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and | wish to thank him sincerely for his help.
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NOTATION

Most of the notations and conventions employed in theseest
are standard, but the following briefing may help the readkne letter
p with or without sufix stands for a prime number. For an integer
w(d) andtk(d) denote the number of filerent prime factors ad and the
number of ways of expressirdjas a product ok factors, respectively;
uld® implies thatu divides a power ofl. ¢ andu are the Eiler and the
mobius functions, respectively. For two integdisandd,, (ds, dy) and
[d1, do] are the greatest common divisor and the least comomonptaulti
of them, respectively. We use usual notation from that sebrih in
particular, ifA is a finite set|A| is its cardinality.

Most of Dirichlet characters are denoted typicallyygyand}* is as
usuala sum over primitive characters.

If the letters stands for a complex variable which will be clear from
the context, we use the conventidrRg(s) = o- andim(s) = t. The letters
€ andc denotea suficiently small positive constant aaatertain positive
constant, respectively, whose value maf§atiat each occurrence.

The constants implied b the-Qo— and < symols are always abso-
lute apart from their possible dependedncecavhich is also fective,
i.e. once the value df is fixed the value of those constants is explicity
computable.
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Chapter 1

The A%-Sieve

ONE OF THE primary purposes in these lectures is to appedia 1
power as well as the sharpness of Selberg’s fundamenta slea —-
the A? - sieve — by employing it as a principal tool in the investigat
of the zeta- and_-functions. Our actual applications of his idea will,
however, be made not in its original form but rather in its tigized
version with the large sieve of Linnik; indeed, there is & sbduality
relation between these two fundamental sieve methods becdwhich
they admit of a fruitful unification.

In the present chapter, we shall first study this aspect ofAthe
sieve to some extent of generality and then, by specializiai results,
prepare basic aids for the applications to be made in HART II.

1.1 Selberg’'s Sieve for Intervals

To begin with, we shall give a formulation of Selberg’s funuatal
idea:

Let Q be a map of p?} the set of all prime- powers into the family
of all subsets ofz, and for an arbitray sequende of integers let us
consider

Aq = {aeA; a £Q(P?) for all p%(a > 0)}

which may be called the resulatant of siftidgby Q. We extend the 2

3



4 1. TheA?-Sieve

domain ofQ to N by putting

Q) = () P, =7
P2||d

and denote byy and« the charcteristic functions of the se®¢d) and
Zq respectively. Then Selberg’s idea may be formulated asvisl

Theorem 1. LetA be an arbitrary real-valued function with a compact
support and satisfying(1) = 1. Then

2
&< [Z /l(d)éd} .
d
PROOF is immediate.

In partticular, we have, for any finite sequernkef integers,

2
(1.1.1) | Ao I< Z[Z A(d)(sd(a)] :
d

aecA

Naturally, it is desirable to have the minimum value takerthig
quadratic form oft under the side condition(1) = 1; but obviously that
would be intractable without imposing certain reasonabled@ions on
Q,AandA. Hence we shall introduce the following specialization of
them in order to illustrate the process leading to the detextion of a
quasi-optimall, and thus a satisfactory upper bound |fg|.

We assume thaA is in an interval of lengtiNeN, i.e., there is an
MeZ such thatA  [M, M + N) and thatQ is defined locally by congru-
ence relations, i.e.,

n (mod p*) belongs to a given
(1.1.2) Q(pY ={n;
setif residues (mog®)

Also, we assume, for the sake of simplicity, that for eacimprp
there is anvp > 1 such that

(1.1.3) Q(p*) = empty for all @ > ay,.
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Further, we restricl by requiring that its support be contained in
the interval [QQ], Q > 1 being a parameter.
On these assumptions, we have,[by{1.1.1),

2
Z A(d)&d(n)] .

M<n<M+N [d<Q

(1.1.4) |Aq| <

However, to avoid the complexity arising from the possibitei-
relation among2(p®),a > 1, it is expendient to transforf into Q
which is defined by

a-1
O = Q(p”) - ) (p)
j=1

so thatQ(p?), @ > 1, are independent of each other, i.e.,

(1.1.5) Q(p”) N Q(p’) = empty ifaB(e — B) # 0.

This does not cause any change in our present sieve situftione
have evidentlyAq = Ag. Thus we shall consider, instead bf (1]1.4), the
expression

2
(1.1.6) Aal < [Z a<d)€sd(n>} ,
M<n<M+N \d<Q
wheredy is the characteristic function of the set 4
O() = () Qp).
pld
. a-1 )
ie. Sa=oa| | ] ]@-0h).
peld j=1

Now we have to estimate the right side Bf(111.6). The convaat
way of doing this is to expand out the lamda-squares, chédegarter of
summations, and single out the main-term while estimatiagtitally



6 1. TheA?-Sieve

the error thus caused; by an obvious reason, this does n&twsl in
our present situation. Thus we need to devise an alternatgement.
To this end, we observe that since we have defiddy the congruence
condition [IZLR), the characteristic functiépcan be expressed as

d d
Sa(n) = % >3 exp(Znig(n - f)) Sal

=1 k1
2.2.7) 1 q h d h
== Z EXD(ZJTi—n) Z exp(—ZJri—f) 54(0).
d qd (hth)l=1 q =1 q

Insertion of this into the right side of {1.1.6) gives

(1.1.8) INEDYEDY Zq: b(g)exp(znign)ﬁ

M<n<M+N @<Q hh=1

(ho)=1
where ;
b(b) = > @ > exp(—Znihf) 54(0).
q d=0 d (modaq) =1 q
<Q

Thus we have got an expression fairly familiar in the thedrthe
large sieve, and we recall the fundamental

Lemma 1. Let {X} be a set of points in the unit interval which are
spaced by > 0. Then, for any MZ, NeN and complex number},
we have

| > b exp(@rinx)? < (N=1+067%) > oy 2.

