∑

d|P(z1,z)

σv(d)
δ(d)

d
V(p(d)).

To eachS(Ad, z1) of (3.1.7) we apply THEOREM 7, and get

(−1)ν−1

{
S(Ad, z1) − XV(z1)

δ(d)
d

(
1+O

(
exp

(
−h

2
logh

)))}
≤

∑

r |P(z1)
r<zh

1

|Rdr |,

whereh is at our disposal. Insertion of this into (3.1.7) gives72

(−1)v−1{S(A, z) − XV(z)Kv(y, z; δ)}

≤
∑

r |P(z1)
r<zh

1

|Rd| + o


exp

(
−h

2
logh

)
XV(z1)

∑

d|P(z1,z)

δ(d)ρv(d)
d


,(3.1.9)

where

(3.1.10) V(z)Kv(y, z; δ) = V(z1)
∑

d|P(z1,z)

µ(d)ρv(d)
δ(d)

d
.

Since ∑

d|P(z1,z)

δ(d)ρν(d)
d

≤ V(z1)/V(z)

and also we have (3.1.3), theO-term of (3.1.9) is

O

{
exp

(
−h

2
logh

)
XV(z)(logz)2

}
.

We now set
h = log logy,
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and collecting above estimates, we get

(3.1.11) (−1)v−1 {S(A, z) − XV(z)Kv(y, z; δ)}
≤

∑

d|P(z)
d<y0

|Rd| + XV(z)(logy)−10s−2

wherey0 = yexp(logz1 log logy). 73

Next, we put

Hv(y, z; δ) = max(0,Kv(y, z; δ));

obiviously, we have

H1(y, z; δ) = K1(y, z; δ).

We should note also that (3.1.8) implies

(3.1.12) H1(y, z; δ) ≥ 1 ≥ H0(y, z; δ) ≥ 0.

Hence our problem is now transformed into the asymtotic evalua-
tion of H(y, y1/s; δ) in terms ofs, i.e., we will seek for the continuous
functionφv(s) such that

(3.1.13) lim
y→∞

Hν(y, y
1/s; δ) = φv(s),

if it ever exists. Note that we are going to find aφv(s) not depending on
δ apart the basic conditions (3.1.1) and (3.1.2).

If (3.1.13) holds, and if we assume (2.2.6) withy = y0, then we
would have

(3.1.14) XV(y1/s)(φ0(s) − o(1)) ≤ S(A, y1/s) ≤ XV(y1/s)(φ1(s) + o(1)).

The direct proof of (3.1.13) seems to be quite difficult if not impos-
sible. Thus we make a round-about, by assuming first the existence of
the limit φv(s); on this assumption, we investigate its nature, and then
feed the obtained information back to the actual proof of theasymptotic
formula for Hν(y, y1/s; δ). The optimal choice ofβ will emerge out of
this process.
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Thus let us assume more preciesely that (3.1.13) holds uniformly for 74

all boundeds. Then

(3.1.15) φv is monotone,

since it is clear from (3.1.8) thatKv(y, y1/s; δ) is monotone with respect
to s for each fixedy. Also, because of (3.1.12), we have

(3.1.16) φ1(s) ≥ 1 ≥ φ0(s) ≥ 0.

Now, since we have (3.1.14), the obervation made in §2.2 on the
sieving limit suggests that if we want to let Rosser’s sieving procedure
simulate well the optimal one which is supported to exist, weshould
confine ourselves to the most critical case

(3.1.17) β = inf {s;φ0(s) > 0}.

This shall we assume henceforth, and will turn out to be decisive.
(3.1.10) gives
(3.1.18)

V(y1/s)K1(y, y1/s; δ) = V(z1) −
∑

z1≤p<min(y1/s,y
1
β+1 )

δ(p)
p

V(p)K0(
y
p
, p; δ),

sinceρ1(p) = 1 impliesp < y

1
β + 1. So we have, fors≤ β + 1,

V(y1/s)K1(y, y1/s; δ) = V(y
1
β+1 )K1(y, y

1
β+1 ; δ),

that is, fors≤ β + 1,75

sφ1(s) = (β + 1)φ1(β + 1)

= D,(3.1.19)

say. On the other hand, ifβ + 1+ ε ≤ s, then we have (logy/p)/ log p ≥
β + ε in (3.1.18), and by the assumption (3.1.17), we have

K0

(
y
p
, p; δ

)
= H0

(
y
p
, p; δ

)
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for sufficeintly largey. Thus, forv > u ≥ β+ 1+ ε we have, by (3.1.18),

V(y1/v)H1(y, y1/v; δ) − V(y1/u)H1(y, y1/u; δ)

=
∑

y
1
v ≤p<y

1
u

δ(p)
p

V(p)H0

(
y
p
, p; δ

)
.

But, by our present assumption, the last sum is equal to

(1+ o(1))
y

v
1

∑

≤p<y1u

δ(p)
p

V(p)φ0


log y

p

log p

 ,

which, sinceφ0 is monotone and bounded (cf. (3.1.15) and (3.1.16)),
can be expressed, with the aid of LEMMA 11, as

(1+ 0(1))
1
u

V(y
1
u )

v∫

u

φ0(t − 1)dt,

provided

(3.1.20) L = 0(logy)

76

We shall assume, in the sequel, this harmless condition onL. Thus
we get

u
V(y1/v)

V(y1/u)
H1(y, y

1
v ; δ) − uH1(y, y

1
v ; δ) = (1+ o(1))

v∫

u

φ0(t − 1)dt,

and by (3.1.4)

vφ1(v) − uφ1(u) =

v∫

u

φ0(t − 1)dt,

for β+1+ε ≤ a < v with any fixedε > 0. But, because of the continuity,
we see that this holds forβ + 1+ ≤< v; namely, we have

(3.1.21) (sφ1(s))′ = φ0(s− 1) for β + 1 ≤ s.
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Simirlarly, we have, forv ≥ u ≥ β + ε,

V(y
1
v )H0(y, y

1
v ) − V(y

1
V )H0(y, y

1
v ; δ) =

∑

y
1
v ≤p<y

1
u

δ(p)
p

V(p)H1

( y
P
,P; δ

)
,

providedy is sufficiently large. Thus, as much the same way as above,
we have

vφ0(v) − uφ0(u) =

v∫

u

φ1(t − 1)dt

for max(1, β) < u < v; here the condition 1< u is needed bacause of
(3.1.19). And, we haveβ ≤ 1, the last equation contradicts the bound-77

edness ofφ0. Hence we may assume hereafter that

(3.1.22) β > 1.

Then we have

(3.1.23) (sφ0(s))′ = φ1(s− 1) for β ≤ s,

which is of course supplemented by

(3.1.24) φ0(s) = 0 for s≤ β.

Collecting (3.1.17), (3.1.19), (3.1.21)-(3.1.24), we arenow led to
the investigation of the difference-differential equation1

(3.1.25) (sφv(s))
′ = φv+1(s− 1) for β ≤ s

on the boundary condition

sφ1(s) = D, φ0(s) = 0 for s≤ β,(3.1.26)

φ0(s) ≤ 1 ≤ φ1(s) for all s> 0,(3.1.27)

whereβ > 1 andD > 0 are to be determined so that

(3.1.28) φ0(s) > 0 for s> β

and the asymptotic formula (3.1.13) holds on the condition (3.1.20).

1In the sequel, we shall use the convention:φ j ≡ φv if j ≡ v (mod 2).
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3.2 The Optimal Value of β

In this section, we shall now show a detailed solution of the last problem.
This requires a little lengthy discussion, and we start withthe following 78

two important observations on the nature of the expected solution φv.

Lemma 12. If φv satisfies(3.1.25)-(3.1.27), thenφ1 andφ0 are strictly
decreasing and increasing, respectively. In particular,(3.1.28)is redun-
dant.

To prove this, letuo be the least root ofφ′1(u) = 0, if exists. By
(3.1.25) and (3.1.26)u0 > β + 1. But we have, by (3.1.25) and (3.1.27),

0 = u0φ
′
1(u0) = φ0(u0 − 1)− φ1(u0) ≤ φ0(u0 − 1)− φ0(u0)

= φ′0(u′) =
1
u′

(φ0(u′)) − φ1(u′ − 1)) ≤ 1
u′

(φ1(u′) − φ1(u′ − 1))

=
1
u′
φ′1(u′′),

whereu0− 1 < u′ < u0, u′ − 1 < u′′ < u′. However, we haveφ′1(u′′) < 0
because of the definition ofu0. Henceφ1(u) is strictly decreasing. And
so we have, foru ≥ β,

uφ′0(u) = φ1(u− 1)− φ0(u) ≥ φ1(u− 1)− φ1(u) > 0

whenceφ0(u) is strictly incresing foru ≥ β.

Lemma 13. We assume(3.1.1) and (3.1.2). Let φv be a solution of
(3.1.25)-(3.1.27). Then we have, for2 ≤ u ≤ v ≤ y1/β,

V(v)φv

(
logy
logv

)
= V(u)

∑

d|P(u,v)

µ(d)ρv(d)
δ(d)

d
φv+ω(d)


log y

d

logu



+ 0

(
LV(v)

log2 v

log3 u

)
,

whereρv(d) = ρv(d; y, β). 79
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To show this, we note firstly that the previous lemma allows usto
appeal to LEMMA 11, and we have

∑

u≤p<v

δ(p)
p
φv+1


log y

p

log p

 = V(v)
logv
logy

logy
logu∫

logy
logv

φv+1(t−1)dt+0

(
V(v)L

logv

log2 u

)
,

sinceφv+1

(
log y

ξ

logξ

)
is bounded ifξ ≤ y1/β; here, we should observe also

that we haveβ > 1. But this integral is, by (3.1.4) and (3.1.25),

V(v)
logv
logy

{
logy
logu

φv

(
logy
logu

)
− logy

logv
φv

(
logy
logv

)}

= V(u)φν

(
logy
logu

)
− V(v)φν

(
logy
logv

)
+ o

(
LV(v)

logv

log2 u

)
.

Thus, noting that (3.1.26) impliesφ0

(
log y

P
logP

)
= 0 if pβ+1 ≥ y, we get

V(v)φv

(
logy
logv

)
= V(u)φv

(
logy
logu

)

−
∑

u≤p<v

δ(p)
p
ρv(p)φv+1


log y

p

log p

 +O

(
LV(v)

logv

log2 u

)
.

This is obviously the caser = 1 of the formula80

V(v)φv

(
logy
logv

)
= V(u)

∑

d|P(u,v)
ω(d)<r

µ(d)ρv(d)
δ(d)

d
φv+ω(d)


log y

d

logu



+ (−1)r
∑

d|P(u,v)
ω(d)=r

ρv(d)
δ(d)

d
V(p(d))φv+r


log y

d

log p(d)



+O

(
L

log2 u

)

V(v) logv+

∑

ω(d)<r
d|P(u,v)

δ(d)
d

V(p(d)) log p(d)


(3.2.1)
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We may establish this by induction onr: If v+ω(d) ≡ 0(mod2) then
ρv(d) = 1 impliesp(d)β < y/d, so

φν+ω(d)+1


log y

dξ

logξ

 = o(1)

for ξ < p(d). If v + ω(d) ≡ 1 (mod 2), then the same holds obviously.
Hence we have, as before,

V(p(d))φν+ω(d)


log y

d

log p(d)

 = V(u)φv+ω(d)


log y

d

logu



−
∑

u≤p<p(d)

δ(p)
p

V(p)φv+ω(d)+1


log y

pd

log p

 +O

(
LV(p(d))

log p(d)

log2 u

)
,

where the left side is the one appearing in the second sum of (3.2.1).
Inserting this into (3.2.1) and eliminating the terms with thosepd such
that

φv+ω(d)+1


log y

pd

log p

 = 0,

we readily ontain (3.2.1) forr +1 in place ofr. To conclude the proof of 81

the lemma, we need only to taker sufficiently large in (3.2.1) and note
that the error-term is, by (3.1.3),

0


LV(v) logv

log2 u

∞∑

j=0

1
j!


∑

u≤p<v

δ(p)
p



j

= O

(
LV(v)

log2 v

log3 u

)
.

After these preperations, we can now proceed to the determination
of β andD, and soφv.

Put
G(u) = φ1(u) + φ0(u).

Then by (3.1.25) we have, forβ ≤ u,

(uG(u))′ = G(u− 1)
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which gives

|G′(u)| = 1
u
|G(u− 1)−G(u)| ≤ 1

u
max

u−1≤t≤u
|G′(t)|.

Thus we have
G′(u) = O

(
r(u+ 1)−1

)

which implies obviously that there exists a constantA such that

(3.2.2) G(u) = A+O(r(u)−1)

for u ≥ β.
On the other hand, if we put

g(u) = φ1(u) − φ0(u)

theng(u) ≥ 0 by (3.1.27), and we have, foru ≥ β,82

d
du

u∫

u−1

ξg(ξ)dξ = ug(u) − (u− 1)g(u− 1)

= ug(u) + (u− 1)(ug(u))′

= (u(u− 1)g(u))′ ,

since (ug(u))′ = −g(u− 1) is implied by (3.1.25). Hence we have

(3.2.3)

u∫

u−1

ξg(ξ)dξ = u(u− 1)g(u) +C

for u ≥ β; settingu = β and recalling (3.1.26), we, have

C = (2− β)D.

Then, by the monotonicity ofug(u), one may deduce from (3.2.3)
the asymptotic formula

(3.2.4) g(u) =
(β − 2)D

u2

(
1+ o

(
1
u

))
+O(r(u)−1).
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But we haveg(u) ≥ 0; so, we get, in particular,

(3.2.5) β ≥ 2.

From (3.1.27) and (3.2.4), we infer thatA = 2 in (3.2.2), and thus

φv(u) = 1+ (−1)v−1 (β − 2)D

u2

(
1+ o

(
1
u

))
+O

(
r(u)−1

)
.

This shows clearly thatβ = 2 is likely the most favourable choice in
the sense that thenφv(u) would converage to 1 very strongly asu tends to
infinity. The same can also be inferred from the combination of (3.1.10)
and LEMMA 13, for it gives

V(y1/s)|φν(s) − Kν(y, y
1/s; δ)|

(3.2.6)

≤ V(z1)
∑

d|P(z1,y1/s)

ρν(d)
δ(d)

d
|1−φν+ω(d)

(
logy/d
logz1

)
|+o

(
LV(y1/s)

log2 y

log3 z1

)
,

provideds≥ β; this could be small only whenβ = 2. 83

Therefore, we now put

(3.2.7) β = 2;

this would be the optimal value ofβ, for as we have mentioned already
β was to be taken as small as possible, and we have (3.2.5).

Next, we shall determine the value ofD on the condition (3.2.7). To
this end, we consider the Laplace transform ofG(u):

A(τ) =
∫ ∞

2
e−τuG(u)du.

(3.1.25) and (3.1.26) withβ = 2 give

(τ(A(τ))′ = A(τ)(1− e−τ) − D(e−2τ +

3∫

2

e−τu(u− 1)−1(du).
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Solving this differential equation on the boundary conditionA(∞) =
O, we get

τA(τ) = D

∞∫

τ

e
−2t +

∞∫

2

e−tu

u− 1
du

 exp

−
∞∫

1

e−u

u
du−

1∫

t

e−u − 1
u

du

 dt × exp



∞∫

1

e−t

t
dt +

1∫

τ

e−t

t
dt

 .

Then observing that84

(3.2.8) lim
τ→+O

τA(τ) = A = 2,

and that

1∫

0

1− e−t

t
dt −

∞∫

1

e−t

t
dt = γ (Euler’s contant),

we have

2eγ = D{h(2)+

3∫

2

h(u)
u− 1

du}

where

h(u) =

∞∫

o

exp

−tu−
∞∫

1

e−ξ

ξ
dξ −

1∫

t

e−ξ − 1
ξ

dξ

 dt.

But it is easy to check

(3.2.9) uh′(u) = −h(u+ 1)(u > O);

this implies that
3∫

2

h(u)
u− 1

du= h(1)− h(2),
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whence
D = 2eγ/h(1).

On the other hane, (3.2.9) implies also that

h(1) = − lim
u→+O

uh′(u)

= lim
u→+O

u

∞∫

o

exp

−tu−
∞∫

1

e−ξ

ξ
dξ −

1∫

t

e−ξ − 1
ξ

dξ + log t

 dt

= lim
u→+O

u

∞∫

o

exp

−tu−
∞∫

t

e−ξ

ξ
dξ

dt,

and this limit is equal to 1, whence we obtain 85

D = 2eγ.

Collecting the above discussions, we see that (3.1.25) and (3.1.26)
have now the new form:

(sφν(s))
′ = φν+1(s− 1) for s≥ 2,

sφ1(s) = 2eγ, φ0(s) = 0 for 0< s≤ 2.(3.2.10)

And, in the sequal, we letφ1 andφ0 stand for the functions defined
by this equation; in fact, it is clear that (3.2.10) defines two continuous
functions inductively starting from the range 0< s≤ 2.

Then apply the above argument to the equation (3.2.1).
We now haveC = 0 in (3.2.3), whence we have

(3.2.11) φ1(s) > φo(s).

On the other hand, this time we haveD = 2eγab initio, and through
the analysis of the Laplace transform ofG = φo + φ1, we getA = 2
again. Hence, by (3.2.2) and (3.2.3) withβ = 2, we obtain

(3.2.12) φν(s) = 1+ 0(Γ(s)−1)(s≥ 2).

Finally, we note that by LEMMA 12φ1 andφO are strictly decreas-
ing and increasing, respectively, ass increases in the ranges≥ 2. 86
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3.3 Rosser’s Linear Sieve

In this section, we shall demonstrate that the asymptotic relation (3.1.13)
actually holds for the functionφν defined by the equation (3.2.10), and
thus establish the fundamental result of Rosser on the linear sieve.

According to (3.2.6) and (3.2.12), it suffices to consider the estima-
tion of the sum

(3.3.1)
∑

d|P(z1,y1/s)

ρν(d)
d

δ(d) exp

(
− logy/d

logz1

)
,

where we should stress that we haves ≥ 2; this is due to the fact that
we have already fixed the value ofβ to be 2, and thus, in the sequel, we
shall work on thoseρν with β = 2.

To this end, we shall prove first the crucial

Lemma 14. Assuming(3.1.1)and (3.1.2)we have, for any2 ≤ u ≤ v ≤
x1/2,

∑

u≤p2<p1<v
p3

2p1<x

δ(p1p2)
p1p2

V(p2) exp

(
− log x/p1p2

log p2

)

≤ ηV(v) exp

(
− log x

logv

) {
1+ 0

(
L

logv

log2 u

)}2

where

η =
1
2

(
1
3
+ log 3

)
< 1.

To show this, we divide the sum to be estimated into two parts
∑

187

and
∑

II according tou ≤ p1 < min(v, x1/4) and to max(u, x1/4) ≤ p1 <

v, respectively. First, we consider the case where

(3.3.2) v ≤ x1/4.

Then we have
∑

II = 0, and bu LEMMA 11,
∑

I

=
∑

u≤p1<v

∑

u≤p2<p1
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=
∑

u≤p1<v

δ(p1)
p1



V(p1) log p1

log x
p1

log x
p1

logu∫

log x
p1

logv

e1−tdt

+ 0


LV(p1) log p1

log2 u
exp

−
log x

p1

log p1







≤ e
3

(
1+ 0

(
L

logv

log2 u

)) ∑

u≤p<v

δ(p)
p

V(p) exp

−
log x

p

log p

 ,

since, according to (3.3.2), we have

log p1/ log
x
p1
≤ 1

3
.

Thus, again bu LEMMA 11, we have

∑

1

≤ e
3

(
1+ 0

(
L

logv

log2 u

))

×



V(v) logv
log x

log x
logu∫

log x
logv

e1−tdt + 0

(
LV(v) logv

log2 u
exp

(
− log x

logv

))


≤ e2

12

(
1+ 0

(
L

logv

log2 u

))2

V(v) exp

(
− log x

logv

)
.

Next, we consider the case where 88

(3.3.3) x1/4 ≤ v ≤ x1/2.

As before, we have
∑

I

=
∑

u≤p1<x1/4

∑

u≤p2<p1
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≤ e
3

(
1+ 0

(
L

logv

log2 u

)) ∑

u≤p<x1/4

δ(p)
p

V(p) exp

(
− log x/p

log p

)

=
e
3

(
1+ 0

(
L

logv

log2 u

))


V(v) logv
log x

log x
logu∫

4

e1−tdt + 0

(
LV(v) logv

log2 u

)


≤ e−2

2

(
1+ 0

(
L

logv

log2 u

))2

V(v)
logv
log x

.

On the other hand, we have
∑

II

≤
∑

x1/4≤p1<v

∑

u≤p2<( x
p1

)1/3

=
∑

x1/4≤p<v

δ(p)
p



V(p) log p
log x

p

log x
p

logu∫

3

e1−tdt + 0

(
LV(p) log p

log2 u

)


≤ e−2
(
1+ 0

(
L

logv

log2 u

)) ∑

x1/4≤p1<v

δ(p)
p

log p
log x

p

V(p)

= e−2
(
1+ 0

(
L

logv

log2 u

))


V(v) logv
log x

4∫

log x
logv

dt
t − 1

+ 0

(
L

V(v) logv

log2 u

)


= e−2
(
1+ 0

(
L

logv

log2 u

))2

V(v)
logv
log x

log


3

log x
logv − 1

 .

Hence we get89

∑

I

+
∑

II

≤ ∆
(
log x
logv

)
V(v)e−

log x
logv

(
1+ 0

(
L

logv

log2 u

))2

,

where

∆(ξ) =

(
1
3
+ log

3
ξ − 1

)
eξ − 2
ξ

,
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and (3.3.3) is equaivalent to 2≤ ξ ≤ 4.
Now we have

d
dξ
∆(ξ) =

ξ − 1

ξ2
eξ−2

{
−ξ

(ξ − 1)2
+

1
3
+ log

3
ξ − 1

}

=
ξ − 1
ξ2

eξ−2∆0(ξ),

say. In the interval 2≤ ξ ≤ 4,∆0(ξ) attains its maximum atξ = 3 and

∆0(3) = log
3
2
− 5

12
< 0.

Thus

max
2≤ξ≤4

∆(ξ) = ∆(2) =
1
2

(
1
3
+ log 3

)
>

e2

12
,

Which gives rise to the assertion of the lemma.
We now proceed to the proof of (3.1.13). For this sake, we replace

(3.1.20) by the stricter, but still harmless, condition

(3.3.4) L = 0

(
logy

(log logy)5

)
,

and we set in the above discussion

(3.3.5) z1 = exp

(
logy

(log logy)2

)

so that (3.1.5) is satisfied. 90

We divide the sum (3.3.1) into two parts
∑

1 and
∑

2 according to
ω(d) < 2B andω(d) ≥ 2B, respectively: hereB is to satisfy

(3.3.6) 3B =
1
2

log logy.

Then LEMMA 9 (withβ = 2) implies that in
∑

1 we have

logy/d
logz1

>
3−B

2
logy
logz1

= log logy (ρν(d) = 1),
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whence we have, uniformly fors≥ 2,

(3.3.7) V(z1)
∑

1

<< V(y1/s)
(log logy)4

logy

because of (3.3.5).
To estimate

∑
2, we note first that ifρν(d) = 1 andp(d) ≥ w then

(3.3.8) V(w) exp

(
− logy/d

logw

)
<< V(p(d)) exp

(
− logy/d

log p(d)

)
;

this follows from (3.1.3) and the fact thatρν(d) = 1 implies p(d)d < y.
Thus, for instance, we have

(3.3.9) V(z1)
∑

ω(d)=2r+1
d|P(z1,y1/s)

ρ0(d)δ(d)
d

exp

(
− logy/d

logz1

)

<<
∑

z1≤p<y1/s

ℓ|P(p,y1/s)
ω(ℓ)=2r

ρ0(l)δ(p)δ(ℓ)

pℓ
V(p) exp

(
− logy/pℓ

log p

)
,

for ρ0(pℓ) = ρ0(ℓ) in this sum. Using (3.3.8) once more, we see that the91

last sum is

<<
∑

z1≤p<y1/s

δ(p)
p

∑

ℓ|P(p,y1/s

ω(ℓ)=2r

ρ0(ℓ)δ(ℓ)
ℓ

V(p(ℓ)) exp

(
− logy/ℓ

log p(ℓ)

)

<< log log logy
∑

ℓ|P(p,y1/s

ω(ℓ)=2r

ρ0(ℓ)δ(ℓ)
ℓ

V(p(ℓ)) exp

(
− logy/ℓ

log p(ℓ)

)
,

since we have

∑

z1≤p<y1/s

δ(p)
p
≤ log

∏

z1≤p<y1/s

(
1− δ(p)

p

)
− 1
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<< log log logy

because of (3.1.3) and (3.3.5). But the last sum overℓ is equal to

∑

k|P(z1,y1/s)
ω(k)=2(r−1)

δ(k)ρ0(k)
k

∑

p3
2p1<y/k

z1≤p2<p1<p(k)

δ(p1p2)
p1p2

exp

−
log y

p1p2k

log p2

 .

To the inner-sum we can apply LEMMA 14, sinceρ0(k) = 1 and
ω(k) ≡ 0 (mod 2) implyp(k) < (y/k)1/2; thus the last sum is

≤ η
(
1+ 0

(
L

logy

log2 z1

))2 ∑

k|p(z1,y1/s)
ω(k)=2(r−1)

δ(k)ρ0(k)
k

V(p(k)) exp

(
− logy/k

log p(k)

)
.

Hence, by induction onr, we see that the left side of (3.3.9) is,
uniformly for s≥ 2,

<<

η
1+ 0

L
logy

log2
z1




2

r

V(y1/s) log log logy.

92

In much the same way, we can show, more generally, that

V(z1)
∑

ω(d)= j
d|P(z1,y1/s)

ρν(d)δ(d)
d

exp

(
− logy/d

logz1

)

<<

η
1+ 0

L
logy

log2
z1




2

j/2

V(y1/s) log log logy.

uniformly for s≥ 2 and for all j ≥ 1.
Hence by (3.3.4)-(3.3.6), we have, for any fixedη′ > η,

∑

2

<< V(y1/s)(log logy)
logη′
log 3 .

By this and (3.3.7), we see that (3.3.1) is

0

(
V(y1/s)
V(z1)

(log logy)−3/10
)
,
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provided (3.3.4) holds ands≤ 2.
Therefore, by (3.2.6), we obtain

Kν(y, y
1/s; δ) = φν(s) +O(log logy)−3/10)

uniformly for all boundeds≥ 2 on the assumptions (3.1.1), (3.1.2) and
(3.3.4), whence we have indeed proved (3.1.13).

Summing up the above discussions, we have established

Theorem 9 (ROSSER’S LINEAR SIEVE). Provided(3.1.1)and(3.1.2)93

with L = O

(
logy

(log logy)5

)
we have, uniformly for all s≥ 2,

(−1)ν−1
{
S(A, y1/s) − XV(y1/s)(φν(s) +O((log logy)−3/10))

}
≤

∑

d<y

|Rd|,

whereφν is defined by(3.2.10).

Remark. According to (3.1.11), the sum overd on the right side should
have been extended up toy0. But this blemish can easily be removes
by taking into account the basic properties ofφν(s). We should note
also that we have actually established this theorem on the assumption
(3.1.6), but if it is violated, then the theorem follows fromthe funda-
mental lemma (THEOREM 7).

Now it remains to show that Rosser’s linear sieve is an optimal result
in the sense that it is impossible to improve upon the main-term under
the prescribed general conditions.

To this end, we introduce the sequenceA(ν)(x) = {n < x ; the total
number of prime factors ofn is}. congruent toν (mod 2) wherex is to
tend to infinity. We have, for anyd < x,

|A(ν)
d (x)| = x

2d
+ o

(
x
d

exp

(
−c

(
log

x
d

)1/2
))
.

Thus we have
X = x/2, δ ≡ 1,

and we put94
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y = xexp
(
−(log x)1/2

)
.

Then

(3.3.10)
∑

d<y

|R(ν)
d (x)| = O

(
xexp

(
−c(log x)1/4

))
.

Also we have, fors≤ 2,

S(A(1)(x), x1/s) = π(x) +O(x1/s),

S(A(0)(x), x1/s) = 0;

that is, we have, for 1< s≤ 2,

(3.3.11) S(A(ν)(x), x1/s) = XV(x1/s)

(
φν(s) +O

(
1

log x

))
,

where we have used Mertens’ theorem:

V(w) =
∏

p<w

(
1− 1

p

)
=

e−γ

logw

(
1+O

(
1

logw

))
.

On the other hand, the Buchstab identity gives, fors< t,

S(A(ν)(x), x1/s) = S(A(ν)(x), x1/t) −
∑

x1/t≤p<x1/s

S

(
A(ν+1)

(
x
p

)
, p

)
.

Thus, by LEMMA 11 and (3.2.10), we can inducively confirm that
(3.3.11) holds for all boundeds≥ 2.

But the relation (3.3.11) yields readily 95

S(A(v)(x), y1/s) = XV(y1/s)(φν(s) + 0((log x)−1/2))

for all boundeds ≥ 2. Recalling (3.3.10), this means that the main-
term XV(y1/s)φν(s) of THEOREM 9 is asymptotically attained by the
sequenceA(ν)(x).

It may be worth remarking that forA(ν)(x) Rosser’s formula (2.1.14)
with ρν(d) = ρν(d; x, 2) andσν(d) = σν(d; x, 2) takes the critical form

S(A(ν)(x), z) =
∑

d|P(z)

µ(d)ρν(d)|A(ν)
d (x)|;

namely, the second sum of (2.1.14) does not appear at all. Thus for
A(ν)(x), Rosser’s truncation-iteration procedure of the Buchstab identity
causes no essential loss.
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3.4 Iwaniec’s Linear Sieve

Having determined the main-term in the linear sieve, we can now focus
our attention onto the error-term, which has been left in a crude form in
THEOREM 9: We shall inject the smoothing device developed in§ 2.3
into the argument leading to THEOREM 9.

As before, we assume always (3.1.1) and (3.1.2).
We begin our discussion by showing a smoothed version of LEMMA

13 (with β = 2 andφν defined by (3.2.10)). But to this end, we have to96

specify the mode of the dissection of the interval [z1, z) which was in-
troduced in § 2.3. We put

z= z1zJ
2

whereJ is a large integer, andz1, z2 are large parameters to be deter-
mined later in terms ofz. And we defineI to be one of the intervals

(3.4.1) [z1zj−1
2 , z1zj

2)(1 ≤ j ≤ J).

Further, in view of the result of § 3.2, we set

β = 2

in the definitions ofΘν and∆ν (cf. (2.3.4)).
Then we shall show

Lemma 15. We assume(3.1.1) and (3.1.2). Let φν be defined by
(3.2.10), and let z≤ y1/2. Then we have

V(z)φν

(
logy
logz

)
= V(z1)

∑

K

(−1)ω(K)Θν(K)
∑

dǫK

δ(d)
d
φν+ω(d)


log y

d

logz1



+ 0

{
V(z)

log2 z

log3 z1

(
L + logz2 log

(
logz
logz1

))}
.

We shall prove first that, for

(3.4.2) dǫK,Θν(K) = 1,
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we have

V(p(d))φν+ω(d)


log y

d

log p(d)

 = V(z1)φν+ω(d)


log y

d

logz1



−
∑

I<K

λν(KI )
∑

pǫ I

δ(p)
p

V(p)φν+ω(d)+1


log y

dp

log p



+ 0

{
V(p(d)) log p(d)

log2 z1
(L + ω(d) logz2)

}
,(3.4.3)

whereλν is defined at (2.3.3). In fact, since (3.4.2) implies 97

φν+ω(d)+1


log y

dξ

logξ

 = 0(1)

for ξ < p(d), we have, just as in the proof of LEMMA 13,

V(p(d))φν+ω(d)


log y

d

log p(d)

 = V(z1)φν+ω(d)


log y

d

logz1



−
∑

z1≤p<p(d)

δ(p)
p

V(p)φν+ω(d)+1


log y

d

log p

 +O

(
L

V(p(d)) log p(d)

log2 z1

)
.

If ν + ω(d) ≡ 0 (mod 2), then the last sum overp is
(3.4.4)
∑

I<K

λν(KI )
∑

pǫ I

δ(p)
p

V(p)φν+ω(d)+1


log y

dp

logP

 + o



∑

p<p(d)pdǫK

δ(p)
P

V(p)



becauseλν(KI ) = 1, on our present assumption and (3.4.2). This error-
term is, by (3.1.3),

(3.4.5) 0

(
V(p(d)) log p(d)

logz2

log2 z1

)
.

On the other hand, ifν + ω(d) ≡ 1 (mod 2), then the sum overp in 98

question is represented as

(3.4.6)
∑

I<K
(I)3(K)<y

∑

pǫ I

+
∑

I<K
(I)3(K)≥y

∑

pǫ I

+
∑

p<p(d)
pdǫK
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where (K) = (I1)(I2) . . . (Ir ) if K = I1I2 . . . Ir . The first double sum can
be put in the form (3.4.4) without the error-term, and the last sum overp
has obviously the upper bound (3.4.5). It remains to estimate the middle
sum; it is equal to

(3.4.7)
∑

I<K
(I)3(K)≥y

∑

pǫ I
p3<y/d
p<p(d)

δ(p)
p

V(p)φ0


log y

dp

log p

 .

Here we have, by the mean value theorem,

φ0


log y

dp

log p

 = φ0


log y

dp

log p

 − φ0(2)

≪ log

(
y

dp3

)
/ log p,

which is
≪ ω(d) logz2/ logz1,

for pǫI , dǫK, (I )3(K) ≥ y imply

p3dzω(d)+3
2 ≥ (I )3(K) ≥ y.

Thus (3.4.7) is less than a constant multiple of99

ω(d)
logz2

logz1

∑

z1≤p<p(d)

δ(p)
p

V(p)

≪ ω(d)
logz2

log2 z1
V(p(d)) log p(d).

Collecting these observations, we obtain (3.4.3).
In much the same way, we get

V(z)φν

(
logy
logz

)
= V(z1)φν

(
logy
logz1

)

−
∑

I

λν(I )
∑

pǫ I

δ(p)
p
φν+1


log y

p

log p

 V(p)
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+O

{
V(z) logz

log2 z1
(L + logz2)

}
.

Then the formula (3.4.3) allows us to iterate the last one, and after
the infinite iteration we get the formula of the lemma, apart from the
error-term which is

O


V(z) logz

log2 z1

∞∑

r=0

L + r logz2

r!


∑

z1≤p<z

δ(p)
p



r

= o

V(z)
log2

z

log3 z1

(
L + logz2 log

(
logz
logz1

)) ,

whence the assertion of the lemma.
We are now at the stage to combine LEMMA 10 with LEMMA 15.
For this sake, we introduce very mild restrictions onδ andL. We 100

assume that, for any 3≤ u < v,

(3.4.8)
∑

u≤p<v

δ(p2)
p2
= 0((log logu)−1),

and that

(3.4.9) L = 0

(
logz

log logz

)
.

Further, we set in (3.4.1)

(3.4.10) z1 = zτ
2
, z2 = zτ

9
, τ = (log logz)−

1
10 ;

thus, in particular,

(3.4.11) J ≤ (log logz)9/10.

Also, we assume, in the sequel, that

(3.4.12) y ≥ z2.
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Now by the fundamental lemma (THEOREM 7) we have, for a cer-
tain sequence{ξ(ν)

f } which is independent ofd,

(3.4.13)

(−1)ν
{

S(Ad, z1) − δ(d)
d

XV(z1)
(
1+O

(
exp

(
−H

2
logH

)))}

≥ (−1)ν
∑

f<zH
1

f |P(z1)

ξ
(ν)
f Rd f

whered|P(z1, z), andH is at our disposal. We set

H = τ−1 = (log logz)1/10.

On the other hand, modifying the inequality of LEMMA 10 (with101

β = 2), we have

(−1)ν
S(A, z) − XV(z1)

∑

K

Θν(K)(−1)ω(K)
∑

dǫK

δ(d)
d



≥
∑

K

Θν(K)(−1)ν+ω(K)
∑

dǫK

(
S

(
Ad, z1) − δ(d)

d
XV(z1

))

−
∑

I<K
ω(K)≡ν+1 (mod 2)

Θν(KI )
∑

dǫK
p,pǫ I

(
S(Adpp′ , z1) − δ(dpp′)

dpp′
XV(z1)

)

−
∑

I<K
ω(K)≡ν+1 (mod 2)

Θν(KI )
∑

dǫK
p,pǫ I

δ(dpp′)
dpp′

XV(z1).

Insertion of (3.4.13) into this yields

(−1)ν
S(A, z) − XV(zi)

∑

K

Θν(K)(−1)ω(K)
∑

dǫK

δ(d)
d



≥
∑

K

Θν(K)(−1)ν+ω(K)
∑

dǫK
f<zH

1
f |P(z1)

ξ f ν+ω(K))Rd f(3.4.14)
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−
∑

I<K
ω(K)≡ν+1 (mod 2)

Θν(KI )
∑

dǫK
P,P′ǫ I
f<zH

1
f |P(z1)

ξ
(1)
f Rdpp′ f

− o
(
exp

(
−H

2
logH

))
XV(z1)

∑

K

Θν(K)
∑

dǫK

δ(d)
d

− o(XV(z1))
∑

I<K

Θν(KI )
∑

dǫK
p,p′ǫ I

δ(dpp′)
dpp′

.

102

By (3.1.3), (3.4.8) and (3.4.10), the last 0− terms are easily esti-
mated to be

(3.4.15) 0(XV(z)τ6).