M<n<M+N r r

Applied to the right side of {1.118), this yields readily

2 : h 2
Bol <(N=1+Q) D" > 'b(a)'

(1.1.9) ¥Q et

=(N-1+Q) ) Ad)A)F(di, d),

d1,d2<Q
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say; here we have

& d
1 - -
f(di, dp) = [0 0] ;_1 55—1 Od; (£1)da,(£2).

0=t (mOd_(dl,dz))

Taking into account the multilicative property 6§, this may be
written as

P P’
(o) = == [ 4 )] Y eyt

plidy | &1=1 )
plide ((2=t2 (mod pmn(e4)

If aB(a—pB) # 0 then this double sum is zero, for we have{1.1.5); on
the other hand, if, either = g or 8 = 0, then itis equal to the number o6
residue classes (mopgt) defining the se©(p?), which we shall denote
by 12(p?)Il, in what follows. Hence we have

(1.1.10) fdd) = [ | f(0". P,
paHdl
pld2

where

(1.1.11)

0 if aB(a —pB) # 0,
IQ(pY)Ip~®  if eithera = BorB = 0.

f(p", p) = f(p’, p) ={

Now, let us proceed to the computation of the minimum valkera
by the quadratic form

= ) Ad)A(dp)f(dh, o)

d1,d2<Q

on the side conditioni(1) = 1. To this end, we need to hasaliagonal-
ization of the infinite matrix

F = (f(d1,d2))(d1, d2€N).
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Formula [II.ID) implies thd& can be expressed as the infinite Kro-
necker product:

(1.1.12) F=()Fy
p

where
Fp=(f(p% PP))(@.8 < ap (cf. (CIIB)))

This should be taken for a symbolic interpretation of thetiplita-
tive property of the functiorf; so we may neglect the question of the
order of multiplication.

Thus, it sififices to consider a diagonalizationkes.For this sake we
use the familiar algorithm of Gauss, and get

(1.1.13) Fp = TpDpT},

whereDp is diagonal, and’p is lower triangular with all diagonal en-
tries being equal to 1. To see the precise forr@pfandTp, we consider
the quadratic fornK(xg, X1, ..., X )r = ap, for which Fp is the codi-

cient matrix; [I.I1IH) gives
k= Xgz + 2X0(foxy + foXo + -« + frX) + FX 4 fx%2 4+ oo 4 &

wheref; = |Q(p)lIp~ .
We have

2
K= (Xo+ f1X1 + -+ err)z + f]_(l— f]_) (X]_— (f2X2 + -+ err))

1
1-1;

1
—1_—](1(1‘2x2+...+frxr)2+f2x§+~-~+frxr2

1 2
= (Xo+ faxg + -+ fix )2+ f(1- fl)(xl— . fl(f2X2+...+ frxr))
1-fi-f 1 2
+ szf]_ (X2 - m(ngg + ...+ err))
- ;(fgx\g +oo+ fix)2+ g+ B
1-f,-1

thus inductively we find
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(1.1.14)

= e - e 2B g
where

(1.1.15) Yo=Xo+ faxg +---+ frx

and,for1<j<r, 8
(1.1.16)  yj=xj- 1, f:_..._ fj(fj+1xj+1+"'+ fox).

It should be remarked here that in the above transformafidghwee
have assumed that ford j <
(1.1.17) O(p)=1-f1—fp—-— 1|

does not vanish. This causes no loss of generality. #¢t,— 6(p))) is
obviously the number of residue of classes (npyldefining the set
Q(p) U QP U --- U Q(p!), and if6(p!) = 0, then this sum coincides
with Z, that is|Aq| = 0.

Using the nitation[[T.T17), we may put the transformatii_{I%)

— (TII86) in the matrix fronT {111 3) with
9(D)g(p) O
Dp =
O a(p™),

Tp = (t(p", mP)(O0 < o, B < ap),
where

(11.18) (1) =1,0(p") = (B(p" ) — 6(P")E(P")6(P™ )
and

1 ifa =B,
o(p" ™) - 6(p”) ifo > 0,8=0,

@(p™) - 6(p* *)o(p*) tifa > B> 0,
0 ifa < B.

(1.1.19)  t(p% p) =
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In particular, we have

min(a,B)
fpn )= >0 oe", P, o).
r=0
Thus, in view of [I.I.70), we obtain
(1.1.20) f(di,do) = > g(u)t(dy, Wi(dy, u),
ul(dy,dz)
in which we have put
(1.1.21) ORNBECH
pu
and
td.w) = | ] tp" ).
p|d
Pllu

The formula [I.1.20) provides the quadratic forrwith the diago-
nalized form:

| = Z g(u)( Z t(d, uA(d))?

u<Q d<Q
d=0 (modu)

= g,
u<Q
say.
To proceed further, we need to express the side condiffph= 1
in terms of&,. To this end, we compute the inverse matrixTgf this
may be performed easily with the aid 6 {1.7.15) and (1]1.W) have

Toh = (P PO < .8 < ap)
with
1 if @ =p,
@(p*) - o(p*~e(p* )t ifa>08=0,

—(6(p") - 6(p*)e(p*t) ifa>p>0,
0 if @ <p.