Also, by virtue of LEMMA 15 the sum overK, d on the left side of
(3.4.14) is equal to

XV(z)

{
φν

(
logy
logz

)
+ 0(τ2)

}

+0


XV(z1)

∑

d|P(z)

ρν(d)δ(d)
d

| − φν+ω(d)


log y

d

logz1

 |


,(3.4.16)

becauseΘν(K) = 1, dǫK imply readily ρν(d) = 1, whereρν(d) =
ρν(d; y, 2) is defined at (2.1.12). We have to estimate this error-term
on our present suppositions. As before, it is sufficient to consider sum

V(z1)
∑

d|P(z)

ρν(d)
d

δ(d) exp

−
log y

d

logz1

 ,

which is divided into two parts as

(3.4.17) V(z1)
∑

ω(d)<2B′
+V(z1)

∑

ω(d)≥2B′
,

whereB′ is to satisfy

3B′ = τ−1 = (log logz)
1
10 .
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103

We have, by LEMMA 9,

V(z1)
∑

ω(d)<2B′
≤ V(z1)

∑

d|p(z)

ρν(d)δ(d)
d

exp

(
−3−B′ logy

2 logz1

)

= 0

(
V(z)τ−4 exp

(
−1
τ

))
.(3.4.18)

On the other hand, LEMMA 14 gives, as before,

V(z1)
∑

ω(d)≥2B′
≪ V(z)

η
(
1+ 0

(
L

logz

log2 z1

))2


B′

= V(z)
{
η(1+ 0(τ6))

}B′

≤ V(z)(log logz)−
1
50 ,(3.4.19)

in which we have used (3.4.9).
Collecting (3.4.14) - (3.4.19), we obtain

(−1)ν
{

S(A, z) − XV(z)

(
φν

(
logy
logz

)
+ 0((log logz))−

1
50

)}

≥
∑

K

Θν(K)(−1)ν+ω(K)
∑

dǫK
f<zτ

f |P(z1)

ξν+ω(K)) f Rd f

−
∑

I<K
ω(K)≡ν+1 (mod 2)

Θν(KI )
∑

dǫK;p,p′ǫ I
f<zτ, f |p(z1)

ξ
(1)
f Rdpp′ f .(3.4.20)

In order to transform further these double sums, we make herea104

crucial observation.

Lemma 16. Let y= MN ≥ z2 with arbitrary M,N ≥ 1. ThenΘν(K) = 1
implies that there exists a decomposition K= K1K2 such that(K1) <
m, (K2) < N. Also, ifΘν(KI ) = 1, I < K andω(K) ≡ ν + 1 (mod 2),
then we have a decomposition K= K1K2 as above, and moreover, at
least one of the following three cases occurs:
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{(K1)(I ) < M, (K2)(I ) < N} ,
{
(K1)(I )2 < M, (K2) < N

}
,

{
(K1) < M, (K2)(I )

2 < N
}
.

To show this, letK = I1I2 . . . Ir , I1 > I2 . . . Ir . We have (I I ) < z ≤√
y ≤ max(M,N); so (I1) < M or (I1) < N. Let us assume that we have

already the decompositionI1I2 . . . I j = K( j)
1 K( j)

2 such that (K( j)
1 ) < M

and (K(i)
2 ) < N. SinceΘν(K) = 1 gives obviously (I j+1)2(I j) . . . (I1) < y

for any j ≤ r − 1, we have either (K( j)
1 )(I j+1) < M or (K( j)

1 )(I j+1) < N;

for, otherwise, we would have (I j+1)2(K( j)
1 )(K( j)

2 ) ≥ MN = y, a contra-
diction. Thus we get, inductively, the first assertion of thelemma. As for
the second assertion, we note that the stated condition onK, I implies
(K)(I )3 < y, which readily yields the claim.

We now return to (3.4.20), and we assume that

y = MN ≥ z2; M,N ≥ 1.

We have, by the lemma just proved, 105
∑

K

Θν(K)|
∑

dǫK
f<zτ

f |P(z1)

ξ
(ν+ω(K))
f Rd f | =

∑

K

Θν(K)|
∑

d1ǫK1
d2ǫK2
f<zτ

f |P(z1)

ξ
(ν+ω(K))
f Rd f1d2|,

whereK = K1K2, (K1) < M, (K2) < N. But the last absolute value is
obviously not larger than the expression

(3.4.21) sup
α,β

|
∑

m<Mzτ
n<N

αmβnRmn|

whereα = {αm}, β = {βn} are variable vectors such that|αm| ≤ 1, |βn ≤
1|. On the other hand, by the second assertion of LEMMA 16, the sec-
ond sum on the right hand side of (3.4.20) can be written as

∑

I<K
ω(K)≡ν+1 (mod 2)

Θν(KI )
∑

d1ǫK1
d2ǫK2
p,p′ǫ I
f<zτ

f |P(z1)

ξ
(1)
f Rd1d2pp′ f ′
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whereK = K1K2 and one of the three cases listed in the lemma occurs.
Let us assume, for example, that we have (K1)(I )2 < M, (K2) < N. Then 106

we have f d1pp′ < Mzτ andd2 < N; thus, again the inner sum is, in
absolute value, not larger than the expression (3.4.21). Other cases can
be treated in just the same way. Finally, we observe that the number of
admissibleK, I in the formula (3.4.20) does not exceed 2J+2 which is
less than logz, because of (3.4.11).

Therefore we have now established

Theorem 10 (IWANIEC’S LINEAR SIEVE). We assume(3.1.1),
(3.1.2)and(3.4.8)with L = 0

(
logz

log logz

)
. Then we have, for any MN≥ z2,

(−1)ν−1
{

S(A, z) −
(
φν

(
log MN

logz

)
+O

(
(log logz)−

1
50

))
XV(z)

}

< logz sup
α,β

|
∑

m<M
n<N

αmβnRmn|,

whereφν is defined by(3.2.10), andα = {αm}, β = {βn} are variable
vectors such that|αm| ≤ 1, |βn| ≤ 1.

Remark 3.4.1. In the above, we have actually proved this inequality
with Mzτ in place ofM on the right side, but this blemish can easily be
removed in much the same way as in the remark to THEOREM 9.

NOTES (III)

THEOREM 9 was first proved by Rosser, but his work has never
been published. Being anticipated some ten years by Rosser’s work,107

but independently, Jurkat and Richert [36] proved essentially the same
result as THEOREM 9 completely; in their remarkable proof Selberg’s
sieve was used as an aid to start the truncation-iteration procedure of
Buchstab’s identity which is quite similar to that of Rosser. Rosser’s
argument is briefly sretched in Selberg’s expository paper [75], and also
Iwaniec [28] worked out the full detail of this fundamental sieve idea.

Our proof of THEOREM 9 follows the argument of Motohashi [[60],
I] who combined some of important ideas of Jurkat and Richertwith
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those of Rosser. This fact is embodied in LEMMA 13 and LEMMA 14;
especially, LEMMA 13 shows well how natural Rosser’s idea is. The
analysis of the difference-differential equation (3.1.25) which is devel-
oped is § 3.2 is conducted partly by employing the ideas of de Brui jn
[9]; the use of Laplace transform is also indicated by Selberg [75]. Also
we note that (3.1.3), (3.1.4) and LEMMA 11, LEMMA 12 are quoted
from Halberstam and Richert [[12], see p.53, p.144, p.214 and p.227,
respectively].

Our argument may be generalized, at least in principle, so asto in-
clude the K-dimensional sieve problems withK , 1, but then we should
have t overcome anew the difficulty pertaining to the convergence prob-
lem arising from the infinite iteration procedure; in our case, this was 108

solved in LEMMA 14. For the general case, see Iwaniec’s work [30] to
which we owe much.

The observation that Rosser’s linear sieve is optimal is dueto Sel-
berg [75] (cf. also [73]), and our example is quoted from there; a related
subject was studied by Bombieri [7] (cf. also Friedlamder and Iwanied
[14]) in a more general setting.

THEOREM 10 is due to Iwaniec [31]. This far-reaching improve-
ment of Rosser’s linear sieve was a major event in the theory of sieve
methods; it allows us to combine very effectively the linear sieve with
various powerful analytical means, e.g. hybrid mean vale theorems for
Dirichlet polynomials. Some of the deep consequences of such applica-
tions to fundamental problems in analytic number theory aresurveyed in
Iwaniec’s own expository paper [33]; later in PART II we shall give an
important application to the theory of the distribution of prime numbers.

One should note how nicely Iwaniec exploited the particularform
of Rosser’s weightsρν. Prior to Iwaniec’s discovery Motohashi [52] did
the same for Selberg’sΛ2-sieve.

The argument of 3.4 is due to Motohashi [[60], II] which is a strai-
ghtforward refinement of the one developed in the preceding section;
LEMMA 16 is a refined version of Iwaniec’s decisive observation.

ADDENDUM (2). After studying the first draft of the present chap-109

ter. Professor Halberstam kindly showed us the following penetrating

2By the courtesy of Professor Halberstam
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observation.
From (3.1.10) and LEMMA 13 (withρ = 2 andφν defined by

(3.2.10)) we get, for 2≤ z1 < z≤ √y,

(i) (−1)νV(z)

{
Kν(y, z; δ) −

(
φ ν

(
logy
logz

)
+O

(
L

log2 z

log3 z1

))}

= V(z1)
∑

d|P(z1.z)

(−1)νµ(d)ρν(d)
δ(d)

d

1− φν+ω(d)


log y

d

logz1


 .

But all summands on the right side are non-negative, and hence

(ii) (−1)νKν(y, z; δ) ≥ (−1)ν
(
φν

(
logy
logz

)
+O

(
L

log2 z

log3 z1

))
,

which is essentially equivalent to the assertion of THEOREM9.
Namely, we can demonstrate Rosser’s linear sieve without proving

painstakingly the convergence lemma (LEMMA 14); just the same can
be said about the corresponding part of our proof of Iwaniec’s linear
sieve. This is a remarkable observation, for, it may be applied equally
well to the higher dimensional sieve situation and provide Rosser’s sieve
(in the sense of [30]) with a more accessible proof.

Our LEMMA 14 is thus to be regarded as a means to ensure that
what was disregarded in deducing (ii) from (i) is, in fact, negligible.
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Chapter 4

Zero-Free Regions for ζ(s)
and L(s, χ)

WE NOW TURN to the applications of the results obtained in thepre- 110

ceding chapters to some basic problems in the theory of the distribution
of prime numbers. As the first of such applicatons we shall show in this
chapter that, to some extent, the sieve method can take the place which
has long been occupied solely by the complex variable methodin the
investigations of the fundamental properties ofζ(s) andL(s, χ). More
precisely, we shall demonstrate that, by employing, instead, the Selberg
sieve for multiplicative functions, the classical function-theoretical con-
vexity argument can be dispensed with in deducing Vinogradov’s zero-
free region and Page-Landau-Siegel-Linnik’s theorem fromthe relevant
elementary estimates of the zeta-and L-funtions.

We shall also dwell on the Brun-Titchamarsh theorem; this isin-
cluded here, because of its relation with the exceptional zeros of L-
functions.

4.1 Vinogradov’s Zero-Free Region for ζ(s)

In order to extract the informations on the distribution of prime numbers
from the Euler product forζ(s) which connects prime numbers with
a fairly smooth analytical expression, we need to extend thezero-free 111

93
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region ofζ(s) as far as possible to the left of the lineσ = 1. Probably
the simplest way to get an effective zero-free region of this sort is the
one due to Landau; he deduced, fort > 2,

(4.1.1)
ζ′

ζ
(s) = O((log t)7) for σ > 1− c(log t)−9

from de la Vallee Poussin’s inequality

(4.1.2) ζ3(σ)|ζ(σ + it)4ζ(σ + 2it)| > 1(σ > 1).

For the sake of a later purpose, we stress that (4.1.1) is an elementary
result in the sense that in deriving it we do not need to appealto the
complex variable method.

Although (4.1.2) already yields a relatively good estimateof the
error-term in the prime number theorem, to get finer results we have
to seek for a wider zero-free region. And a general theorem ofLandau
which is a consequence of Hadamard-Borel-Caratheodory’s convexity
theorem, thus much involve in the complex variable method, converts
our problem to the one of estimatingζ(s) in the vicinity ofσ = 1. Fur-
ther, the elementary formula

(4.1.3) ζ(s) =
∑

n<N

n−s +
N1−s

s− 1
+O(N−σ)

which holds uniformly forσ > 0, |t| < N reduces it to that of the sum112
∑

n<N

nit .

And for our purpose, it is desirable to have an estimate whichis
particularly effective for thoseN much smaller than|t|. In this context,
the followingpurely elementaryresult of Vinogradov is the hitherto best
one:

Lemma 17. For N < ct, t > 2, we have

∑

n<N

nit << N exp

(
−c

log3 N

log2 t

)
.
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This yields, via the general theorem of Landau mentioned above,

ζ′

ζ
(s) = 0

(
(log t)2/3(log logt)1/3

)

for σ > 1− c

(log t)2/3(log logt)1/3
(t ≥ 3),

(4.1.4)

which is the deepest zero-free region forζ(s) known at present, and has
had profound influence on diverse problems involving prime numbers.

Since its discovery, it has long been maintained that Vinogradov’s
zero-free region (4.1.4) represents one of the most important analytical
properties ofζ(s), partly because only Hadamard’s global theory of in-
tegral functions and the convexity principle of the Borél-Carathéodory
type have been able to derive it from the result stated in LEMMA 17. 113

We can, however, break away from this prevalent notion in thetheory of
the zeta-function, for, as we shall show below, there existsan elemen-
tary argument with which we can deduce a result of the same depth as
(4.1.4) from LEMMA 17.

Our proof of the last assertion depends largely on a special instance
of the Selberg sieve for multiplicative functions as well asan auxiliary
result ((4.1.6) below) from the theory of elementary proofsof the prime
number theorem with remainder term.

We begin our discussion by making the second point explicit.We
shall require a special case of THEOREM 4, and as we have remarked
in § 1.3 the necessary upper bound forRd(x) (cf. (1.3.8)) can also be
obtained in an elementary manner. Here we prove this fact forthe case
k = 1 only, since this is sufficient for our present purpose.

We see from (1.3.8) (withk = 1) that, retaining the notations of
§ 1.3, it suffices to deal with the sums

(4.1.5)
∑

u<x
(u,d)=1

µ(u)u−η,
∑

u<x
(u,d)=1

µ(u)u−η logu,

wherex < zcan be assumed to be sufficiently large. A routine argument
transforms the first sum into the expression:



96 4. Zero-Free Regions forζ(s) andL(s, χ)

∑

u f<x
f |d∞

f<
√

x

µ(u)(u f)−η + 0



∑

u f<x
f |d∞

f≥
√

x

(u f)−η



=
∑

f |d∞
f<
√

x

f −η


ζ(η)−1 −

∑

u>x/ f

µ(u)u−η


+ 0

x−
1
10

∏

p|d

(
1+

1
√

p

) .

114

Then we appeal to the elementary estimate

(4.1.6)
∑

n<y

µ(n)n−1 << (logy)−1(y ≥ 2).

This implies

∑

u>x/ f

µ(u)u−η <<

(
x
f

)1−η
(log x)−1,

whence the first sum in (4.1.5) is

<< (log x)−1
∏

p|d

(
1+

1
√

p

)
.

In much the same way, we can show that the second sum in (4.1.5)
is

<<
∏

p|d

(
1+

1
√

p

)
.

Inserting these into (1.3.8),k = 1, we immediately obtain an ele-
mentary account of THEOREM 4 for the casek = 1.

Now, to make explicit the first point, i.e. the sieve aspect ofour
argument we have to make a rather lengthy preparation; the complexity
is caused mainly by our elementary treatment of various estimates.

First, we introduce two parametersδ andB such that115

(4.1.7) (logt)−10 ≤ δ ≤ (log t)−2/3, (log logg)1/3 ≥ B > 0
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and we shall assume always in the sequel thatB and t are sufficiently
large. We shall use the notations

Y(t) = (log t)2/3(log logt)1/3,

Q(t) = exp(Y(t))(log logt)2/3,

E(t) = (log t)c|ζ(1− δ + it)| + (log t)−cB3
;

the last one allows us to use the convention:

0{(log t)cE(t)} = 0{E(t)}.

Further, we introduce the multiplicative function

f (n) = |σ(n,−δ − it)|2,

whereσ(n, a) is the sum of the a-th powers of divisors of n; here, we
should note that as a special case of an identity due to Ramanujan we
have, forσ > 1,

(4.1.8)
∞∑

n=1

f (n)n−s = ζ(s)ζ(s+ 2δ)ζ(s+ δ − it)ζ(2(s+ δ))−1.

Afterwards, we shall apply the Selberg sieve tof , and for this sake,
we prove first the following lemma; the argument employed in the proof
is the one common in the problems pertaining to sums of divisor func-
tios, and so we may be brief.

Lemma 18. Let 116

H(x) =
∑

n<x

f (n)n−1+2δ

and
F = ζ(1+ 2δ)|ζ(1+ δ + it)|2ζ(2(1+ δ))−1.

Then we have

H(x) = (2δ)−1
F ×2δ (1+O(E(t)))

provided
Q(t) ≥ × ≥ exp(BY(t)).
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To show this, we note that (4.1.8) implies

f (n) =
∑

d2d1k2d3d4=n

µ(d)d−2δd−2δ
2 d−δ+it

3 d−δ−it
4

so

(4.1.9) H(x) =
∑

d<x
1
4

µ(d)d−2(1−δ)H1(xd−2) +O(x−1/5),

where
H1(y) =

∑

d1d2d3d4<y

d−1
1 d−1+2δ

2 d−1+δ+it
3 d−1+δ−it

4 .

We decomposeH1(y) into three parts as follows:

H1(y) =
∑

uv≤√y

u−1v−1+2δK
(
1− δit, 1− δ − it;

y
uv

)

+
∑

uv≤√y

u−1+δ+itv−1+δ−it K
(
1− 2δ, 1;

y
uv

)

− K(1− δ + it, 1− δ − it;
√

y)K(1− 2δ, 1;
√

y),(4.1.10)

where117

K(s,w; y) =
∑

mn≤y

m−sn−w.

Similarly, we have

K(s,w; y) =
∑

m≤√y

m−sU
(
w,

y
m

)
+

∑

n≤√y

n−wU
(
s,

y
n

)

−U(w,
√

y)U(s,
√

y).(4.1.11)

where
U(s, y) =

∑

n≤y

n−s.

Hence the problem is reduced to an asymptotic evaluation ofU(s, y)
at the pointss= 1, 1−2δ, 1−δ± it. The first two cases give no difficulty;
we have

U(1, y) = logy+ γ +O

(
1
y

)
,
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U(1− 2δ, y) =
1
2δ

y2δ + ζ(1− 2δ) +O(y−1+2δ),(4.1.12)

whereγ is the Euler constant. As for the pointss= 1− δ± it we require
LEMMA 17. We setN = t in (4.1.3), getting

U(σ + it, y) = ζ(σ + it) −
∑

y<n≤t

n−σ−it +O(t−σ),

but the lemma implies

∑

y<n≤t

n−σ−it << max
y≤×≤t

×1−σ exp

(
−c

(log x)3

(log t)2

)
;

thus we get 118

(4.1.13) U(σ + it , y) = ζ(σ + it ) + o((log t)−cB3
),

provided
σ ≥ 1− δ,Q(t) ≥ y ≥ exp(BY(t)).

In particular, we have, forσ ≥ 1− δ,

(4.1.14) ζ(σ + it) = o(logc t).

Inserting (4.1.12) into (4.1.11) (but withs= 1− 2δ,w = 1) we get

K(1− 2δ, 1;y) =
1
2

logy U(1− 2δ,
√

y) +

(
1
2

logy+ γ

)
ζ(1− 2δ)

+
y2δ

2δ
U(1+ 2δ,

√
y) + U′(1− 2δ,

√
y) + 0(y−

1
2 logc t),

whereU′(s, y) = d
dsU(s, y). But we have, fory ≤ Q(t),

U′(1− 2δ,
√

y) = ζ′(1− 2δ) − yδ

4δ
logy+

yδ

4δ2
+ o(y−

1
2 logc t).

Hence we have, fory ≤ Q(t),

K(1− 2δ, 1;y)
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=
1
2δ

y2δζ(1+ 2δ) + (γ + logy)ζ(1− 2δ) + ζ′(1− 2δ) + o(y−
1
2 (log t)c).

On the other hand, noting (4.1.14), we see that (4.1.13) gives

K(σ + it; σ − it; y) = |ζ(σ + it|2 + o((log t)−cB3
)

on the same condition as that for (4.1.13). Inserting these into (4.1.10),119

we obtain

H1(y) = (2δ)−1ζ(1+ 2δ)|ζ(1+ δ + it |2y2δ

− ζ(1− 2δ)
∑

mn≤√y

m−1+δ+itn−1+δ−it logmn+ 0(E(t))

for Q(t) ≥ y ≥ exp(BY(t)). But this sum overm, n admits the similar
decomposition as (4.1.11), and again by virtue of LEMMA 17 wecan
readily estimate it to be 0(E(t)) Hence we have

H1(y) = (2δ)−1ζ(1+ 2δ)|ζ(1+ δ + it)|2y2δ + 0(E(t))

for Q(t) ≥ y ≥ exp(BY(t)) Then by (4.1.19), we obtain the assertion of
the lemma.

Also we shall need

Lemma 19. Let
ID(x) =

∑

n<x
(n,D)=1

f (n),

and

Fp =

∞∑

m=0

f (pm)p−m.

Then we have

ID(x) = F ×
∏

p|D
F−1

p (1+ 0(E(t)))

provided
log× >> log D,Q(t) ≥ × ≥ exp(BY(t)).
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This corresponds to the conditionC3) of § 1.4. The proof is quite120

similar to that of the preceding lemma, so we omit it. We should re-
mark, however, that at a point in the proof, we require the following
observation:

Fp =

(
1− 1

p

)−1 (
1− 1

p1+2δ

)−1

| − 1

p1+δ+it
|−2

(
1− 1

p2(1+δ)

)

>

(
1− 1

p2(1+δ)

)−1

,

whence
Fp − 1 > p−2(1+δ).

This corresponds precisely to (C2) of § 1.4.
Now we consider the Selberg sieve for the multiplicative function f :

∑

n≤N

f (n)



∑

d|n
d<R

Θd



2

(Θ1 = 1).

By LEMMA 19 and the general theory developed in § 1.4, we see
that the optimal choice ofΘd is given by

(4.1.15) Θd = µ(d)
Gd(R/d)
G1(R)

∏

p/d

Fp,

where
Gd(y) =

∑

r≤y
(r,d)=1

µ2(r)
∏

p|r
(Fp − 1).

And this yields 121

(4.1.16)
∑

n≤N

f (n)


∑

d|n
Θd



2

= FG1(R)−1N(1+ o(E(t)))

providedQ(t) ≥ N ≥ R40 ≥ exp(BY(t)).
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On the other hand, the sieve-effect of (4.1.15) is embodied in the
assertion that

(4.1.17) G1(R) ≤ (2δ)−1
F (1+ o(E(t)))

providedQ(t) ≥ R ≥ exp(BY(t)); this follows immediately from LEM-
MA 18, if we note that

G1(R) ≥ R−2δ
∑

n<R

f (n)n−1+2δ .

Having these preparations at our hands, we can now proceed toour
elementary proof of Vinogradov’s zero-free region.

So, let us assume thatζ(s) takes a small value ats = 1 − δ+ it, or,
more precisely, the ineqality

(4.1.18) |ζ(1− δ + it | ≥ (log t)−A

holds for aδ satisfying (4.1.7); the value ofA is to be fixed later but, for
a while, let us take it for a large parameter.

Using Λ(1)
d and Θd which are defined in THEOREM 4 and at

(4.1.15), respectively, we put

ωd =
∑

[d1,d2]=d

Θd1Λ
(1)
d2
,

so that, for alln,

(4.1.19)
∑

d|n
ωd =


∑

d|n
Θd




∑

d|n
Λ

(1)
d

 ;

in particular, we have122

(4.1.20)
∑

d|n
ωd =


1 if n = 1

0 if n ≤ z.

Further, we set

ϑ = 1, z= exp(40AY(t)),R= exp(AY(t)), x = exp(100AY(t))
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whereϑ, z occur in the definition ofΛ(1)
d .

Then we consider the sum

Z =
∑

n<x

σ(n,−δ − it)


∑

d|n
ωd

 n−1+δ−it

=
∑

d<z2R

ωdd−1+δ−it
∑

n<×/d
σ(dn,−δ − it)n−1+δ−it .

This inner-sum can be readily estimated to be

0A

{
(log t)c|ζ(1− δ + it )| + (log t)−cA3}

by appealing to LEMMA 17. Thus, ifA is sufficiently large, the assump-
tion (4.1.18) impliesZ = o(1), whence recalling (4.1.20), we have

1
2
<

∑

z≤n<×
f (n)

1
2 |

∑

d|n
ωd|n−1+δ.

Hence, by (4.1.19) and Schwarz’s inequality, we get 123

1 <<A ×2δ
∑

z≤n<×
f (n)


∑

d|n
Θd



2

n−1
∞∑

n=1


∑

d|n
Λ

(1)
d



2

n−ξ ,

whereξ = 1 + Y(t)−1. But, by virtue of THEOREM 4,k = 1, with
its elementary account given above, the last infinite sum is 0A(1). Then
(4.1.16) gives

1 <<A F ×2δ Y(t)G1(R)−1{1+ (log t)c|ζ(1− δ + it )|}.

Hence noting (4.1.17), we infer that for an appropriately chosenA
the assumption (4.1.18) implies

1 << δ ×2δ Y(t),

which is apparently equivalent to

Y(t)−1 << δ.

This and (4.1.1) give rise to the assertion:
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Theorem 11. The estimate

ζ′

ζ
(σ + it) = o((log t)c)for σ > 1− c

(log t)2/3(log logt)1/3
(t > 3)

is obtainable without using the theory of functions.

4.2 The Deuring-Heilbronn Phenomenon

Now let us apply similar considerations to Dirichlet’sL-functions.
The important point in the study of the distribution of zerosof L(s, χ)124

is that it is required to have results which hold uniformly for varyingχ.
This raises difficult problems, and the incompleteness of our knowledge
on L(s, χ) is reflected in the fact that the following statement, the theo-
rem of Page, Landau and Siegel, is the best zero-free region for L(s, χ)
known at present.

Let us denote byZ(T) the set of all zeros of allL(s, χ) for primitive

χ (mod q), q ≤ T, which are in the region|t| ≤ T, 0 < σ < 1. Then,
except for at most one elementβ1 of Z(T), we have, for allρǫZ(T),

(4.2.1) Reρ < 1− c0

logT

wherec0 > 0 is effectively computable. This exceptional zeroβ1 =

β1(T) which may also be calledT-exceptional, if exists, is real and sim-
ple, and comes fromL(s, χ1) for a unique real primitive characterχ1.
Further, for any fixedǫ > 0, there exists ac(ǫ) > 0 such that

(4.2.2) β < 1− c(ǫ)T−ǫ .

(4.2.1) is due to Page and Landau, and (4.2.2) to Siegel. The non-
existence of such exceptional zeros has never been proved, and indeed
this seems to be one of the most difficult problems in analytic number
theory. It can be shown, however, that ifβ1 ever exists, then a strange125

phenomenon occurs among other elements ofZ(T). This was discovered
by Deuring and Heilbronn in their effort to determine the asymptotic be-
haviour of class numbers of imaginary quadratic fields. Afterwards, Lin-
nik succeeded in obtaining a quantitative version of their finding, which
he called the Deuring-Heilbronn phenomenon, and runs as follows.
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There exists an effectively computable constantc1 > 0 such that for
all ρǫZ(T), ρ , β1, we have

(4.2.3) Reρ < 1− c1

logT
log

(
c0e

(1− β1) logT

)
.

It seems worth remarking that this implies (4.2.2). We note that, by
an obvious reason, we may assume that there is a zeroβǫ + iγǫ of an
L(s, χǫ), χǫ( mod qǫ ), such thatβǫ > 1− ǫ. Then let us takeT so large
thatqǫ < T, |γǫ | < T, βǫ < 1− c0(logT)−1. This means that we may put
1− ǫ on the left side of (4.2.3), and we get (4.2.2).

It should be stressed that Linnik’s result has the importantfeature
that a sieve estimate, i.e. the Brun-Titchmarsh theorem, played a crucial
rôle in its proof. In this context, perhaps it may not be surprising that we
can show the following statement by means of Selberg’s sievemethod.

Theorem 12. Page - Landau-Siegel’s theorem and the Deuring-Heil-
bronn phenomenon can be proved without appealing to the theory of 126

functions.

The proof is quite similar to that of THEOREM 11, save for the
point that we have to be careful in obtaining an elementary lower bound
of L(s, χ) for realχ in the vicinity of s= 1. Thus, to avoid unnecessary
repetition, we shall show only the main steps of our argument.

We observe first that modifying the reasoning employed in theproof
of (4.1.1) and using the well-known elementary result

(4.2.4) L(1, χ) > cq−
1
2 (logq)−1

for real χ (mod q) it can be shown easily that, for allρǫZ(T), Reρ <
1− T−2, providedT is sufficiently large as we assume hereafter.

Now let 1− δ + iτǫZ(T) be a zero ofL(s, ψ); we may assume of
course thatT−2 ≤ δ ≤ 1/4, say. We put

h(n) = |
∑

d|n
ψ(d)d−δ−iτ |2.

Then we have
∞∑

n=1

h(n)n−s
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= ζ(s)L(s+ 2δ, ψ0)L(s+ δ + iτ, ψ)L(s+ δ − iτ, ψ̄)L(2(s+ δ), ψ0)−1,

whereσ > 1 andψ0 = ψψ̄. And we consider the Selberg sieve for the127

multiplicative functionh:

∑

n<N

h(n)



∑

d|n
d<R

Θ′d



2

(Θ′1 = 1).

The optimal value ofΘ′d can be found by the argument of § 1.4, and
we can infer that it yields the estimate

(4.2.5) <<B δN

for the last sum, ifN ≥ R4 ≥ TB with sufficiently largeB. This is proved
in much the same way as in the case ofζ(s); in fact, we need only (4.1.3)
and its analogue forL(s, χ).

Then, as before, we defineω′d by

∑

d|n
ω′d =


∑

d|n
Θ′d




∑

d|n
Λ

(1)
d

 .

And we setϑ = 1, z= T4A,R= TA,× = T100A with a large constant
A. After some elementary estimations we have, for any non-principal χ
(mod q), q ≤ T,

(4.2.6)
∑

z≤n<×
χ(n)


∑

d|n
ψ(d)d−δ−it




∑

ℓ|n
ω′ℓ

n−s

= −1+ K(s, χ)M(s, χ) + o(T−cA),

provided

(4.2.7) Re(s) ≥ 3/4, |Im(s)| ≤ T.

Here128

K(s, χ) = L(s, χ)L(s+ δ + iτ), χψ)



4.3. The Brun-Titchmarsh Theorem 107

and

M(s, χ) =
∑

d<z2R

ω′dχ(d)d−s
∏

p|d

(
1+

ψ(p)
pδ+iτ

− χψ(p)
ps+δ+iτ

)
.

Now let ρ = β + iγ be a zero ofK(s, χ) in the region (4.2.7). Then
settings= ρ in (4.2.6), we get

∑

z≤n<×
h(n)

1
2 |

∑

ℓ|n
ω′ℓ|n

−β ≥ 1
2
.

Thus, by virtue of (4.2.5) and THEOREM 4,k = 1, we obtain

(4.2.8) 1<< δT20A(1−β) logT.

We now observe that either ifψ is complex, ifψ is real, non-principal
andτ , 0, or if ψ is real, non-principal,τ = 0 and 1−δ is a multiple zero
of L(s, ψ), then we haveK(1− δ+ iτ, ψ) = 0. Namely, in these cases, we
may putρ = 1− δ + iτ in (4.2.8), getting

δ >
c

logT
.

But if ψ is trivial we have already proved this, in fact much more,
in the previous section. Thus, in the remaining caseψ is real, non-
principal, and 1− δ is a simple zero ofL(s, ψ). Here we may assume
obviously thatδ ≤ c′(logT)−1 with a certain small constantc′ > 0. Then
(4.2.8) implies that all elements ofZ(T) except for 1−δ are in the region 129

σ < 1− c′′

logT

with an effectively computablec′′ > 0. This proves (4.2.1). Finally, if
1−δ is the T-exceptional zero then (4.2.8) implies the Deuring-Heilbronn
phenomenon (4.2.3). This ends the proof of the theorem.

4.3 The Brun-Titchmarsh Theorem

The undesirable possibility of the existence of exceptional zeros causes
much trouble in most applications of Page-Landau’s theorem; thus many



108 4. Zero-Free Regions forζ(s) andL(s, χ)

attempts to eliminate this defect in the theory ofL-functions have been
made from various directions. Among them is a sieve-theoretical one
which, despite not much prospect of its success, seems to be worth de-
scribing explicitly because of its simplicity as well as thecompleteness
of the hypothetical assertion deduced by it.

This idea rests on the plausibility of the estimate

(4.3.1) π(×; k, ℓ) < (2− η) ×
ϕ(k) log(×/k)

(k < ×ξ)

with some effective constantsη, ξ > 0. From this, we can deduce the
non-existence of exceptional zeros. The proof is quite simple. In fact,
let us assume thatL(s, χ), realχ (mod k), has a real zero 1− δ. Then we
put

b(n) =
∑

d|n
χ(d)d−δ

which is positive and multiplicative. We apply Selberg’s sieve tob(n):130

I (N) =
∑

n<N

b(n)



∑

d|n
d<r

λd



2

(λ1 = 1).

By an argument similar to (in fact, much simler than) that of the
preceding section, we can infer that, forN ≥ R4 ≥ kc, the optimal
chioce ofλd givesI (N) ≪ δN. On the other hand, we have

I (N) >
∑

R≤p<N

b(p)

≥ π(N) − π(R) −
∑

p<N
χ(p)=−1

1.

Thus the hypothetical estimate (4.3.1) implies

I (N) > (1− o(1))
N

log N
− ϕ(k)

2
(2− η) N

ϕ(k) logN/k

>
η

3
N

log N
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provided logN ≫ξ,η logk, whenceδ≫ξ,η (logk)−1 or the non-existence
of the exceptional zeros as claimed.

But we have (1.2.15) which is close to (4.3.1). Because of this fact,
considerable efforts have been spent to improve upon (1.2.15), and they
are closely connected with the development of the sieve method itself. 131

And the purpose of this section is to see how far the modern account of
the linear sieve takes us on this matter.

Precisely speaking, we are going to improve upon (1.2.14) a gener-
alised version of the Brun-Titchmarsh theorem. For this sake, we shall
first show briefly a special instance of the hybridization of Iwaniec’s
linear sieve and the multiplicative large sieve.

Thus, let (k, ℓ) = 1 and put

S(x, z, χ) =
∑

r≡ℓ (mod k)
(r,P(z))=1

r<x

χ(r)ar ,

where{ar} are arbitrary complex number, and as usualP(z) is the prod-
uct of all primes less thenz> 2. And we consider the estimation of the
expression ∑

χǫ�

|S(x, z, χ)|2,

where
� = {X; primitive (modq), q < Q, (q, k) = 1}.

But, by the duality principle (LEMMA 2), it suffices to deal with

D(x, z) =
∑

r≡ℓ (mod k)
(r,P(z))=1

r<x

|
∑

χǫ�

χ(r)bχ |2,

where {bχ} are arbitrary complex numbers. The argument leading to132

LEMMA 10 gives

D(x, z) ≤
∑

K

(−1)ω(K)Θ1(K)
∑

dǫK

Dd(x, z1)

+
∑

I<K
ω(K)≡0 (mod 2)

Θ1(KI )
∑

p,p′ǫ I
dǫK

D′dpp(x, z1),
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where 2< z1 < zand

Dd(x, z1) =
∑

r≡ℓ (mod k)
r≡ℓ (mod d)

(r,p(z1))=1
r<x

|
∑

χ∈�
χ(r)bχ |2;

the mode of the dissection of the interval [z1, z) is the one given at
(3.4.10), and of courseβ = 2 in the defnition ofΘ1. We then follow
closely the reasoning of § 3.4 up to (3.4.20); by using the notation

Rd(x, χ) =



0 if (d, k) > 1
∑

n≡ℓ (mod k)
n≡0 (modd)

n<x

χ(n) − E(X)χ(d)ϕ(q)
dqk x if (d, k) = 1,

whereχ is to modq,we may express the result as

D(x, z) ≤ xe−γ

ϕ(k) logz

(
φ1

(
logy
logz

)
+ o(1)

)∑

χǫ�

|bX|2

+
∑

χ,ψǫ�

bχb̄ψ



∑

K

Θ1(K)(−1)ω(k)
∑

dǫK
f<zτ

ξ
(1+ω(K))
f Rd f(x, χψ̄)

+
∑

I<k
ω(k)≡0 (mod 2)

Θ1(KI )
∑

dǫK
p,p′ǫ I
f<zτ

f |P(z1)

ξ
(1)
f R(x,χψ̄)

dpp′ f



provided logkQz≪ log x log ≪ logz, whereγ is the Euler constant,133

and the conventions are just the same as those in (3.4.20).
Next, to this we apply the smoothing device:

D(x, z) ≤ 1
η

xeη∫

X

D(w, z)
dw
w

for anyη > 0,
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and then appeal to LEMMA 16. We get

D(x, z) ≤
{

xe−γ

ϕ(k) logz

(
φ1

(
log MN

logz

)
+ o(1)

)
+ o((log x)2E)

}∑

χǫ�

|bχ|2,

whereMN ≥ z2, and

E = sup
w≤2x

sup
α,β

sup
ψǫ�

∑

χǫ�

|
∑

m<M
n<N

(mn,k)=1

αmβnR(1)
mn(w, χψ̄)|;

R(1)
d (w, χ) =

∑

r≡ℓ (mod k)
r≡0 (modd)

r<w

χ(r) log
w
r
− E(χ)χ(d)

ϕ(q)
dqk

w, χ (mod q).

134

Hereα = {αm}, β = {βm} are, as before, variable vectors such that
|αm| ≤ 1, |βn| ≤ 1.

Hence, by LEMMA 2, we obtain
(4.3.2)∑

χǫ�

|S(x, z, χ)|2 ≤
{

xe−γ

ϕ(k) logz
φ1

(
log MN

logz

)
+ o((log x)2E)

} ∑

r≡ℓ (mod k)
(r,p(z))=1

r<x

|ar |2

provided logkQz≪ log x≪ logz, andMN ≥ z2.
Now we proceed to the setimation ofE. For this sake, we quote the

following basic aids.

Lemma 20. For anyψǫ� and T≥ 1, we have

(i)
∑
χǫ�

∑
ξ (mod k)

T∫

−T

|L1
2
+ it, χψ̄ξ|4dt≪ (kQ2T)1+ǫ ,

and also, for any H≥ 1 and t,

(ii)
∑
χǫ�

∑
ξ (mod k)

| ∑
h<H

χψ̄ξ(h)h
−

1
2
−it
|4 ≪ ((|t| + 1)kQ2)i+ǫ ,
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Lemma 21. Let an be arbitrary complex numbers, and let G=
∑

n<N
|an|2.