(1.1.22) t"(p% pf) =
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Then, putting

@y = [ [ ).

p*||d

Plu

we have
(1.1.23) Z t(dy, u)t*(u, d2) = 64, .q4,(Kronecker’s delta)

dy.

u=0 UI(n%oddg)
as well as
(1.1.24) D, t(dLutudo) = dg,q,-
uldy
u=0 (moddy)

In view of the definition o, (.T.Z3) implies

A= > tud
u<Q
u=0 (modd)
Specifically, we have transformed the side conditi¢h) = 1 into
1= Z t*(u, 1)éy.
u<Q
Thus we have

_ _t(d1) \
"d;gg(d) (5" ) D) +D

where

1
oty
D‘{Z ) }

d<Q

-1
1 1
= Gy ~ ) (-

11
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Hence we find that

min | = D,
A1)=1
and this is attained at
(1.1.25) ag=p Yy Hubtd
u<Q g(u)
u=0 (modd)

Summing up the above discussion, we have now established

Theorem 2 (SELBERG'S SIEVE FOR INTERVALS) Let A be a se-
guence of integers in an interval of lengtkiNl andQ be defined by the
congruence relatiof.T.2) Then have, for any @ 1,

-1
ol < (N= 1+Q2){ZH( N CE 1))}

d<Q pjid
whered is defined by L.1T)

Remark. By the exclusion-inclusion principle, we can show easibtth

O =1+ (-1 > Q) - nQpr)p
r=1

1<ji<jo<<r<a

where[|Q(p!t) N--- N Q(pM)I|, j1 < j2 < -+ < jr, denote the number of
residue classes (magl’) defining the seQ(le) N---NQ(p).

1.2 The Hybrid Dual Sieve for Intervals

Next, we shall show a hybridization of THEORHM 2 with the nrult
plicative large sieve inequality, and by doing so, we shailss that the
occurrence of the additive large sieve inequality (LEMMAriLpur dis-
cussion on the Selberg sieve for intervals is by no meansiextil;
in fact, as already mentioned in the introduction to thisptba behind
this phenomenon is an important relation between SelbargsLin-
nik’s sieve methods which may be termed a duality.
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In the present section, we shall retain the notation andertions
introduced in the above; in particuld® is defined by the congruence

relation [T.IPR).

First, we make an observation on the nature of the optitvahich 13
has been obtained &I {1.1125). It gives

(1.2.1) Z A(U)3y(n) = D Z ta, 1)‘Pd(n, Q),

= &5 9@
where
(1.2.2) Wo(n, Q) = " t*(d, udu(n).
uld

Redilling the definitions of andt*, this may be written as

(1.23) wa(nQ) = [ 0" ™) {apa(MO(”) - ap(MO(p* ™))
piid

where .
v=]]a-o).
-1

And we have actually proved in the preceding section theliakty:

2
* * 2
Y0 D ygtn sz)} <v-140) ) () aa.

M<n<M+N {d<Q 9(d) &< g(d)

This relation raises the anticipation that the norm of thérina
(¥a(n. Q)g(d) 2)(d < QM <n<M+N)
may not exceedN — 1 + Qz)%, i.e., for any complex numbetby}

, Q
|Z L0 ) )de2
(1.2.4) m<nm+N d=q VI(d)
S(N-1+Q) ) Ibal®
d<Q

In order to press the matter further, we quote the well-knduality 14
principle:
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Lemma 2. Let(c;) be a matrix, and E be such that for any complex
numbersx;}
Z | Z Gixl® < EZ I%[2.
T i
Then we have, for any complex numbigss,
DD GiviP <ED il
i j
and vice-versa.

Thus, if T.Z3%) is true, then its dual

Y g Qad?

(1.2.5) d<Q@ M<n<M+N
<(N-1+ Q2) Z a2

M<n<M+N

with arbitrary complex numbers,} will also be true. We should note
the strong similarity of this to the multiplicative largesge inequality.

Now we shall develop a descussion to confirm that (l..2.5),imnd
deed a much more general result actually hold. To begin wi¢ghintro-
duce the expression

*

D=3 > o D, MO

I
gr<Q X (modaq) M<n<M+N
(ar)=1 n=¢ (modk)

wherek, ¢, Q, NeN, MeZ are arbitary. But the direct estimation Dfis
tedious if not dfficult; so we consider, instead, the dual

* :
D VD YD) ( ] ) X (M), (n, Q)bi(r, X)P,
M<n<M+N gr<Q y (modaq) go(q)g(r)
n=¢ (modk) (a.r)+1

(ar.K=1
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where{b(r, y)} are arbitrary complex numbers. Inserting the expression
@Z2) fory,(n,Q), we have

1

N
- Y (%) X(M3a(S(d, X)R,
M<n<M+N  qd<Q X (modaq) 48
net (modk) (g1

*

(qd.k)=1
where
. 21
(126) S@X)= > buXtudgu) 5. (X (modg).
u<Q/q
u=0 (modd)
(u,gk=1

Recalling [[I.I7), we transfrom* further into

kk

* q : h ) 2
2. = — 27— ,h,
127 D M%m'u;ﬂ,x(ﬂ@) () exp(2rizn) v b )

n=¢( (modKk)
where
(1.2.8)
d
_ Sd, X) h -
y(r,x) = dz 4 Z =1lexp —anaf 6d(0),x modaq.
<Q/q t
d=0 (modu)
(d,gk)=1

and . ** denotes the sum over h, g, y satisfying the conditionsugq < 16
Q,(u,q) = (ug k) =1;1<h<u,(hu) =1,y primtive (modaq).