Then we have, for any V> 0,

∣∣∣∣∣∣

(χ, ξ);χǫ�, ξ (mod k) such that |
∑

n<N

anχξ(n)| > V



∣∣∣∣∣∣

≪ GNV−2 +G3NV−6(kQ2)1−ǫ .

Lemma 22. Letχ be non-principal (mod q). Then we have135
∑

n<L

χ(n)nit ≪ (|t| + 1)LI−ǫ ,

provided L> q3/8+η with η = η(ǫ) > 0.

To estimateE, it is sufficient to treat

Eψ(A, B) =
∑

χǫ�

|
∑

A<m≤2A
B<n≤2B
(mn,k)=1

αmβnR(1)
mn(w, χψ̄)|,

whereψǫ�; A, Bare independent variables, and logABkQ≪ log x,w≪
x, as we shall assume below. To this we shall apply two methods.

Thefirst methodrests on the expression

(4.3.3)
∑

A<m≤2A
B<n≤2B
(mn,k)=1

αmβnR(1)
mn(w, χψ̄) =

1
2πiϕ(k)

∑

ξ (mod k)

ξ̄(ℓ)

1/2+i∞∫

1/2−i∞

L(s, χψ̄ξ)A(s, ψ̄ξ)B(s, ψ̄ξ)
ws

s2
ds,

where

A(s, χ) =
∑

A<m≤2A

χ(m)αm
m−s
, B(s, χ) =

∑

B<n≤2B

χ(n)βnn−s.

Thus using Hölder’s inequality, we get

Eψ(A, B)≪ x1/2+ǫ

k

{∫ ∑
|L(s, χψ̄ξ)|4 |ds|

|s|2

}1/4
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×
{∫ ∑

|M(s, χψ̄ξ)|4 |ds|
|s|2

}1/4 {∫ ∑
|N(s, χψ̄ξ)|2 |ds|

|s|2

}1/2

,

where integerals are along the lineσ =
1
2

, and sums are overχǫ�, 136

ξ (mod k). Then the multiplicative large sieve inequality and (i) of
LEMMA 20 give

Eψ(A, B)≪ x1/2+ǫ
(

Q
√

k

)1/2 (
A2 + kQ2

)1/4
(B+ kQ2)1/2.

Hence, if we set

M = (
x

Q
√

k
)

1
3−η,N = M2 ≥ kQ2

with a small fixedη > 0, we have

E ≪ x1−ǫ/k.

Inserting this into (3.4.2), we obtain

(4.3.4)
∑

χǫ�

|S
(
x,D

1
3 , χ

)
|2 ≤ (2+ o(1))x

ϕ(k) log D

∑

r≡ℓ (mod k)
(r,p(D1/3))=1

r<x

|ar |2

for

D =

(
x

Q
√

k

)1−ǫ
, kQ2 ≤ x

1
2−ǫ .

The second methodis more involved, and rests on the observation
that, apart from a negligible error, the left side of (4.3.3)is equal to 137

1
2πiϕ(k)

∑

ξ (mod k)

ξ̄(ℓ)

1/2+ixc∫

1/2−ixc

H(s, χψ̄ξ)A(s, χψ̄ξ)B(s, χψ̄ξ)
ws

s2
ds,

wherec is sufficiently large, and

H(s, χ) =
∑

h<H

χ(h)h−2,H =
w
AB

.
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Now, for each pair ofψ andswith Re(s) = 1/2, let Kψ,s(U,V,W) be
the number of charectersχξ, χǫ�, ξ (mod k), satisfying simultaneously

U < |H(s, χψ̄ξ)| ≤ 2U,V < |A(s, χψ̄ξ)| ≤ 2U,W < |B(s, χψ̄ξ)| ≤ 2W.

Here, by an obious reason, we may assume that

(4.3.5) | logU |, | logV|, | logW| ≪ log x.

By virtue of (ii) of LEMMA 20 and LEMMA 21, we find readily

Kψ,s(U,V,W) < xǫF

with

F = min

{
A+ kQ2

V2
,
B+ kQ2

W2
,
kQ2|s|

U4
,

A

V2
+

kQ2A

V6
,

B

W2

+
kQ2B

W6
,
H2

U4
+

kQ2H2

U12

}
;

in particular, we have

Eψ(A, B)≪ x1/2+ǫ

k

1/2+ixc∫

1/2−ixc

sup
U,V,W

UVWF
|ds|
|s|2

,

whereU,V,W are to satisfy (4.3.5).
Then it suffices to show138

(4.3.6) UVWF≤ |s|x1/2−η

for someη > 0. Actually, we shall prove this on the assumption

(4.3.7) A, B <

(
x

(kQ2)3/8

)1/2−δ
, kQ2 < x

9
20−δ

for someδ = δ(η) > 0. For this sake, we shall consider four cases
separately: (i)F ≪ AV−2, BW−2; (ii) F ≫ AV−2, BW−2; (iii) F ≪
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AV−2, F ≪ BW−2; (iv) F ≫ AV−2, F ≪ BW−2. But, because of the
symmetry, we do not need to treat the case (iv).

Now if (i) holds, then we have

UVWF≪ UVWmin
( A

V2
,

B

W2

)
≪ U(AB)1/2.

But, by virtue of (4.3.7) we may appeal to LEMMA 22 which gives
U ≪ |s|L1/2

X
−η, whence we have (4.3.6). Before treating the case (ii),

we remark that for anyαi > 0 we have

min{α1, α2, . . . , αr} ≤ αe1
1 α

e2
2 . . . αer

r

with anyei ≥ 0,
r∑

i=1
ei = 1. Thus, in case (ii), we have

F ≪ min

{
kQ2

V2
,
kQ2

W2
,
AkQ2

V6
,
BkQ2

W6
,
H2

U4
,
kQ2|s|

U4

}

+min

{
kQ2

V2
,
kQ2

W2
,
AkQ2

V6
,
BkQ2

W6
,
H2kQ2

U12
,
kQ2|s|

U4

}

≪ |s|

(
kQ2

V2

)α (
kQ2

W2

)α (
AkQ2

V6

)β (
BkQ2

W6

)β {
min

(
H2

U4
,
kQ2

U4

)}γ

+min



(
kQ2

V2

)α (
kQ2

W2

)α (
AkQ2

V6

)β (
BkQ2

W6

)β (
kQ2

U4

)γ

(
kQ2

V2

)α′ (
kQ2

W2

)α′ (
AkQ2

V6

)β′ (
BkQ2

W6

)β′ (
H2kQ2

U12

)
γ′



 .

Hereα, β, γ, α′, β′, γ′ are to be chosen in such a way thatUVWF is 139
bounded by a quantity not depending onU,V,W, and also 2α+2β,+γ =
1, 2α′ + 2β′ + γ′ = 1. We should put, obviously,γ = 1

4, γ
′ = 1

12, and
2α + 6β = 1, 2α′ + 6β′ = 1. So we findα = 5

16, β =
1
16, α

′ = 7
16, β

′ = 1
48.

Inserting these into the last expression, we get

F ≪ |s|(UVW)−1kQ2(AB)
1
16

{
min(1,H

1
2 (kQ2)−

1
4 ) +min(1,H

1
6 (AB)−

1
24 )

}

F ≪ |s|(UVW)−1kQ2(AB)
1
16

{(
H

1
2 (kQ2)−

1
4

) 1
8
+

(
H

1
6 (AB)−

1
24

) 3
10

}
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≪ |s|(UVW)−1
{
x

1
16 (kQ2)

31
32 + x

1
20 kQ2

}
.

And this is, by (4.3.7),

≪ |s|(UVW)−1x1/2−η,

whence we get (4.3.6) again. In much the same way, we can show that140

if (iii) holds, then

F ≪ |s|(UVW)−1
{
x

1
8 (kQ2)

7
16 N

3
8 + x

1
12(kQ2)

1
2 N

5
12

}
,

which is, by (4.3.7),

≪ |s|(UVW)−1
(
x

5
16(kQ2)

47
128 + x

7
24(kQ2)

27
64

)

≪ |s|(UVW)−1x0.49.

This amply implies (4.3.6).
This, we infer that we have

(4.3.8)
∑

Xǫ�

|S(x,D
1
3
1 , χ)|2 ≤ (2+ o(1))x

ϕ(k) log D1

∑

r≡ℓ (mod k)
(r,P(D1/3

1 ))=1
r<x

|ar |2

if

D1 =

(
x

(kQ2)3/8

)1−ǫ
, kQ2 < x

9
20−ǫ .

Now we specialize the sequence{ar } by settingar = 1 if r is a
prime, and= 0 otherwise. Introducing this into (4.3.4) and (4.3.8), and
estimating trivially the contribution of primes less thanD or D1, we
obtain

Theorem 13. We have
∑

q<Q
(q,k)=1

∑

χ (mod q)

|
∑

p≡ℓ (mod k)
p<x

χ(p)|2
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≤



(2+0(1))x
ϕ(k) log x

kQ23/8
π(x; k, ℓ) if kQ2 < x

9
20−ǫ ,

(2+0(1))x
ϕ(k) log x√

kQ
π(x; k, ℓ) if kQ2 < x

1
2−ǫ

141

Specifically,

(4.3.9) π(x; k, ℓ) ≤



(2+0(1))x
ϕ(k) log x

k3/8
if k < x

9
20−ǫ ,

(2+o(1))x
ϕ(k) log x√

k
if k < x

1
2−ǫ .

These are genuine improvement upon(1.2.14)and (1.2.15)but far
from (4.3.1).

NOTES (IV)

A clear-cut proof of Vinogradov’s result states in LEMMA 17 can
be found in the text book [42].

Montgomery [[48], Chap 11] has proved, by analytical means,that
if there is a zero ofζ(s) very near the lineσ = 1 there are other (in fact
many) zeros nearby; actually, he obtained a quantitative account of this
phenomenon, from which the zero-free region of Vinogradov follows.
On this matter see also Ramachandra [64].

For a proof of (4.1.6), see Wirsing [82], where much more thanwhat 142

is required here is proved.
THEOREM 11 is due to Motohashi [61]. Apart from Selberg’s sieve

and THEOREM 4 an important ingredinent in his argument is Ramanu-
jan’s identity. It seems that Ingham [27] is the first who exploited the
information about the zeros ofζ(s) from Ramanujan’s indentitly. Bal-
asubramanian and Ramachandra [1] discussed Ingham’s idea in detail.
In this context, it may be worth remarking that de la Vallee Poussin’s in-
equality (4.1.2) corresponds to the following identity of the Ramanujan
type: for Re(s)> 1,
∞∑

n=1

|σ(n, iu)|4n−s = ζ(s)6ζ(s+ iu)4ζ(s− iu)4ζ(s+ 2iu)ζ(s− 2iu)G(s, u),

whereu is real, andG(s, u) is regular for Re(s) > 1/2. From this, we
can extract interesting information on the relation between the size of
ζ(1+ it) and the existence of zeros in the vicinity of the lineσ = 1.
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Linnik’s proof [[47], II] of the Deuring-Heilbronn phenomenon
(4.2.3) is formidable. Considerable simplifications were made by Kna-
powski [43]; in his argument, the power sum method of Turan isvital.
Further simplifications were given by Montgomery [50]; he employed
a special version due to himself of the power sum method. Later Jutila
[40] and Motohashi [[55], I] worked out a conceptually much simpler
proof of (4.2.3) via the Selberg sieve. The argument developed in § 4.2143

is quoted from Motohashi [57].
For an elementary proof of (4.2.4), see e.g. Gel’fond [18]. The

elementary treatment of the basic theory ofL-functions originates in
Linnik’s work [46]. Pintz made an extensive study on this matter.

Brun-Titchmarsh’s theorem states, in its original form, that there
exists an absolute constantC > 0, such that, for anyk < x, we have

π(x; k, l) < C
x

ϕ(k) log x
k

.

This was obtained as a particular application due to Titchmarsh of
the really revolutionary idea of Brun, and shows clearly theadvantage of
his elementary method over analytical methods, for, the latter has never
been able to yield such effective and uniform an estimate ofπ(x; k, ℓ)
as this. For a detailed history of the Brun-Titchmarch theorem, see the
relevant part of the text book [21].

The assertion that (4.3.1) implies the non-existence of exceptional
zeros is due to Motohashi [59]; formerly, it was known only that, if
(4.3.1) holds, thenL(s, χ), χ (mod k), does not vanish in the interval

1− c
logk log logk

< s< 1.

Siebert [78] has extended the matter so that any effective improve-144

ments on the main-term in the limear seive applied to arithmetic progres-
sions would yield a result similar to our assertion. It should be noted also
that, as can be seen easily from our argument, in order to obtain our re-
sult it suffices to have (4.3.1) for all but 0(ϕ(k)) residue classes (modk).
Such statistical study of the Brun-Titchmarsh theorem was initiated by
Hooley [24].



4.3. The Brun-Titchmarsh Theorem 119

In this context, it is quite intersting that the estimate of the sort

π(x+ h) − π(x) <<
h

logh

which is closely related to the Brun-Titchmarsh theorem canyield an ef-
fective zero-free region forζ(s). This was observed by balasubramanina
and Ramachandra in the paper quoted above; in fact, they obtained

|ζ(1+ it) >> (log(|t| + 2))−3

by using the above result onπ(x), and moreover, this was achieved with-
out using de la Vallee Poussin’s inequality unlike all othermethods.

THEOREM 13 is due to Motohashi [[54]. IV], which is a large
sieve extension of the results of Iwaniec [32] who showed (4.3.9); the
estimation ofE is done by following the relevant part of Iwaniec’s work.

(i) of LEMMA 20 can be proved by employing an idea of Rama-145

chandra [63] (see also [6]), and (ii) is an easy consequence of (i). LEM-
MA 21 is a simplified version of the large value theorem of Huxley
[26]; for its quick and elegant proof, see Jutila [39], LEMMA22 is due
to Burgess [10].

In the paper quoted above, Iwaniec proved also the estimate:

π(x; k, ℓ) ≤ (2+ 0(1))

ϕ(k) log(x3/2/k7/4)
x for k ≤ x2/3.

This remarkable result was obtained by an ingenious combination
of his linear sieve and a special instance of the dispersion method of
Linnik. These results of Iwaniec are substantial improvements upon
those due to Motohasi [52] who using the Selberg sieve proved(4.3.9)
but, for smaller values ofk.
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Chapter 5

Zero-Density Theorems

THE MAIN OBJECT of the present chapter is to prove in detail a well- 146

known zero density estimate for the Riemann zeta-function which will
be required in the next chapter. The argument has nothing to do with
the sieve methods developed in PART I, but the result will be combined
with the linear sieve to produce a deep consequence on the difference
between consective primes.

We shall prove also a zero-density estimate of the Linnik type for
Dirichlet’s L-functions; there the hybrid dual sieve for intervals will
play an impotant rˆole, and we shall have a nice instance of a fruitful
unification of sieve methods and analytic methods.

5.1 A Zero-Density Estimate for ζ(s)

As usual, we denote byN(α,T) the number of zerosρ = β + iγ of ζ(s)
satisfyingα ≤ β ≤ 1, |γ| ≤ T. It is expedient to consider the estimate of
N(α,T)−N(α,T/2) instead ofN(α,T); so we assume henceforth thatρ

satisfies

(5.1.1) α ≤ β ≤ 1,
T
2
≤ |γ| ≤ T,

and thatT is sufficiently large.
We divide our discussion into three parts according to the value ofα 147

121
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Case 1. 0 ≤ α ≤ 3/4.

For a while, we assume further that

(5.1.2)
1
2
+ (logT)−1 ≤ α ≤ 3

4
.

Let x, y be two parameters such that 2≤ x ≤ y, log xy = 0(logT),
and put

M(s) =
∑

n<x

µ(n)n−s.

Then considering the Mellin integral

1
2πi

2+i∞∫

2−i∞

ζ(ρ + w)M(ρ + w)r(w)ywdw

we get

e−1/y +
∑

n≥x

a(n)n−ρe−n/y = M(1)y1−ρr(1− ρ)

+
1
2π

∞∫

−∞

ζ

(
1
2
+ i(γ + u)

)
M

(
1
2
+ i(γ + u)

)
y

1
2−β+iur

(
1
2
− β + iu

)
du,

where we should observe (5.1.2), anda(n) =
∑
d|n
d<x

µ(d). On the left side,

we may truncte the sum aty(logT)2 with a negligible error; on the right
side, the first term is negligible while the integral may be truncted at
u = ±(logT)2. Thus we have

(5.1.3) 1<< |
∑

x≤n≤y(log T2)

AA(n)n−ρe−n/y|

+ y
1
2−α logT

(logT)2∫

−(logT)2

|ζ
(
1
2
+ i(γ + u)

)
M

(
1
2
+ i(γ + u)

)
|du.

148
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Next, from each each horizontal strip

2n+ ν ≤ t < 2n+ ν + 1(ν = 0, ; n = 0,±1,±2, . . .),

we pick up a zero ofζ(S) satisfying (5.1.1), and letRν be the resulting
set of zeros. Then we have

(5.1.4) N(α,T) − N
(
α,

T
2

)
≪ (|R0| + |R1|) logT

since, as is well-known,N(0, u + 1) − N(0, u) ≪ log(u + 2). Hence it
suffices to estimate|Rν|. By (5.1.3) and Hölder’s inequality, we have

(5.1.5)

|Rν| ≪ |Rν|
1
2



∑

ρǫRν

|
∑

x≤n≤y(log T2)

a(n)nρe−n/y|2


1
2

+ y
1
2−α logT |Rν|

1
4

(logT)2∫

−(logT)2



∑

ρǫRν

|ζ
(
1
2
+ i(γ + u)

)4

|



1
4


∑

ρǫRν

|M
(
1
2
+ i(γ + u)

)
|2


1
2

du.

To proceed further, we require discrete mean-value theorems for the
Riemann zeta-function and Dirichlet polynomials:

Lemma 23. (i) Let {tr } be a set of real numbers such that|tr | ≤ T and
|tr − tr ′ | ≥ δ > 0 for r , r′. Then we have

∑

r

|ζ
(
1
2
+ itr

)
|4 << (δ−1 + logT)T(logT)4.

(ii) Let {sr} be set of complex numbers such that Re(sr ) ≥ 0, |Im(sr )| ≤ 149

T, and |Im(sr ) − Im(s′r)| ≥ ∆ > 0 for r , r′. Then we have, for
arbitrary complex numbers{am},

∑

r

|
∑

M<m≤2M

amm−sr |2 ≪ (δ−1 + log M)(T + M)
∑

M<m≤2M

|am|2.
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(iii) Let {sr} be as above. Then we have also
∑

r

|
∑

M<m≤2M

amm−sr |2 << (∆−1)(M + |{sr }|T
1
2 logT)

∑

M<m≤2M

|am|2.

Applying (i) and (ii) of this lemma to (5.1.5), we get readily

|Rν| << |Rν|
1
2

(
y2(1−α) + T x1−2α

) 1
2 logc T

+ |Rν|
1
4 y

1
2−αT

1
4 (x+ T)

1
2 logc T.

Namely, we have

|Rν| <<
(
y2(1−α) + T x1−2α + T

2
3 y

2
4 (1−2α)

)
logc T;

in this, we set
x = T, y = T

2
2(2−α) ,

getting
|Rν| ≪ T

3
2−α (1−α) logc T.

This and (5.1.4) yield150

(5.1.6) N(α,T) ≪ 3
T2−α (1− α) logc T

in which we may now neglect (5.1.2) by an obvious reason.

Case 2. 5/6 ≤ α ≤ 1.

We proceed as before, up to (5.1.3): But this time, we set there

(5.1.7) x = T
6α−5

12(3α−1) + η, y = T
3

4(3α−1)+2
η

with a small fixedη > 0. Then recalling the well-known estimateζ(1
2 +

it) << (|t| + 1)1/6 log(|t| + 2), we see that the second term on the right
side (5.1.3) is (T−η/10). Hence we have

1 << |
∑

x≤n≤y(log T)2

a(n)n−ρe−n/y|.



5.1. A Zero-Density Estimate forζ(s) 125

From this, we can infer that there exist anN, x ≤ N ≤ y(logT)2 and
a subsetR(1)

ν of Rν such that

(5.1.8) |Rν| <<η |R(1)
ν | logT

and for allρǫR(1)
ν

(5.1.9) (logT)−1 <<η |
∑

N≤n≤2N

a(n)n−ρe−n/y|.

To proceed further, we require a large-value theorem of Dirichalet
polynomials.

Lemma 24. Let {sr} satisfy the condition given in (ii) of the previous151

lemm. And let us assume that there is a V> 0, such that for all r

V < |
∑

M<m≤2M

amm−sr .

Then we have

|{sr }| << (1+ δ−1)3M(V−2G+ V−6TG3 log2 T)

where
G = |

∑

M<m≤2M

|am|2.

Before applying this to our situation, we choose the integerk such
that for theN of (5.1.9)

(5.1.10) Nk−1 < T
1

3α−1 ≤ Nk;

obviously, we have 2≤ k <<η 1. Then we raise the both sides of (5.1.9)
to 2k-th power, and use LEMMA 24, getting

|R(1)
ν | <<η

(
N2k(1−α) + (TN2k(2−3α)

)
logc(η) T.

Now if k = 2, then we have, by (5.1.7) and (5.1.10),

T
2

3α−1 ≤ N4 < y4(logT)8 ≤ T
3

3α−1+9η,
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and ifk ≥ 3, then (5.1.10) implies

T
2

3α−1 ≤ N2k < T
2

3α−1(1+ 1
k−1) ≤ T

3
3α−1 .

Hence we get 152

R
(1)
ν <<η T( 3

3α−1+9η)(1−α) logc(η) T.

Thus, by (5.1.4) and (5.1.8), we obtain

(5.1.11) N(α,T) << T( 3
3α−1+ǫ)(1−α) logc(ǫ) T.

Case 3. 3/4 ≤ α ≤ 5/6.

In this case, we require a zero-detecting method different from the
above. We note first that, by an elementary consideration, wecan con-
fine ourselves to those zerosρ = β + iγ of ζ(s) that satisfy (5.1.1) and

(5.1.12) ζ(s) , 0 for α + η4 ≤ σ ≤ 1, |t − γ| < log2 T,

whereη is a small positive parametr to be fixed later. We pick up such a
zero which lies in one of the horizontal strips 2n+ν ≤ t < 2n+ν+1(ν =
0, 1;n = 0,±1,±2, . . .), and letR̃ν be the obtained set of zeros. Then we
have

N(α,T) − N(α,T/2) <<η (|R̃0| + |R̃1|) logc(η) T.

Also, we remark that (5.1.12) implies

(5.1.13) ζ(s)−1 = 0η(T
η5

)

in the regionα + 2η4 ≤ σ, |t − γ| < 1
2

(logT)2.

Then we put

N(s) =
∞∑

n=1

µ(n)
ns exp

(
−

(n
x

)2
)

wherex is to be chosen later, and for a while, we assume only 2≤ x ≤ T.153
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We have, forRe(s) ≤ 3/2,

N(s) =
1

2πi

2+i∞∫

2−i∞

1
ζ(W)

r
(w− s

2

)
xw−sdw.

In this formula, let us confines to the regionσ ≤ α + η4, |t − γ| ≤
1
8(logT)2, and then shift the line of integration to the broken line∋ w =
u+ iv : u = 2, |v− γ| ≥ 1

4(logT)2; α + 2η4 ≤ u ≤ 2, v = γ ± 1
4(logT)2;

u = α + 2η4, |v− γ| ≤ 1
4(logT)2. Then, by (5.1.13), we get

(5.1.14) N(s) = 0η
(
xα+2η4−σTη5

)
.

Next, we consider the function

N(s)ζ(s) =
∞∑

n=1

b(n)n−s(σ > 1)

where b(n) =
∑

d|n
µ(d) exp

−
(
d
x

)2 .

As before, we consider the expression

(5.1.15)
∞∑

n=1

b(n)n−ρe−n/y =
1

2πi

2+i∞∫

2−i∞

ζ(s)N(s)r(s− ρ)ys−ρds

whereρ satisfies (5.1.12). Again, we shift the line of integration to the

broken line∋ s : σ = 2, |t − γ| ≥ 1
8

(logT)2;α + η4 − η2 ≤ σ ≤ 2, t =

γ ± 1
8

(logT)2;σ = α + η4 − η2, |t − γ| ≤ 1
8

(logT)2.

Then using (5.1.14), we see that the last integral is

0η
(
yη

4−η2
xη

4+η2
Tη5

Cp(T)
)
,

where Cp(T) = max
|t−γ|≤ 1

8 (logT)2
|ζ(α + η4 − η2 + it)|.
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But by a convexity argument we can show that

(5.1.16) Cp(T) ≪η T
η2

2 +η
5
,

which implies that the right side of (5.1.15) is 0η(1) if we set

(5.1.17) y = T
1
2+η, xTη

4
.

Thus we put these values ofx, y in (5.1.15); we can truncate the
sum on the left side aty(logT)2, and noting thatb(1) = 1+ 0(x−2) and
b(n) = 0((n/x)2) for 1 < n ≤ x, we can infer that

1≪η |
∑

x(logT)−2≤n≤y(logT)2

b(n)n−ρe−n/y|

for all ρ which satisfy (5.1.12).
Then, as in CASE 2, we have anN, x(logT)−2 ≤ N ≤ y(logT)2,

for which there exists a subset ˜Rν(1) of R̃ν such that|R̃ν(1)| ≫ |R̃ν|
(logT)−1 and for allρǫR̃ν(1)

(logT)−1 ≪η |
∑

N<n≤2N

b(n)n−ρe−n/y|.

We raise the both sides of this to 2k − th power so thatNk−1 <155

T
1

3α−1 ≤ Nk. Obviously, we have 2≤ k ≪η 1. If k ≥ 3, we can argue
as before, and get (5.1.11) for our present value ofα. But, if k = 2, we
have

T
1

3α−1 ≤ N2 ≤ T1+2η(logT)4

because of (5.1.17), and using LEMMA 24 we obtain

|R̃(
ν1)| ≪η (logT)c

(
T2(1+2η)(1−α) + T

3
3α−1(1−α)

)

≪η (logT)cT( 3
3α−1+4η)(1−α)

since 3/(3α − 1) ≥ 2 for α ≥ 5/6. Thus we get (5.1.11) in CASE 3 as
well.

Finally, taking into account the zero-free region of Vinogradov, we
may summarize the above discussion as
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Theorem 14. For 0 ≤ α ≤ 1, we have

N(α,T) ≪ T(φ(α)+ǫ)(1−α)

where

φ(α) =


3

3α−1 if 3/4 ≤ α ≤ 1,
3

2−α if 0 ≤ α ≤ 3/4.

The zero-density result which we shall require in the next chapter is
not this theorem but rather the following consequence of it.

Lemma 25. Let {an} be arbitrary complex numbers such that|an| ≪ 1, 156

and put
K(s) =

∑

K<n≤2K

ann−s.

Then we have, for0 ≤ α ≤ 1,

∑

ρ
|γ|≤T
β≥α

|K(ρ)| ≪



(
T

6
5+ǫK

)1−α
if T ≤ K ≤ Tc,

(
T

16
5 +ǫ

K

)1−α
if T

4
5 ≤ K ≤ T

whereρ = β + iγ is a complex zero ofζ(s).

To prove this, let us choose aρ among those in the rectangle 2n+ν ≤
t < 2n + ν + 1, α ≤ σ ≤ 1, (ν = 0, 1), for which |K(σ)| is the greatest,
andR′ν be the obtained set of zeros. Then we have obviously

∑

ρ
|γ|≤T
β≥α

|K(ρ)| ≪ logT



∑

ρǫR′0

+
∑

ρǫR′1


|K(ρ)|.

We have, by Schwarz’s inequality,

∑

ρǫR′ν

|K(ρ)| ≤ N(α,T)
1
2



∑

ρǫR′ν

|K(ρ)|2


1
2

.
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If K ≥ T, then, by (ii) of LEMMA 23, we get
∑

ρǫR′ν

, |K(ρ)|2 ≪ K2(1−α) logc T;

on the other hand, the last theorem implies

(5.1.18) N(α,T) ≪ T( 12
5 +ǫ)(1−α),

whence the first assertion of the lemma. As for the second we consider157

three cases separately. Firstly, if 0≤ α ≤ 3/4, then, by the last theorem,

∑

ρǫR′ν

|K(ρ)| ≪
(
TN(α,T)K1−2α

) 1
2 logc T

≪ Kα−1
(
T

3−4α
2(1−α) T

1
T2(1−α) +

3
2(2−α)+ǫ

)(1−α)

logc T

≪ Kα−1
(
T

3−4α
2(1−α)+

1
T2(1−α)+

3
2(2−α)+ǫ

)(1−α)
logc T

≪
(
T

16
5 +ǫ/K

)1−α
logc T,

since

2+
3

2(2− α)
≤ 16/5

if 0 ≤ α ≤ 3/4. Secondly, if 3/4 ≤ α ≤ 11/12, then again, by the last
theorem,

∑

ρǫR′ν

|K(ρ)| ≪ Kα−1
(
K

3−4α
2(1−α) T

1
2(1−α)+

3
2(3−α)+ǫ

)(1−α)
logc T

≪ Kα−1
(
T

6−8α
5(1−α)+

1
2(1−α)+

3
2(3α−1)+ǫ

)(1−α)
logc T.

But, forα ≤ 11/12, we have

6− 8α
5(1− α)

+
1

2(1− α)
+

3
2(3α − 1)

=
8
5
+

1
10(1− α)

+
3

2(3α − 1)
≤ 16/5.

Finally, if 11/12 ≤ α ≤ 1, then we appeal to (iii) of LEMMA 23,
getting158
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∑

ρǫR′ν

|K(ρ)| ≪ (N(α,T)(K + N(α,T)T
1
2 )K1−2α)

1
2 logc T.

But, forα ≥ 11/12, we have by the last theorem

T
1
2 N(α,T) ≪ T

9
14+ǫ < K.

Hence the sum in question is

≪
(
KT

3
2(3α−1)+ǫ

)1−α
logc T,

and noting that forα ≥ 11/12,K ≤ T, we have

KT
3

2(3α−1) ≤ T
16
5 K−1,

which ends the proof of the second assertion of the lemma.
Here we should note that in the statement of the last lemma we have

neglected log-factors, because of Vinogradov’s zero-freeregion.

5.2 A Zero-Density Estimate of the Linnik Type

Most of the estimates ofN(α,T) can be extended to those ofN(α,Tχ)
the number of zeros ofL(s, χ) in the rectangleα ≤ σ ≤ 1, |t| ≤ T. But
they are of limited value, because the theory of DirichletL-functions
is greatly hampered by the lack of a zero-free region comparable to
that of Vinogradov for the Riceman zeta-function. For some important
problems in prime number theory, however, this deficiency can be cir-
cumscribed by the combination of the Deuring- Helibronn phenomenon 159

(4.2.3) and the zero-density estimate of the Linnik type:

(5.2.1)
∑

χ (mod q)

N(α,T, χ) ≪ (qT)c(1−α)(0 ≤ α ≤ 1),

which is especially strong near the lineσ = 1.
We have seen already that the Selberg sieve for multiplicative func-

tions is capable to yield a very simple proof of the Deuring-Heilbronn.
In this section, we shall apply again a similar idea toL-functions, and
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show that the same holds for once-difficult zero-density estimates of the
Linnik type.

Our main tool is inequality (1.2.10),k = 1, or more precisely, the
following one more step hybridized version of it.

Lemma 26. Let S(χ) be a set of complex numbers such that for any
s, s′ǫS(χ) we have Re(s) ≥ 0, |Im(s)| ≤ T, and|Im(s) − Im(s′)| ≥ δ > 0
if s , s′. Then we have, for any complex numbers{an},

∑

rq<Q
(r,q)=1

µ2(r)q
ϕ(rq)

∗∑

χ (mod q)

∑

sǫS(χ)

|
∑

n≤N

anχ(n)ψr (n)n−s|2

≪ (δ−1 + logN)
∑

n≤N

(n+ Q2T)|an|2
(
1+ log

(
log2 N
log 2n

))
.

Here,ψr is, of course, the one the defined at(1.2.11). Here-after,160

we shall take T for a sufficiently large variable, and for the sake of
simiplicity, we assume, up to(5.2.7), that all Dirichlet characters are
non-principal and have conductors less than T.

Now let us denote, bȳN(α,T, χ), the number of zeros ofL(s, χ)
in the rectangleα ≤ σ ≤ 1, |t| ≤ T, save for theT-exceptional zero
(cf. § 4.2). We note first that because of Page-Landau’s theorem and a
reason to be disclosed later, we may assume that

(5.2.2) 1− η ≤ α ≤ 1− c
logT

with a fixed smallη > 0. Then, for eachν = 0, 1 we pick up a zero of
L(s, χ) which lies in the above rectangle and also in one of the horizontal
strips

2n+ ν
logT

≤ t <
2n+ ν + 1

logT
(n = 0,±1,±2, . . .),

and denote byZν(χ) the resulting set of zeros ofL(s, χ). Here, we should
quote the zero-density lemma: the number of zeros ofL(s, χ) contained
in the disk|s− (1+ iu)| ≤ 1− α is 0((1− α) logT), if −T ≤ u ≤ T, and
α satisfies (5.2.2).
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Thus we have

N̄(α,T, χ) ≪ (1− α) logT(|Z0(χ)| + |Z1(χ)|).

Next, let us recall the formula (1.4.15); there, we setf ≡ 1 and 161

ξ = Λ(1) (cf. THEOREM 4). Then LEMMA 5 implies that, for each
square-freer, the function

(5.2.3) Mr(s, χ;Λ(1))

=
1
ϕ(r)

∞∑

d=1

Λ
(1)
d µ((r, d))

χ(d)
ds

∏

p∤d
p|r


(
1− χ(p)

ps

) (
1− 1

p

)−1

− 1



satisfies

(5.2.4) L(s, χ)Mr (s, χ;Λ(1)) =
∞∑

n=1

χ(n)ψr (n)


∑

d|n
Λ

(1)
d

 n−s.

We note also that (5.2.3) gives, for 0≤ σ ≤ 1,

(5.2.5) Mr(s, χ;Λ(1))≪ z(1+ϑ)(1−σ)+ǫ r−σ−1+ǫ

whereϑ, z are the parameters appearing in the definition ofΛ(1).
Then we consider the Mellin integral

1
2πi

2+i∞∫

2−i∞

L(s, χ)Mr (s, χ;Λ(1))r(s− ρ)xs−ρds

whereρǫZν(χ); in this, we set

(5.2.6) ϑ = η2, r ≤ R= Tη2
, z= T3R2, x = T

7
2+η

with the sameη as that of (5.2.2). Shifting the line of integrationσ =
(logT)−1, and noting (5.2.2) and (5.2.5), we see that this integral is
0(T−η/2). On the other hand, we have (1.3.11) and (5.2.4).

Hence, after some simple consideration, we get 162
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1≪ |
∑

z≤n≤x(log T)2

χ(n)ψr (n)


∑

d|n
Λ

(1)
d

 nσe−n/x|

for anyσǫZν(χ) and square - freer ≤ R.
Now, noting (1.2.12), we see that gives

logR
∑

1<q<T

∗∑

χ (mod q)

|Zν(χ)| ≪
∑

r≤R
1<q<T
(r,q)=1

µ2(r)q
ϕ(rq)

∗∑

χ (mod q)

∑

ρǫZν(χ)

|
2∑

z≤n≤x(log T)

χ(n)ψr (n)


∑

d|n
Λ

(1)
d

n−ρe−n/x|2.

Then, appealing to LEMMA 26, we infer that the right side is

≪ logT
∑

z≤n≤x(logT)2


∑

d|n
Λ

(1)
d



2

n1−α

≪ (x log2 T)2(1−α) logT
∞∑

n=1


∑

d|n
Λ

(1)
d



2

n−1−(log T)−1

≪ (x log2 T)2(1−α) logT;

the last line is due to THEOREM 4. Hence we have

∑

1<q<T

∗∑

χ (mod q)

|Zν(χ)| ≪η T(7+2η)(1−α),

which implies

(5.2.7)
∑

1<q<T

∗∑

χ (mod q)

N̄(α,T, χ) ≪η T(7+3η)(1−α).

But, as is well-knowm, we have, for 0≤ α ≤ 1,

(5.2.8)
∑

q<Q

∗∑

χ (mod q)

N(α,T, χ) ≪ (Q2T)
5
2 (1−α) logc QT.
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163

Thus, taking into account Vinogradov’s zero-free region for ζ(s), we
obtain, from (5.2.7) and (5.2.8),

Theorem 15. We have, for0 ≤ α ≤ 1 and T≥ 1,

∑

q<T

∗∑

χ (mod q)

N(α,T, χ) ≪ T8(1−α).

NOTES (V)

The zero-density method originates in the discovery made byBohr
and Landau [3] of evidence which supports statistically Riemann’s hy-
pothesis. But the actual emergence of the zero-density method as an
indispensable tool for the study of the distribution of primes started,
when Hoheisel [23] found that the estimate of the type

N(α,T) ≪ Tλ(1−α) logc T(0 ≤ α ≤ 1)

yields a result on the difference between consecutive primes which had
never been obtained without assuming the Riemann hypothesis for ζ(s)
or sometimes similar to it. Namely, Hoheisel found a way to avoid the
Riemann hyothesis for the investigaton of the distributionof primes.
Afterwards, the discovery of the zero-free forζ(s) of Vinogradov’s type 164

made it clear that the smallerλ in the above estimate ofN(α,T) would
yield the better results on prime numbers.

In this context, Huxley’s result [25]:

N(α,T) ≪

T

3
2−α (1−α) logc T if 0 ≤ α ≤ 3/4

T
3

3α−1(1−α) logc T if 3/4 ≤ α ≤ 1

is so far the best among various estimates ofN(α,T), for it gives the
smallestλ, i.e., 12/5, ever obtained.

In Huxley’s proof of this, a difficult estimate ofζ
(

1
2 + it

)
due to

Haneke was employed. The reason that we develped, for CASE 3,a
zero-detecting method of Bombieri [5] is that we wanted to dispense
with Haneke’s result. This caused a slight decrease in the quality of the
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obtained estimate, THEOREM 14, ofN(α,T) if compared with Hux-
ley’s, but, for the applications which we have in mind, this will give no
difference.

(5.1.13) can be proved in just the same way as in Titchmarsh [[79],
p. 77]; (5.1.16) can be proved similarly, but we need also thefunctional
equation forζ(s).