Then, regarding the right side ¢df{L.P.7) as an Hermitiamfof the
variablesy(u, h, y), we its dual:

ok

(1.2.9) Z a4 Z x(n) exp(ZniDn) cnl’,
u,h,q.x (,0((]) M<n<M+N u
n=¢ (mod k)
where{c,} are arbitrary complex numbers. as usual, we expyéssas
a linear combination of additive characters via Gauss sund,by the
orthogonality of characters, we infer thRI{112.9) is nagéa than
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u \ h a
E § § | g exp(znin (— + _)) 2
p<Q h=1 a=1  M<n<M+N u q
(ur)) 1 (uh)=1(ag)=1 n=¢ (modk)

(ugk)=1
f
s
<Z Z | Z exp(Zm?m)c;nlz,
R S, teramats

wherec],, = ckmi¢. Thus, by the dual of LEMMATL, we see th&f{112.9)

is not larger than
N 2 2

M<n<M+N
n=¢ (modKk)

whence we obtain, by LEMMAI2,

kk

D* < (g + QZ) > Iy hoy)R.

u,h,g.x

Recalling [1.ZB), we can compute the last sum jusfas{l.4ed
ting

* N 2 - o )\
< | —
D' <+ @) Y, Y, (modasicy, S (ds, )
dio<Q  x
d20<Q
(d102,0)=1
(d1d20.K)=1

Thus, by virtue of [T.T.20), we have

o <(Nee) T Y w Y wwdsweor

do<Q x (modq) u<Q/q
(d,g)=1 u=0 (modd)
(dgk)=1 (u,gk)=1

But by (IT.Z#) and{I.216), the last sum oweis equal tob(d, y)
g(d)‘% , Whence

o <(Ne) Y Y bk

dq<Q x (modaq)
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Therefore, appealing to LEMMBE 2 once more, we obtain

Theorem 3 (The Hybrid Dual Sieve for Intervals)et Q be defined by

the corgruence relatiof.1.2) yq(n, Q) by (I.Z2) and (d) by (CT.I8)
and (L.I.Z1) Then we have, for arbitrary K, Q, N, eN, MeZ and

complexan},

2
Z Z so(q)g() M<Z x (N (n, Q)a|

(grr<)91)( (modg) n=¢ n?nh{lotj’\ll()
(ar.k)=1
<(g+@) Y il
TAK
M<n<M+N
n=¢( (modKk)

18
The sieve-ffect of this remarkably uniform result is embodied in

Corollary to Theorem 3 Let Q be defined by[{T.112), an@(p®) by
CI1D). Let{ay} be an arbitrary sequence of complex numbers satisfy-
ing a, = 0 whenever there is p*(a > 0) such thaheQ(p®*). Then we
have, for arbitrark, £, Q, NeN andMeZ,

%, 2 w(q)n(mpa) o) 2 N

r<Q mod |Ir M<n<M+N
(g r)_1X ( ¢ > n=¢ (modKk)
(gr.k)=1
< (E + QZ) > Janl
K
M<n<M+N
n=¢ (modKk)

To deduce this from THEOREM 3, we need only to note that
(n,Q) =t*(r,1) ifa, # 0.

Specializing THEORENI3 and the Corollary to it, we can deduce
various important inequalities known at present in the theaf the
large sieve; for instance, THEOREM 2 is contained in the icamp
Also, a special attention should be paid for the case ariimg the
simplest choice of2 : Q(p?) is empty fora > 2 andneQ(p) is equiv-
alent topn. For thisQ, we haveg(r) = p2(Ne(r)r=? andy,(n,Q) = 19
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u(r)u((r, n))e((r, M)r—*. thus THEOREMD gives, for arbitrar, |, Q,
NeN, MeZ and complex numbers,},

2
T8 S e a?

qr<Q x (modaq) QD(CI) m<n<M+N

(q.r)=1 n=C (modKk)
(1.2.10) (ark=1
N 2 2
< (R +Q ) Z |anl®,
M<n<M+N
n=¢ (modKk)
where
(1.2.11) Yr(n) = p((r, M)e((r, ).
Also, recalling the well-known estimate
TRONE0)
1.2.12 > logR
(1.2.12) Z;{ 0 > 7o

(r.f)=1

for arbitrary f, ReN, we see readily that the Corollary to THEORHKEM 3,

or rather [.Z10), gives rise to the assertion that,i= 0 whenevemn
hasa prime factor less thaf, then we have, for arbitrary, £, Q, NeN
andMeZ,

*

D, Iog— DD, xmap

qory e TR
(k)(N+kQ2) > lal

M<n<M+N

n=C (modk)

Specifically, we get, foM > Q,

*

> Iog— oD xR

d M<p<M+N
(1.2.14) «?E)Ql Y masg uspeen

(k)(N + KQY)(r(M + N; k, £) — n(M: k, £)),
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which is a refinement of the Brun-Titchmarsh theorem:
(2 + O(1))N

(1.2.15) (M + N; k, £) — n(M; K, ) < 00 10g

asN/k tends to infinity.

1.3 An Auxiliary Result Relating to the A2-Sieve

In the above, we have seen that the optimal lamda-welighiZB). has
an important arithmetical property which makes it possiblanite Sel-
berg’s and Linnik's sieve methods. In the present sectiagredsing
somewhat from the main theme of this chapter, we shall talkeaubject
related to the asymptotic behaviour of the optimaVhich the simplest
choice ofQ mentioned above; this will also have important applicagion
in PART[

Thus, letQ be such tha€(p®) is empty for alla > 2, andneQ(p) is
equivalent taP/N. Then we have the simplest case of the Selberg sieve:
the number of integers N which are free of prime factors less thais
bounded by

2

(1.3.2) D, | 2@ @) =),
1<n<N| din
d<z

here, for our convenience, we use 1 instead ofQ. (L.I.Z5) gives the 21
optimal weight

(1.3.2) /l(d):y(d)i Z ) { @}-1

o) | Sy ¢ | |55 ¢
(r,d)=1
which gives
2
(1.3.3) > D@ <(N-1+2)/logz.

1<n<N| din
d<z
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On the other hand, if we fid and letz tend to infinity then[[T.312)
becomes the asymptotic relation:

logz/d
logz *

A(d) = (I + O())u(d)

Now the new weight

i) = p(d)ELifd <
0ifd >z

has a striking property: we have, for aNy> z,

2
(1.3.4) > {Z;l(d)} < %

1<n<N \ din

The significance of this result lies in that, apart from a ¢tamismul-

22 tiplier to the main-term, the error-term correspondingztmf (Z33)

does not appaer at all. Because of this uniformify, {1.32%)$ome im-

portant applications especially to the theory of the zeidtafunctions.