It should be remarked that, in § 5.1, we used twice the device of
raising a Dirichlet polynomial to a high power so as to let it take a form165

suitable for the application of LEMMA 24 - the large-value theorem of
Huxley [25]; this nice idea is due to Jutila [37].

LEMMA 25 is due to Iwaniec and Jutila [34]; the weighted version
of the zero-density estimates was first considered and used by Jutila
[38].

What Hoheisel did forζ(s) Linnik did for L-functions; namely, he
found the way to avoid the extended Riemann hypothesis in theinvesti-
gation of some important problems concerning primes in arithmetic pro-
gressions. This possibility was first realized in his famouswork [[47], I]
in which he proved a result similar to (5.2.1). But it should be stressed
that it is Fogel’s [12] who actually obtained the estimate ofthe type
(5.2.1). In Fogel’s argument, Turan’s idea [80] is vital, and this is the
same in Gallagher’s important work [15] where an estimate similar to
that of THEOREM 15 was first proved.

In Linnik’s Turán’s and Fogels’ works, a sieve result, i.e.the Brun-
Titchmarsh theorem occupies an important place; the same can be said
about Gallagher’s quoted above, for he used Bombieri-Davenport’s the-
orem (1.2.13) which is apparently a large sieve extension ofthe Brun-
Tichmarsh theorem. This sieve aspect of the theory is now made more
explicit in our proof of THEOREM 15, for, as we have shown in § 1.2,
the pseudo-characterψr is directly connected with the Selberg siever for166

intervals.
LEMMA 26 can readily be proved by combining (1.2.10),k = 1,

with the argument of Montgomery [[48], Chap. 7 and 8].
One should note that in our proof of THEOREM 15 Selberg’s ob-

servation (5.2.4) is vital (cf. Montgomery [50]. For a more refinned
treatment of the matter related to THEOREM 15, see Motohashi[53]
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and Jutila [40].
For the history of the zero-density method, we refer to Mongomery

[48] and Richert [66].
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Chapter 6

Prims in Short Intervals and
Short Arithmetic
Progressions

IN THIS FINAL chapter, we shall demonstrate that the sieve method 167

can actually detect prime numbers in some very difficult and important
situations, if it is correctly combined with analytical means.

In the first section, we shall inuect Iwaniec’s linear sieve into the
study of primes in short intervals and prove a remarkable result which,
in spite of much efforts, has never been attained by the sole use of ana-
lytical means. On the other hand, in the second section, we shall empoly
Selberg’s sieve to prove a deep result pertaining to the least prime in an
arithmetic progression, and illustrate the versatility ofthis fundamental
sieve method.

6.1 Existence of Primes in Short Intervals

As is well-Known, THEOREM 14 or rather (5.1.18) yields

(6.1.1) π(x) − π(x− xθ) = (1+ 0(1))
xθ

log x

139
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Wheneverθ > 7/12. This implies of course

(6.1.2) pn+1 − pn ≪ p
7
12+ǫ
n ,

pn being then-th prime.
Our aim is to show that if we geve up an asymptotic estimate butask168

for a positive lower bound forπ(x) − π(x− xθ), then the value ofθ can
be taken less then 7/12, so that (6.1.2) can be improved.

Adopting the notations introduced in the second chapter, wemay
write

π(x) − π(x− h) = S
(
A, x

1
2

)
,

where
A = {n; x− h ≤ n < x}, xθ(θ < 1),

andΩ is the simplest one:Ω(p) ∋ n implies p|n. Thus Buchstab’s
formula (2.1.1) gives, for any 2≤ z< x

1
2 ,

π(x) − π(x− h) = S(A, z) −
∑

z≤q<x
1
2

S(Aq, q). (1)

The remarkabale fact in this identity is that we can compute asymp-
totically the sum

(6.1.3)
∑

Q≤q<2Q

S(Aq, q)

for someθ which is definitely smaller than 7/12, if Q is in a certain
range.

To show this, we set169

(6.1.4) x
1
3 < Q ≤ x

1
2 , θ >

1
2
,

and we assume hereafter thatx is sufficiently large. Then (6.1.3) is
obviously equal to

∑

Q≤q<2Q

(
π

(
x
q

)
− π

(
x− h

q

))
.

1In this section, the letterq stands for prime numbers.
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But it is easy to see that this is also equal to

(6.1.5)
1

log x
Q

∑

Q≤q<2Q

(
ψ

(
x
q

)
− ψ

(
x− h

q

))
+ o

(
h

(log x)3

)

whereψ is usual Chebyshev function. Replacingψ by its explicit for-
mula we get readily

∑

Q≤q<2Q

(
ψ

(
x
q

)
− ψ

(
x− h

q

))

= hU(1)−
∑

|γ|ρ<T
β>0

U(ρ)
xρ − (x− h)ρ

ρ
+ 0

(
x(log X)3

T

)
.

Hereρ = β + iγ is a cmoplex zero ofζ(s), and

U(s) =
∑

Q≤q<2Q

q−s;

also

(6.1.6) T = x1−θ+η,

whereη is a small positive constant. This sum overρ is

≪ h
∫ 1−(logT)−

3
4

0
xα−1

∑

|γ|<T
β>α

|U(ρ)|dα,

because of Vinogradov’s zero-free region. Thus appealing to LEMMA 170

25 we can infer that this iso(h(log x)−10) either, ifQ ≥ T andT6/5+ǫQ ≤
x1−η or, if T4/5 ≤ Q ≤ T andT16/5+ǫ < Qx1−η. Namely, if

(6.1.7) x
11−16θ

5 +4η ≤ Q ≤ x
6θ−1

5 −2η

and

(6.1.8)
6
11
+ 2η ≤ θ ≤ 7

12
,
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then we have

(6.1.9)
∑

Q≤q<2Q

(
ψ

(
x
q

)
− ψ

(
x− h

q

))
= hU(1)(1+ o((log x)−5)).

We should note here that (6.1.7) and (6.1.8) imply (6.1.4).
Now we set

(6.1.10) z= x
11−16θ

5 +4η,

and put

(6.1.11) Z = x
6θ−1

5 −2η.

Then, by (6.1.5), (6.1.9) and by partial summation, we get
∑

z≤q<Z

(
π

(
x
q

)
− π

(
x− h

q

))
= (C2(θ) + o(η))

h
log x

whereθ satisfies (6.1.8) and171

C2(θ) = log

(
(6θ − 1)(8θ − 3)
3(1− θ)(11− 6θ)

)
.

Thus we have
(6.1.12)
π(x) − π(x− h) = S(A, z) − (C2(θ) + o(η))(h/ log x) −

∑

Z≤q<x
1
2

S(Aq, q),

provioded (6.1.8) holds.
Next, we appeal to THEOREM 10; we set thereA,Ω as above,δ ≡

1, X = h, and
Rd = [x/d] − [(x− h)/d] − (h/d).

Obviously, all conditions required there are amply satisfied. Hence
we have, for anyM, N ≥ 1 such thatMN ≥ z2,
(6.1.13)

S(A, z) ≥ e−γh
logz

(
φ0

(
log MN

logz

)
− o(1)

)
− logzsup

α,β

|
∑

m<M
n<N

αmβnRmn|

whereγ is the Euler constant, and|αm| ≤ 1, |βn| ≤ 1.
Now we introduce the crucial
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Lemma 27. Let Z be as in(6.1.11), and let

(6.1.14)
11
20
+ 2η ≤ θ ≤ 7

12
.

Then we have 172

|
∑

m,n<Zxǫ
ambnRmn| ≪ hx−cη3

for any{am}, {bn} such that|am|, |bn| < xǫ .

Before giving the proof, let us see the implication of this for our
problem: We may setM = N = Z in (6.1.13) providedθ satisfies
(6.1.14), which we shall assume henceforth. Then, we note that (6.1.10),
(6.1.11) imply 2< 2 logZ/ logz< 4, and thatφ0(u) = 2eγ

u log(u− 1) for
2 ≤ u ≤ 4 because of (3.2.10). Thus we have

S(A, z) ≥ (1− o(η))C1(θ)
h

log x
,

where

C1(θ) =
5

6θ − 1
log

(
28θ − 13
11− 16θ

)
.

This and (6.1.12) give

(6.1.15) π(x)−π(x−h) ≥ (C1(θ)−C2(θ)−o(η))
h

log x
−

∑

z≤q<x
1/2

S(Aq, q),

provided (6.1.11) and (6.1.14) hold.
Now let us proceed to the proof of LEMMA 27. Obviously, it suf-

fices to consider the estimate of

E(A, B) =
∑

A≤m<2A
B≤n<2B

ambnRmn

under the assumption

(6.1.16) AB≥ hx−η; A, B ≤ Zxǫ .
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173

We put

A(s) =
∑

A≤m<2A

amm−s, B(s) =
∑

B≤n<2B

bnn−s, L(s) =
∑

L
8≤ℓ<L

ℓ−s,

where

(6.1.17) L =
x

AB
≥ x3η ,

because of (6.1.11), (6.1.14) and (6.1.16). Then, by Perron’s inversion
formula, we get

E(A, B) =
1

2πi

∫ a+iT

a−iT
A(s)B(s)L(s)

xs− (x− h)s

s
ds− h(A(1)B(1)+ 0(x−η/2)),

wherea = 1+ (log x)−1, andT is as (6.1.6). We divide this integral into
two parts, according to|t| <

√
L and

√
L ≤ |t| ≤ T. And we observe the

following: If |t| <
√

L, then, by (4.1.3), we have, forσ = α,

L(s) =
L1−s − (L/8)1−s

1− s
+ 0(L−1),

and also
xs − (x− h)s

s
= hxs−1 + o(|s|h2x−1),

since|6|hx−1 < x−ǫ , because of (6.1.16). Inserting these into

a+i
√

L∫

a−i
√

L

A(s)B(s)L(s)
xs − (x− h)s

s
ds,

we see readily that this is equal to174

h
2πi

a+i
√

L∫

a−i
√

L

L1−s − (L/8)1−s

1− s
A(s)B(s)xs−1ds+ o(hx−η/2)

= hA(1)B(1)+ o(hx−η/2).
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Hence we get

E(A, B) =
1

2πi



a−i
√

L∫

a−iT

a+iT∫

a+i
√

L


A(s)B(s)L(s)

xs − (x− h)s

s
ds+ o(hx−η/2).

Then it is apparent that there exists a set{tr} such that
√

L ≤ |tr | ≤
T, |tr − tr , | ≥ 1 if r , r′, and

E(A, B)≪ h
∑

r

|A(a+ itr )B(a+ itr )L(a+ itr )| + hx−η/2

Now let S(U,V,W) be the nmber oftr such thatν < |A(a + itr )| ≤
2ν,W < |B(a + itr )| ≤ 2W,U < |L(a + itr )| ≤ 2U hold simultaneously.
Here, we can, of course, assume that

| logU |, | logV|, logW| ≪ log x.

Thus

(6.1.18) E(A, B)≪ h(log x)3 max
U,V,W

UVWS(U,V,W)+ hx−η/2.

To estimateS(U,V,W), let us see first an implication ofU < |L(a+
itr )| ≤ 2U. For this sake, let

√
L ≤ T1 ≤ T, and letS1 be the set of all

tr such thatT1 ≤ tr < 2T1,U < |L(a + itr )| ≤ 2U. We note that, for any
Ti ≤ t < 2T1,

L(a+ it) =
1

2πi

ǫ+iT1/2∫

ǫ−iT1/2

ζ(w+a +it)
Lw − (L/8)w

w
dw+ 0

(
log x
T1

)
.
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Thus shifting the line of integration toRe(w) = 1
2−a, |Im(w)| ≤ T1/2,

we get

|L(a+ it)| ≪ L−1/2

T1/2∫

−T1/2

|ζ
(
1
2
+ i(u+ t)

)
| du
1+ |u+ t| + L−1/2 log x.
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Raising both sides to 4− th power and using Hölder’s inequality, we
have

|L(a+ it)|4 ≪ L−2 log3 x

T1/2∫

−T1/2

|ζ
(
1
2
+ i(u+ t)

)
|4 du

1+ |u+ t| + L−2 log4 x,

and thus

|S1|U4 ≪ L−2 log3 x
∫ T1/2

−T1/2

∑

tr ǫS1

|ζ
(
1
2
+ i(u+ tr )

)
|4 du

1+ |utr |
+ T1L−2 log4 x.

Hence, by (i) of LEMMA 23, we obtain

|S1| ≪ L−2U−4T1 logc x.

This implies obviously

S(U,V,W)≪ L−2 ∪−4 T logc x.

Other estimates ofS(U,V,W) can be obtained by (ii) of LEMMA 23
and LEMMA 24, and we find readily

(6.1.19) S(U,V,W)≪ xǫF1

with

F1 = min

{
1

V2
+

T

V2A
,

1
W2
+

T

W2B
,

1
V2
+

T

V6A2
,

1
W2
+

T

W6B2
,

T

U4L2
,

1

U4
+

T

U12L4

}
.
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Then we consider the following four cases separately:
(i) F1 ≪ V−2, W−2, (ii) F1 ≫ V−2, W−2, (iii) F1 ≪ V−2, F1 ≫ W−2,
(iv) F1 ≫ V−2, F1 ≪W−2. If (i) holds, we haveF1 ≪ (UVW)−1U. But
LEMMA 17 yields

U ≪ exp

(
−c

(log L)3

(logT)2

)
≪ x−cn3

,
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because of (6.1.17). Hence in case (i), we have

(6.1.20) UVWF1≪ x−cn3
.

On the other hand, in the cases (ii) - (iV) we can argue just as in the
estimation ofF treated in § 4.3, and we get readily

F1 ≪ (UVW)−1
{
x−

7
16T

31
32 + x−

9
20T

}
,

F1 ≪ (UVW)−1
{
x−

3
8 T

7
16 B

3
8 + x−

5
12T

1
2 B

5
12

}
,

F1 ≪ (UVW)−1
{
x−

3
8 T

7
16 A

3
8 + x−

5
12T

1
2 A

5
12

}
,

respectively. And by virtue of (6.1.14) and (6.1.16) these are all 0(x−η/4).
Thus by this and (6.1.18) - (6.1.20), we obtain the assertionof the
lemma.

Now, returning to (6.1.15), we have to seek for a good upper bound
for ∑

Z≤q<x1/2

S(Aq, q)

so that the left side of (6.1.15) is positive for aθ in the range (6.1.14). 177

For this sake, we consider the sums
∑

Q≤q<2Q

S(Aq, q), Z ≤ Q < x1/2.

Obviously, this is not greater than

1
logQ

∑

Q≤q<2Q

S(Aq, (Z
2/Q)

1
3 ) logq.

Then to each summand we apply (3.4.20) withν = 1 and

(6.1.21) y = Z2/Q;

in particular, the functionΘν(K) is defined by (2.3.4) withz= (Z2/Q)1/3

and y = Z2/Q, and, of course, independent ofq. Thus we have, on
notingφ1(s) = 2eγ/s for s≤ 3,

∑

Q≤q<2Q

S(Aq, (Z
2/Q)1/3) logq
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≤ (1+ o(1))
2h

log(Z2/Q)

∑

Q≤q<2Q

logq
q

+
∑

K

(−1)ω(K)Θ1(K)
∑

dǫK
f<zτ, f |P(z1)

Q≤q<2Q

ξ
(1+ω(K))
f Rd f q logq

+
∑

I<K
ω(K)≡0 (mod 2)

Θ1(KI )
∑

dǫK
p,p′ǫ I

f<zτ, f |P(z1)
Q≤q<2Q

ξ
(1)
f Rdpp′ f q logq,(6.1.22)

in which τ, z1, and the mode of dissection of the interval (z1, z) are as in178

§ 3.4. Here we should note that, more precisely, we should have written
(Rq)d f and (Rq)dpp′ f ′ instead ofRqd f andRqdpp′ f respectively, but our
present choice ofq allows us to put the foumula as above.

Now let us estimate

E =
∑

dǫK
f<Zτ, f |P(Z1)

Q≤q<2Q

ξ
(1+ω(K))
f Rd f q log q,Θ1 (K) = 1.

It will turn out that this can be reduced to an application of LEMMA
27. To this end, we transform the factor logq, q being a prime, into a
sum of certain arithmetic functions. Let us put, forσ > 1,

∞∑

n=1

λ(1)(n)n−s =
∑

q>U

q−s log q,

∞∑

n=1

λ(2)(n)n−s = −
∑

n>U

(
∑

r |n
r≤U

µ(r)) n−s,

∞∑

n=1

λ(3)(n)n−s = −ζ′(s)M(s) + (G(s) + N(s))(1− ζ(s)M(s))(6.1.23)

with

M(s) =
∑

n≤U

µ(n)n−s,
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N(s) =
∑

q≤U

q−s log q,

G(s) =
∑

q

log q
qs(qs − 1

).

179

Then it is easy to see that, for anyU ≥ 1,

∑

q

q−s log q =
∞∑

n=1

(λ(1) ∗ λ(2)(n)n−s +

∞∑

n=1

λ(3)(n)n−s,

i.e.,

(λ(1) ∗ λ(2))(n) + λ(3)(n) =


logn if n is a prime,

0 otherwise.

We shall use this identity with

(6.1.24) U = Q/Z.

HenceE is divided into two parts:

E =
∑

dǫK
f<zτ, f |P(z1)

Q≤n<2Q

(λ(1) ∗ λ(2)(n) ξ(1+ω(K))
f Rd f n

+
∑

dǫK
f<Zτ, f |P(z1)

Q≤n<2Q

λ(3)(n) ξ(1+ω(K))
f Rd f n

= E1 + E2,

say, We estimateE2 first. For this sake, we put

V(s) =
∑

Q≤n<2Q

λ(3)(n) n−s

and 180

W(s) =
∑

dǫK
f<zτ, f |P(z1)

(d f)−s.



150 6. Prims in Short Intervals and Short Arithmetic Progressions

Then Perron’s inversion formula gives

(6.1.25) E2 =
1

2πi

1/2+iT ′∫

1/2−iT ′

ζ(s)V(s)W(s)
xs − (x− h)s

s
ds+ 0(hx−η/2).

HereT′ is such that

2∫

1/2

|ζ(σ + iT ′)|dσ ≪ log T,T ≤ T′ < 2T,

T being as (6.1.6), which is an easy consequence of the mean value

estimate for|ζ(1
2
+ it )|2, and guarantees us that, in deriving (6.1.25),

the shift of the line of integration causes only a negligibleerror. Also,
noting thatQ > T and (6.1.23), we have, again by Perron’s inversion
formula

V(s) =
1

2πi

σ1−iQ∫

σ1+iQ
{−ζ′ (s+ w)M(s+ w) + (G(s+ w) + N(s+ w))(1− ζ(s+ w)M(s+ w))

}

(2Q)w − Qw

w
dw+ o

(
Q1/2

|S| (log x)2
)
+ 0(xǫ )

wheres = 1
2 + it , |t| ≤ T′, andσ1 = (log×)−1 ; the first 0-term being

due to the pole atw = 1− sof the integrand. Inserting this into (6.1.25),
we have

E2 = −
1

4π2

σ1−iQ∫

σ1+iQ

(2Q)w − Qw

w

1/2+iT ′∫

1/2−iT ′

ζ(s)W(s)×

{ − ζ′(s+ w)M(s+ w) + (G(s+ w) + N(s+ w))(1− ζ(s+ w)M(s+ w))
}

xs− (x− h)s

s
dsdw + 0


hxǫ−1/2

1/2+iT ′∫

1/2−iT ′

(
Q1/2

|S| + 1

)
|ζ(s)W(s)| |ds|


.
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181

Using the mean value estimates for|ζ(1
2
+ it |2 and|W(

1
2
+ it )|2 we

can easily show that this 0-term is 0(hx−η/2). On the other hand, for the
inner integral of the first term we have, on noting (6.1.21), (6.1.24) and
G(s+ w)≪ log x,

≪ hx−1/2 log×


Z +



T∫

−T

| ζ
(
1
2
+ it

)
|4dt



1/4 

T∫

−T

|ζ′
(
1
2
+ it + w

)
|4

+|ζ
(
1
2
+ it + w

)
|4
dt)

1
4 ×



−T∫

T

|W
(
1
2
+ it

)
M

(
1
2
+ it + w

)
|2

(
1+ N

(
1
2
+ it + w

)
|2
)
dt



1/2

≪ hx−1/2
(
Z + T1/4 Q1/4

)
logc x

≪ hx−η,

in which we have used the estimate

−T∫

T

(
|ζ′

(
1
2
+ it + w

)
|4 + |ζ

(
1
2
+ it + w

)
|4
)
dt ≪ Q logc x.