In our later discussion on these functions, however, wd sbalequire
([@T332) in its full force, but rather the following conseqae of it:

o 2
(1.3.5) > [Z i(d)} ne = o),

n=1\dn

providedw > 1+ c(logz)™ . And for some special problems dn

functions, it is more desrable to heve a similar result inchhhe factor
7k(n) occur in a sum corresponding to the left side[of"(1.3.5). thar
sake, it would be expedient to consider the Selberg sievadero

2

D, 7| DA | () =1,

m<N din
d<z
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The standard argument shows that the quasi-optimslisuch that,
for each fixedd,

logz/d k
logz

A@) = (1 + O())u(d) (

asztends to infinity.
Thus we are led to the problem of estimating

(1.3.6) 3= n( &)y n,
n=1

din

wheren = 1+ c(log2)~* and

_ [u(d)(log Z/d)< ifd<z
£ = {o ifd>z

23
Expanding out the squares and changing the order of sunmatio
we see that

I=¢F ) Ed)ed) [ ] a-@a-p Mo

(2.3.7) dp,d2<z pld1d2
= {()"E.

say. To diagonaliz&, we employ a well-known device of Selberg, gett-
ing

(138)  E=) /@] [@-p"L- (- p "Rz,

d<z pid
where «
_ 2k (1 _ p—Mk
R = ), u()log ) m(l (1-p").
(ud)=1

There is an elementary argument to estinfajex) which relies on
the elementary prime number theorem with remainder term8(&1).
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But, for the sake of simplicity, we take here an alternatiaywan ana-
lytic one. We note first that

2+ico
Ri0) = o [ dls+ ) Pu(937ds
2—ico
I |\ [ | \K
wherepg(s) = | (I - s+n)_k - s+n) [I__S[I_ " )]’
1;1[ P l;[( P p ( p")

which converges absolutely for Rg) (- —c. Then we quote an elemen-
tary estimate ot ~1(s) (cf. §4.1): in the region

Res) > 1 - c(log(t] + 2))°

we have
{H(9) < (log(tl +2))".
Thus shifiting the line of integration to the left appropeigt we get

Ru(x) = KIResso {£(s+ 1) *Pa(9)x°s ™1} + 0[]—[ (1 + i) k] ,
pa VP

After some elementary estimations of derivativeg df(s + ) and
Pg(s) ats = 0, we obtian

Ri() << | (1 + i)kzk: (7 - 1) logx)!
pld VP j=0

Inserting this into[(1.318) we see, vla{ll3.7), that
(1.3.9) J < (log2)*.
After these preparations, we can show

Theorem 4. Letz> 1 and®¥ > 0, and let us put

Kk
1 _ o
(1L310) AP = g@log)™ ), o<—1)k 169G~
j=
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where .
Y ) (log Zl;w) ifd < 217,
d 0 otherwise.
25
Then we have
(1.3.11) AY = () ford<z
Also
o 2
(1.3.12) am| > A¥| ne =oq),
d
n=1 din
provided

w>1+c(log2)t.

In fact, the second statement follows immediately frém.d).3As
for the forst we note that fait < z

Kk
_i ik
D DI9ad0
j=0

k k
= u(d) Y (-1} “()(log2) (logd)** > (~1)F ()1 + j)".
=0

=0

But the last sum ovey is equal tod*k! if £ = k, and to 0 if¢ < k,
whence we havé (1.31]11).

1.4 TheHybrid Dual Sievefor Multiplicative Func-
tions

In the first two sections, we were concerned with problemsifihg
integers in an interval to each of which the simplest weight il is 26
attached, and we had a very powerful tool: the additive laigee in-
equality. We are now going to investigate a similar problemthe as-
sumption that weights not necessarily equal to 1 are givetmdoel-
ements to be sifted. Then we have no longer such useful ansaid a
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LEMMA [ but can appeal only to the conventional way of manipu
lating theA2-sieve.
Let us denote by the weight function, and consider

2
K=Y fm|> @] .

n<N din
d<R

HereR > 1is a parameter. We look for the optimialvhich makeK
as small as possible on the side conditigh) = 1. We may discuss this
problem on some fairly general assumption on the averageepsoof
the sequencéf(n)}. But, since we have particular applications in mind
which will be made in PARTII, we shall confine ourselves tostd
which satisfy the following practical conditions:

(Cp) fis anon-negative multiplicative function such that
f(n) = O(n%)
for all neN.

(C2) There existA > 0 anda > 1 such that for all prime we have

Fp - 1 Z Ap_a/s
where Fp= Z f(p™Mp™.
m=0

(C3) Thereexisp>0,00<y <1, >0,D > 1such that

> x()f(n) = EQ)FK(@)y + O(Dy"),

n<y

wherey (mod g), K(q) = [T F,*; the constant implied by th®-symbol
plq
is absolute.
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Now let us estimat&K on these assumptions. As usual, we may
restrictA by

(1.4.1) ()] < Ju(d));

in fact, this will be confirmed later for the optimal Expanding out the
lamda-squares and changing the order of summation, we have

(1.4.2) K= > a(d)ady) > f(dn,

di,do<R n<N/d

whered =[d1, d>] is square-free. Introducing the convolution inverfse
of f, the last factor is expressed as

f(dr) = () > f (E) f1(du).
uln
u|d®

This and Cgz) with the trivial character give

S = ud) Y fdy {T% ; o(D (%’)y)}

n<y ud®
u<y
We note that we have 28
Z fl(dU) _ Z fl(dU) Z f]_(dU)
ujd® u ujde> u ujd® u
u<y u>y
_ _ -t -1 5" [fudul
=u@d] [@-Fp )+o{y > (-
pld ujd*
Hence
D) = Fyd[ [@-Fph+ 0{(D +FW D |f1(du)|u‘7}.
n<y pid ulde

Inserting this into[(1.4]2) and reacalliig(1}4.1) we have



29

26 1. TheA?-Sieve

(143) K=FN > i) [ ] @-Fph

di,d<R pldidz
+O{(D + F)N'RA e},
where we have used the fact th@J implies f1(n) = O(n°) for all n.

Then, by a routine argument, we can conclude that the optirisl
given by

d
(1.4.4) A(d) = u(d) Gg('(?é)) [ TFe.
B pid

where

(1.4.5) Ga(¥ = | £2()/g(r)
o1

with

(1.4.6) g(I) = ]_[(Fp —1)
pir

And this choice ofl gives
(1.4.7) DL Ad)A) [ a-Fh=Gi(R™
d1,d2<R pldidz
Also, we have
(1.4.8) Ga(R/d) <Gi(R[ | Fp!
pid

which implies, in particular[TT.41 1) for thedefined by[[I.Z14). Further,
we should note that we have

(1.4.9) G4(R) = K(d)G1(R).
Now, let us observe that the optimadefined by [.4}4) yields the

relation 1)
GRS O
LA =GR ) s ()

din r<R
d<R
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where

(1.4.10) @r(N) = u((r,m) g((r, n)).

This should be compared with {T.2.1); we may expect thatHisr t
®, there will be an analogue of THEORHM 3. The object of the prese
section is to show that this is indeed the case.

To this end, we shall consider the estimation of the expoassi 30

1= Y O S S emal

g<Q K(q)g(r))( (modg) M<n<M+N
r<R
(@r)=1

with {a,} being arbitrary complex numbers; we assui@g)((C,), (Cs3)
naturally, and also
N = O(M).

But, as before, it is advantageous to estimate, insteadiudleform

2 1/2 *
SPNCDY (aas) @O > xoBeF,
a<

M<n<M+N x (modaq)

r<R
(a.r)=1
where{b(r, y)} are arbitary complex numbers. Expanding out the squa-
res and changing the order of summation we have

% = 12N }%
. QA’Z<Q {K(q)K(q’)g(r)g(r’)

r,r’<r
(@n=(q.r)=1

(1.4.11)

*

X >0 {S(M+Noyx’) = S(M, s 1,1} b(r, )b, )
x( modq
X' (modq))

where

SU.xi 1) = ) ()@ (D f(n).

n<y
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In order to estimate the last sum, we consider first the fancti 31
(1.4.12) D x) () f(n~s,
n=1

which converges absolutely fétgs) > 1. Recalling thatd, is multi-
plicative, andr, r’ are square-free, this can be decomposed as

{ 2 )((n)f(n)n‘s} 2, XM
ni(

N=1 ] \oo
(n,rr?) (%%)

x{ 2 x(n)d»(n)@r,(n)f(n)n*}

(n,rr”)>®

= P1P2Ps,

say. Introducing the functions

Fsx) =] | Fols1),
p

(1.4.13) o0
Fo(sx) = Y x(BMf(pMp ™,

m=0

we have

p=F0) | [Fasn)™
pirr
if Rg(s) is suficiently large. Also[(1.2.30) implies
Po= [ [ @-(Fp- 1" (Fp(sx) - 1)
plied
and Ps= [ | @+ (Fo-1)*(Fp(sx) - 1)).
pi(r.r’)

Thus, we see thal{1.Z112) is equal to

F(S )AL (S X),
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where

Arr(sx), = PoPs| | Fo(s )™

pirr’

= > x(

ni(rr’)>

(1.4.14)

say; hereRg(s) is only to be positive. In particular, we have

n
e (MPr (M) () = ; f(3) .
di(rr’)>
This and the conditionGz) give, fory (mod ),
) = y y 7}
Sexinr) = 3 MR {ECTK@F + 0 (3] }.
di(rr)=
whence
S, x; 1. 1) = FEQ)K(@AL (1, x)y + 0{(D +F)Ay’ Z |f2(d)|d‘7},
d(rr’)>
By the definition [[T.Z.14) of,, the last sum oved is equal to

N feM
Z) {1+(Fp—1) 1;%} [

p|([ﬂl ® PI(r,r’)

(rr)
{1+(Fp_1)—zi fég;;)} H{Z " )},
m=1

plrr’
and, by C;) and C»), this is

o((rr ) <[r,r'1™).

We should remark also thatyifis principal (modg) and ¢r’,q) = 1
them, by [T.4.14), we have

Arr(Lx) =9(r)dr  (Kronecker's delta)
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Inserting these intd{1T.Z111), and recalling tNat O(M) we obtain,
after some elementary estimations,

2 2 -
Ji = {FN+0D + F)MGEr w2l 373" o(r, ).
g<Q x (modq)
r<R
(qr)=1
Hence, returning td via the duality principle (LEMMAR), we get
the following hybridization of the Selberg sieve for muligative func-
tions and the multiplicative large sieve inequality:

Theorem 5 (THE HYBRID DUAL SIEVE FOR MULTIPOICATIVE
FUNCTIONS) On the assumptionfC,), (C»), (C3) we have, for any
N = O(M) and arbitrary complex numbeig,},

2 * .
2, K/(lq)(grgzr) 2 D, D mm2aq2
a<Q

x (modqg) M<n<M+N
r<R
(a.r)=1
<{FN+O(Yi(M;QR) D adl’,

M<n<M+N

where dr) and &;(n) are defined byfl.4.6)and (L.4.10) respectively,
and
Y:(M; Q,R) = (F + D)M?Q?(1+h)+er2are,

Next we turn to the basic lemmas which will be utilised in PAIRT
when we make important applications of THEOREM 5 TO Diri¢kle
L-functions.

First we gote the fundamental

Lemma3. We have, for T> 1,

T
f|Zann“|2dt << Tzf |
e n=1 0

provided the right side converges.