ThusE2 = 0(hx−n/2), and we have

E = E1 + 0(hx−η/2).

Now let us estimateE1. Noting that bothλ(1)(n)λ(2)(n) vanish for 182

n ≤ U = Q/Z, we infer that

E1 ≪ (log x)2 sup
G,L
|

∑

G≤g≤2G
L≤ℓ<2L

dǫK
f<zτ, f |P(z1)

λ(1)(g)λ(2)(ℓ)ξ(1+ω(K))
f Rd f gℓ |
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where
Q
Z

< G, L ≤ 2Z, Q ≤ GL < 2Q.

We then recall that we haveΘ1(K) = 1. Hence by virtue of LEMMA
16 there exists a decompositionK = K1K2 such that (K1) ≤ c1Z/G,
(K2) ≤ c2Z/L since we havey = z3 = Z2/Q. Herec1c2 = GL/Q. Thus
we see immediately that we can again appeal to LEMMA 27, and we
obtain

E1 ≪ hx−cη3
,

whence
E ≪ hx−cη3

.

Obviously, we can apply the same argument to the inner sums ofthe
third term on the right side of (6.1.22). Thus (6.1.22) gives

∑

Q≤q<2Q

S(Aq, (Z
2/Q)

1
3 ) ≤ (1+ 0(1))

2h

log(Z2/Q)

∑

Q≤q<2Q

log q
q

if Z ≤ Q < x1/2 andΘ satisfies (6.1.14). Then, by partial summation,183

we get

∑

Z≤q<x1/2

S(Aq, q) ≤ (2+ 0(1))h
∑

Z≤q<x1/2

1

q log(Z2/q)

= (C3(Θ) + o(n))
h

log x
,

where

C3(Θ) =
5

6Θ − 1
log

(
5

3(8Θ − 3)

)
.

This and (6.1.15) give rise to

π(x) − π(x− xΘ) ≥ (H(Θ) − cn)
xΘ

log x

with

H(Θ) = C1(Θ) −C2(Θ) −C3(Θ)



6.2. Existence of Primes in Short Arithmetic Progressions 153

=
5

6Θ − 1
log

(
3(28Θ − 13)(8Θ − 3)

5(11− 16Θ)

)
− log

(
(6Θ − 1)(8Θ − 3)

3(1− Θ)(11− 16Θ)

)

provided
11
20
+ 2η ≤ Θ ≤ 7

12
.

In particular, we haveH(0.558)> 0. Therefore we have established

Theorem 16.
pn+1 − pn ≪ p0.56

n .

6.2 Existence of Primes in Short Arithmetic Pro-
gressions

Now we turn to the problem of finding primes in short arithmetic pro- 184

gressions. The result in our mind is the celebrated theorem of Linnik:
There exists an effectively computable constantL such that the

least prime in any arithmetic progression (modq) does not exceedqL .
By a combination of a dualized form of the Selberg sieve and analyt-

ical means, we shall prove a fairly generalized version of this important
result.

We begin by making explicit the notion of the exceptional character
which occurs in our discussion. Thus, letQ be a sufficiently large pa-
rameter, and let 1− δ be theQ-exceptional zero (cf. § 4.2), if exists,
which comes from the L-function forχ1 a unique real primitive char-
acter ( modq1), q1 < Q. Then refining (4.2.1), we have the following
assertion: there exists an effective constantk, 0 < k ≤ 1, such that for
all primitive χ (mod q), q < Q,

(6.2.1)
L′

L
(s, χ) + o(log Q) =



0 if χ , χ0, χ1

(s− 1+ δ)−1 if χ = χ1,

−(s− q)−1 if χ = χ0

in the region
σ ≥ 1− k(log Q)−1, |t| ≤ Q10,
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whereχ0 is the trivial character, and 0-constant is effective. 185

If, in the above, we have

(6.2.2) 0< δ ≤ k
2 logQ

then we callχ1 the Q-exceptional character; hereafter, we shall assume
always thatχ1 stands for theQ-exceptional character, and 1− δ is the
zero ofL(s, χ1) satisfying (6.2.2).

Then Linnik’s theorem is apparently contained in

Theorem 17. If χ1 exists, then we put△ = δ log Q, and otherwise△ = 1.
Also, we put

ψ̃(x, χ) =



∑
n<x

χ(n) Λ(n) if χ , χ0, χ1,

∑
n<x

χ1(n)Λ(n) + x1−δ

1−δ if χ = χ1,

∑
n<x
Λ(n) − x if χ = χ0,

whereΛ is the von Mangoldt function. Then, there exist effectively com-
putable positive constants a0, a1 and a2 such that

∑

q<Q

∗∑

χ (mod q)

|ψ̃(x, χ) − ψ̃(x− h, χ)| ≤ a1△ hexp

(
−a2

log x
log Q

)
,

provided186

Qa0 <
x
Q
< h < x, log x ≤ (logQ)2.

We may prove this by employing the Deuring-Heilbronn pheno-
menon, a zero-density estimate of the Linnik type (THEOREM 15) as
well as the explicit formula for̃ψ(x, χ). But we shall exhibit below that
there is a more direct and conceptually simpler way to achieve this.

First we introuduce the multiplicative functionB defined by

B(n) =


1 if χ1 does not exist,
∑
d|n
χ1(d)d−δ if χ1 exists.
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And, throughout the sequel, we shall use the results and the nota-
tions of § 1.4 by settingf = B always: It is quite easy to see thatB
satisfies the conditions (C1), (C2) and (C3) introduced there with

α = 2+ ǫ, β =
1
2
+ ǫ, γ =

1
2
+ ǫ,D = q1/4+ǫ

1 ,

F =


1 if χ1 does not exist,

L(1+ δ, χ1) if χ1 exists.

Among these, the factα = 2+ ǫ is obvious, ifχ1 does not exist, and
otherwise, it is a consequence of

(6.2.3) Fp =

(
1− 1

p

)−1 (
1− χ1(p)

p1+δ

)−1

>

(
1− 1

p2(1+ δ)

)−1

.

187

Hence we have in THEOREM 5

(6.2.4) YB(M; Q,R)≪ (Q4R4M1/2)1+ǫ .

We should observe also thatB satisfies (C′1) of § 1.4 withk = 2.
Further, we remark that we have, on settingf = B in (1.4.5),

(6.2.5) G1(R)≫ △−1
F logQ

provided

(6.2.6) R≥ Q1/2+ǫ .

If χ1 does not exist, then this is implies by (1.2.12). On the other
hand, ifχ1 exists we argue as follows. We note that

G1(R) ≥ R−2δ
∑

r<R

µ2(r)
g(r)

r2δ,

and we have, in our present case,

∞∑

r=1

µ2(r)
g(r)

r2δ−s = ζ(s+ 1− 2δ)L(1 + s− δ, χ1)A(s),
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where, as is easily seen,A(2δ) = 1, andA(s) is bounded forσ ≥ −3/4.
Thus, using Perron’s inversion formula and an elementary estimate for
L(s, χ1), we get

(6.2.7)
∑

r<R

µ2(r)
g(r)

r2δ =
R2δ

2δ
L(1+ δ, χ1) + 0(R−1/2+ǫq1/4+ǫ

1 ).

188

TakingR appropriately in this, we get, in particular,

(6.2.8) L(1+ δ, χ1)≫ δ,

since the left side of (6.2.7) is not less than 1, whence (6.2.5).
Also we shall need a lower bound ofδ, and this is supplied by

(4.2.4), which yields

(6.2.9) δ ≫ Q−1/2(log Q)−4.

Having these preparations in our hands, we may enter into theactual
proof of the theorem. We observe first that (6.2.1) and (6.2.2) imply

(6.2.10)
L′

L
(s, χ) = o(log Q)

for all primitive χ (mod q), q ≤ Q, and forson the segment

|t| ≤ Q10, σ = σ0 =


1− k

4 logQ if χ1 does not exist,

1− k
log Q if χ1 exists.

Thus, specifically, we have

(6.2.11) ψ̃(x, χ) =
1

2πi

σ0−iT∫

σ0+iT

L′

L
(s, χ)

xs

s
ds+ o(xQ−9),

whereT = Q10 and logx ≤ (logQ)2, as we shall henceforth assume.189

Next, we put

Vr(s, χ) = F(s, χ)Mr (s, χ;Λ(2)) − 1,
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where, forσ > 1,

F(s, χ) =
∞∑

n=1

B(n)χ(n)n−s,

andΛ(2) andMr(s, χ;Λ(2)) are defined in THEOREM 4 and LEMMA 5
(with f = B) respectively. In particular, we have, forσ > 1,

(6.2.12) F(s, χ)Mr (s, χ;Λ(2)) =
∞∑

n=1

χ(n)Φr (n)B(n)


∑

d|n
Λ

(2)
d

n−s,

whereΦr is defined by (1.4.10) withf = B.
Then (6.2.11) is transformed into

ψ̃(x, χ) = − 1
2πi

σ0+iT∫

σ0−iT

L′

L
(s, χ)Vr (s, χ)2 xs

s
ds

+
1

2πi

σ0+iT∫

σ0−iT

Wr(s, χ)
xs

s
ds+ o(xQ−9),(6.2.13)

where

Wr(s, χ) = (Vr(s, χ) − 1)Mr (s, χ;Λ(2))L′(s, χ)H(s, χ)

with

H(s, χ) =


1 if χ1 does not exist,

L(s+ δ, χχ1) if χ1 exists,
190

We should note here that we have, for 0≤ σ ≤ 1,

Mr(s, x;Λ(2)) ≪ z(1+zϑ)(1−σ)+ǫg(r)r−σ+ǫ ,

wherezandϑ occur in the definition ofΛ(2). Also, we haveg(r) ≪ r2+ǫ ,
because of (1.4.6) and (6.2.3).

Now let us set in the above

(6.2.14) r ≤ R= Q, z= Q40, ϑ = ǫ
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Then using a simple estimete forL(s, χ), we have

(6.2.15) Vr(s, χ) ≪ Q55,Wr(s, χ) ≪ Q110

for σ(log Q)−2, |t| ≤ T = Q10, χ (mod q), q < Q. Hence shifting the
line of integration toRe(s) = (log Q)−2, |t| ≤ T in the second integral of
(6.2.13), we get

ψ̃(x, χ) = − 1
2πi

σ0+iT∫

σ0−iT

L′

L
(s, χ)Vr(s, χ)2 x2

s
ds+ o(xQ−9) if x ≥ Q120.

Thus, recalling (6.2.10), we have

|ψ̃(x, χ) − ψ̃(x− h, χ)|

≪ hexp(− k log×
4 logQ

log Q

T∫

−T

|Vr(σ0 + it, χ)|2dt + xQ−9.

191

We multiply both sides byµ2(r)(k(q)g(r))−1, and sum first overr <
R, (r, q) = 1, and next over primitiveχ (mod q), q < Q, getting

∑

q<Q

K(q)−1Gp(R)
∗∑

X (mod q)

|ψ̃(x, χ) − ψ̃(x− h, χ)|

≪ Ψhexp

(
− k log×

4 logQ

)
logQ+ xQ−6,

where

Ψ =
∑

r<R
q<Q

(r,q)=1

µ2(r)
g(r)k(q)

∗∑

χ (mod q)

T∫

−T

|Vr(σ0 + it, χ)|2dt.

Then we observe (1.4.9), (6.2.5) and (6.2.8), and we get

∑

q<Q

∗∑

χ mod q

|P̃si(x, χ) − Ψ̃(x− h, χ)|



6.2. Existence of Primes in Short Arithmetic Progressions 159

≪ ΨF
−1∆hexp

(
− k log x

4 logQ

)
+ xQ−6.(6.2.16)

Thus it suffices to show

(6.2.17) ψ≪ F

For this sake, we consider the Mellin integral

X(1)
r (s, χ) =

1
2πi

2+i∞∫

2−i∞

Vr (s+ w, χ)Γ(w)Zwdw

whereZ = Q150, σ = σ0, |t| ≤ T. Because of (1.3.11) and (6.2.12), this192

is equal to
∑

n≥z

χ(n)B(n)φr (n)


∑

d|n
Λ

(2)
d n−se−n/Z



On other hand, we have, shifting the line of integration toRe(w) =
−σ0,

X(1)
r (s, χ) = Vr(s, χ) + E(χ)FK(q)Mr (1, χ;Λ(2))r(1− s)Z1−s+ o(Q−29)

= Vr(s, χ) + χ(2)
r (s, χ) + o(Q−29)

say. Hence we have
ψ≪ ψ1 + ψ2 + Q−30

whereψ j is obtained by replacingVr(σ0 + it, χ) in the definition ofψ
by X( j)

r (σ0 + it, χ), j = 1, 2. Then appealing to LEMMA 4 and noting
(6.2.4), we get

ψ1 ≪
∑

n≥z

(Fn+ Q19n1/2+ǫ )B(n)


∑

d|n
Λ

(2)
d



2

n−2σ0e−2n/Z.

Thus, by (6.2.8), (6.2.9) and (6.2.14), we have

ψ1 ≪ F

∑

n≥z

τ2(n)


∑

d|n
Λ

(2)
d



2

n1−2σ0e−2n/Z
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sinceB(n) ≤ τ2(n). This sum may be truncated atn = Z2, and then
the exponent 1− 2σ0 of n can be decreased to−1− (logQ)−1. Then by
viutue of THEOREM 4, we get

Ψ1 ≪ F .

As forΨ2, we remark that193

σ0+iT∫

σ0−iT

|r(1− s)|2|ds| ≪ log Q.

Hence

Ψ2 ≪ F
2 logQ

∑

r<R

µ2(r)g(r)|Mr (1, χ0;Λ(2))|2;

by this and LEMMA 6, we have

Ψ2 ≪ F .

Thus we have proved (6.2.17). Then the assertain of the theorem
follows immediately from (6.2.8) and (6.2.16).

NOTES (VI)

The extraordinary argument developed in § 6.1 is taken from Iwa-
niec-Jutila [34] and its subsequent improvement [22] due toHeath-
Brown and Iwaniec. The achievement of Iwaniec and Jutila wasa real
breakthrough that had come after long efforts of searching for new meth-
ods which could oversome the difficulty in improving upon (6.1.1)-the
prime number theorem of Huxley [25]. One should observe thatmost of
the best results and the sharpest tools in today’s analytic number theorey
are mobilized in their argument.

We have obtained the exponent 0.56 as stated in THEOREM 16, but194

Heath-Brown and Iwnaniec have indeed obtained the exponent0.55+ ǫ,
i.e.,

pn+1 − pn ≪ pθn
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wheneverΘ > 0.55. We indicate here how to achieve this.
In our argument, we esimatedS(A, z) from below by appealing to

THEOREM 10. But as a matter of fact we started our proof of THEO-
REM 10 at the inequality stated in LEMMA 10. This means that wecast
away the thrid sum on the right side of the identity stated in LEMMA 9.
Namely, we have actually proved in the above

S(A, z) −
∑

K

∆0(K)
∑

dǫK

S(Ad, p(d)) ≥ (C1(Θ) − o(η))
h

log x
,

where conventions are as in §6.1. Now, as is apparent by the definition
of ∆0, the part corresponding to thoseK with ω(K) = 2 continuous
essentially

I1 =
∑

(Z2/p)1/3≤q<p<z

S(Apq, q).

On the other hand, for the sum overq in (6.1.12), we have, by Buch-
stab’s indentity,

∑

Z≤q<x1/2

S(Aq, q) =
∑

Z≤q<x1/2

S(Aq, (Z
2/q)1/3) −

∑

Z≤q<x1/2

(Z2/q)1/3≤p<q

S(Aqp, p).

And we have obtained the upper bound (C3(Θ)+0(η))h(log x)−1, for 195

the first sum on the right side. Collecting these observations, we see that
we have, for 11/20< Θ < 7/12,

π(x) − π(x− xΘ) ≥ (H(Θ) − o(1))
xΘ

log x
+ I1 + I2,

where I2 is the sum overp, q in the last indetity. Now Heath-Brown
and Iwaniec have able to give good lower bounds forI1 andI2 by means
of weighted zero-density estimates similar to LEMMA 25, so that they
could conclude the right side of the last inequality is positive atΘ =
0.55+ ǫ even thoughH(0.55)< 0.

In reducing the estimate ofE to LEMMA 27, we used a variant of
Vaughan’s idea [81]. Our argument there should be compared with the
corresponding part of Heath - Brown and Iwaniec [22].
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THEOREM 17 is the prime number theorem of Gallagher [15]. The
argument developed in §6.2 is due to Motohashi [58]. It should be
stressed that our proof be compared with Linnik’s formidable works
[47]. The simplification is definitely due to the injection ofsieve in to
the theory.

Gallagher’s important work [15] contains two novel ideas; one is
embodied in LEMMA 3 and the other is his effective use of Bomberi-
Daveport’s extension (1.2.13) of the Burn- Titchmarsh theorem, as has196

been already mentiond in NOTES (V). These ideas were combained
with Turan’s power-sum method to produce a zero-density estimate sim-
ilar to THEOREM 15. Then using the Deuring- Heilbronn phenomenon,
Gallaher obtained THEOREM 17. In this context, it should be stressed
that we have dispensed with zero-density esimates of Linnik’s type the
Deuring Heilbronn phenomenon and the power sum method altogeher.

It is also quite remarkable that, in Linnik’s works, the sieve aspect of
the theory was almost implict, but the succeding simplifications pushed
it qradually to the surface and in our proof of THEOREM 17, Selberg’s
sieve method governs the whole affair.

For a proof of (6.2.1), see Prachar [[62], Kap. IV].
We did not take care for the numerical percison of various constants,

which is important in the actual computation of the Linnik constantL .
On this matter, see Jutila [40], Graham [19] and Chen [11]; inthe last
work, it is claimed thatL ≤ 17, for sufficiently large modulus.

It seems worth remarking that our argument of §6.2 yields also

∑

q<T

∗∑

χ (mod q)

N̄(α,T, χ)≪ ∆T50(1−α),

whereN̄(α,T, χ) is defined in §5.2. This should be compared with Bom-197

bieri [[6], Théorèm 14]. For the proof, see Motohashi [[55], II].
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