20y
2 al

y<n<yel/T



1.4. The Hybrid Dual Sieve for Multiplicative Functions 31

The combination of THEORENIS5 and LEMMA 3 yields immedi-
ately

Lemma4. We have, for T> 1,

T
#5(r) \ N it 2
| > x(mar(n)f(n)ayn™|“dt
QZS K@) | (;,dq)_[ Zl
(ar)=1

< i(ﬁ‘-’n +TVYi(n: Q,R)f(n)anl?,
n=1

provided the right side converges.

In our applications of THEOREIM 5, an important role will bleyed
by the multiplicative property ob;, which is embodied in

Lemmab. Letr be square free and letdy = o(ju(d)|d€). Then we have, 35
for s with syficiently large real part,

(1.4.15) Z Y (N, () f(n) (Z fd} n~°=F(s x)M(s x: ),
n=1

dn
where
(1.4.16)
Me(sx;€) = () D () [ [ - fo)(s )™ [ (s X075 - 1),
d=1 pld ptd

F(s x)andFy(s, x) being defined b 4.T3)

To show this, we note first that, for square-freeve have
O (dn) = O (d)Dy(N), u = r/(r,d).

Thus, the left side of {1.4.15) is equal to

(1.4.17) D X @Déadr(@d ) x(Mu(n)f(dn);®.
d=1 n=1
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Because of the multiplicativity ab,, this inner-sum may be written

as
{ > X(n)%(n)f(n)n-S} {Zx<n)®u<n)f(dn)n-5}.

(nd)=1 nd®

But n/d* implies®,(n) = 1. Hence this product is equal to

dx @ [ [+ @u(p)(Fp(s X) - )] [(Folsx) - 1)
ptd

pid
=& Of (s [ [Fo- D] [@-Fos 0™ [ [(Fols ) Fp - 1);
o o

here we have used the fact ttdhttan be assumed to be square free.
Inserting this into[[1.Z.17) and noticing that

o (d) | [(Fp—2)" = w((r. d))g(r)
prd
pir

36  we obtain the assertion of the lemma.
We now introduce THEORENI4 into our discussion: but, for this
sake, we have to replace the conditi@ ) on f by the stronger(;)f
is a non-negative multiplicative function such that thexists ak satis-

fying
f(n) = o((n))

for all n.
Then we have

Lemma 6. On the conditiongC;), (C2) and(C3)

2
Y LM (Lo AW = 07 log2) )

r<z

for any z> (D +.%)¢, whereyy is the trivial character, and the functions
A® and M are defined bfI.3.10)and (LZ_16) respectively.
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To prove this, we note first that

Mr(Lxo; A®) =p(mar) > 1k Ja-Fph.
d=0 d(<r$10d r) Pid

Hence, denoting bid the sum to be estimated, we have

2

H= Y 1+kf0en] >, AP[]a-Fh
pld

r<z d<z
d=0 (modr)
= > 1+ kAMAM [ ] @-Fph).
dy,do<z pldidz

37
Thus, just ad{1.413), we have

PRI (Z AW

n<n din

2
= FHN + 0{(D + F)N 24}

whence, by partial summation, we have §or- 1 andb > 0,

2
(1.4.18) ' bf(n) ZAS‘)} ne

n>z din

= (w -1 FHLPL) 4 0{(D + g)zb(y—w)+2(1+k{)(1—y)+e} )

If we setw = 1+ (log2)~ and takeb sufficiently large then this is
equal to

e PH.Z logz+ 0(Z°).

But, by virtue of C}) and THEOREMH}, the left side of {1.4118) is
bounded, whence the assertion of the lemma.

NOTES (1)
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The origin of Selberg's\? -sieve can be found in his deep inves-
tigations [68] [71] (see alsd_[F0]) on the distribution ofrag of the
Riemann zeta-function in the vicinity of the cirtical lin®efining the
ideas of Bohr, Landau and Carleson, Selberg was led to thegmnoof 38
making the following quadratic for ot

;
f |§(% +it) ) A(d)d 27 — 112dt
-T

d<z

as small as possible on the side condii¢h) = 1, wherezis to be taken
suitably in connection with the fliciently large parametér. Applying
certain mean-value theorems fis), he could reduce the problem to
the one of determining the minimum value of the quadrationfro
A(ch)A(d>)
D T (=1,

dy,dp<z [d1, ]

which corresponds just t6{1.B.1) The sievEeet of the argument with
which Selberg solved this extremal problem was explicityniulated
on a general setting in his later papéers| [12]l [13] [74]. It cdaworthy
that theA2-sieve was created in the course of deeper studies of the ana-
lytical behaviour of the Riemann zeta function, and thatyashall see
in PARTI, our account of his theory has also important aggilons to
Z(s) andL(s, x); this seems to agree appreciably with Selberg’s opinion
expressed in the last lines 6f [78]]74].

We formulated Selberg’s idea in a generalized from as THERRE
[, for we have hope that one may find applications of it to tlublems
with Q not necessarily defined by the congruence condifion{|1.arR)
which, however, all applications know at present are made.

One may want to see how well the right side[of (1. 1.4) appraxés
to the left side. For this,we refer to NOTES (Il) where we shale an
explicit representation of theftierence between the two sides, revealing
the mechanisum behind the device of Selberg which at first loaly
somewhatd hoc.

Itis a remarkable coincidence that two fundamental siegasdSel-
berg’s and Linnik’'s were created almost simultaneously tinis fact
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becomes more interesting when we know that between themualiyd
relation as we have shown in the second section.

LEMMA [is the latest version of Linnik’s large sieve, and ised
to Selberg. To prove this, Selberg employed a delicatelysehdunc-
tion in conjuction with his inequility of Bessel's typée [[} Bemma 1.8].
P. Cohen has shown, however, that LEMNIA 1 is an immediate con-
sequence of an inequality of Montgomery and Vaughan [51] ficty
occurs the factoN + ¢t instead ofN — 1 + ¢~*. For the details see the
expository article[[49] of Montgomery.

THEOREMI2 is due to Selber@1l7]. This remarkable result iegpl
as its speical cases the large sieves of Montgomery [[48B]pJhonsen
[35] and Gallagher(]16]. Our proof of THEOREM 2 has dfeiience
from Selberg’s in that we have appealed to LEMNMA 1, an argumen
which was employed formerly by MotohasHL[[54], II] in higednative
proof of Montgomery’s large sieve. We should point out thegilility 40
of generalizing THEORENII2 into the directions indicated kaje®no-
Viola [67] and Gallagher]17].

The duality relation between Selbergt$-sieve and Linnik’s large
sieve was observed by not a few people simultaneously irighdd and
unpublished forms. THEOREM 3 which is due to Motohashi|[[34]
summarises the former discussions on this matter each afhwhas
made on some special assumptionsgdbh shows thafy,(n, Q)g(r)‘%}
behaves just likgy(n); ¥ primitive}, i.e., they share the property which
may be called quasi-orthogonality. This was first obserwe&élberg
[76] when he obtained(1.Z110), and calleg (n)} pseudo-charecters;
but the relation betwep, and the Selberg sieve was remarked explicity
by Motohashi [[58], p. 166].

(CZI3) and[[I1.234) are due to Bombieri and Devenjort $8g (
also Bombieri [[4]), which, apart from the fundamental wadg] of
Linnik, was the first instance that the sieeet of the large sieve was
clearly perceived[{1.Z.13) has had a deep application tdhtbery of
L-functions, as Gallagher showed in his important work [IT3je same
can be said abouf{1.2110), as we shall show[In B 5.2.

The Brun-Titchmarsh theoreri {1.2115) is introduced helg for
the sake of illustrating the generality of THEOREM 3; a fertlliscus- 41
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sion on this basic sieve result will be given [0.84.3.

We have seen that a drasitc specialization of THEOREM 3 gield
important results knows already. In the proop of THEOREMehave
used, however, nothing deeper than the additive large siegpiality
and the duality principle, both of which are, in fact, of vexlemen-
tary character. Thus one may expect that, on some speciditions,
more sophisticated tools will produce improvements uporcDIREM
B. In the case ofl{1.Z10) this was confimed by Motohashil [[54é
first note], but the general case seems to befecdit problem. Relating
to this question we should note that these might be a pasgitnlim-
prove, in some sense, upon LEMMA 1 for the Farey sequenceatepl
of general well-spaced sequer(cg}.

(I33) is due to Barban({[2]), and{I.B.5) to Selbérd [69%alam
[19] gave an elegant proof dfi{L.B.4), and even succeedexplaging it
by an asympitotic relation. THEORHM 4 is due to Motohashi {38fila
[41]] obtained an analogue of Graham'’s result for the weig{hﬁg}.

THEOREMI[B is due to Motohashi [58]. In deriving the important
artimitic function®, from f, we used the standard argument of manip-
ulating theA?-sieve, for, as already mentioned,we do not have anything
analogous to LEMMATL in the situation of the fourth sectiorerde it
is desrable to have an additive large sieve inequality whibmits the
weight f. But to this end, we would have to find first a sort additive
characters derived frorhwhich substitute for exp¢@X) of LEMMA [

LEMMA Blis the famous inequality of Gallagher [15]. LEMMA 5 is
essentially due to Selberd (150]) who showed itfer this will be a key
lemma in our application of THEOREM 5 to Dirichletisfunctions.



Chapter 2

Elements of the
Combinatorial Sieve

WE NOW TURN to another topic in sieve methods; in the presadt &3
the next chapters, we shall develop a detailed study of sompertant
aspects of the combinatotial sieve method, which is esdbnt sys-
tem of devices of introducingfiective truncations into the exact -seive
of Eratosthenes, and, as contrasted withAResieve, the most notable
feature of which lies in that it leads simultaneously to upged lower
sieve bounds on some fairly general conditions.

Partly because of their independent interest, we shaludis the
present chapter the basic combinatorial or logical idiestitand then
in the next chapter exhibit their power in the particular laggtion to
the linear sieve situation. We shall try to explain the metion behind
those combinatorial identities, for, it seems that the doatbrial sieve
methods lacks the straight forwardness which charactetfiss\>-sieve
and makes easiers to understand it.

2.1 Rosser’s | dentity
To begin with, we repeat the conventions introducedinl&i.A much

simplified from
We suppose that to each prinpas assigned a s&d(p) of residue 44

37
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classes (mogy). For a square-fred, we denote byQ(d) the set of
residue classes (mad) arising (in the way of Chinese Remainder The-
orem) from those of2(p), pld. We shall write, in the sequebeQ(d) in-
stead ofn (mod d)eQ(d), and naturally, we haveeQ(1) for all integer
n.

Next letz > 2 be a parameter, and put

A, 2) = n P

p<z
neQ(p)

p@=][]p

p<z

and, as usual,

Let A be a finitie sequence of integers, and put, for a squaredfree
Aq = {aeA; aeQ(d)}.
Further, let® be an arbitrary function defined @h and put

S(Az©) = ) 0(s(@2).
aeA

Then the sieve problem on which we are going to discuss is db fin
a good(in one or another sense) estimat&@, z ©) in terms of|Aq|
under suitable condition on the nature &fQ, and®. To solve this
problem in a very special but highly important case, i.e.lithear sieve
situation which will be defined in the next chapter, we shaipty the
combinatorial sieve method; the whole theory of it is buiitthe very
simple

Lemma7 (THE BUCHYSTAB IDENTITY). We have

(2.1.1) S(A.Z©) = OL)IA >’ S(Ap, p; Oyp),

p<z

where® is defined by

Op(n) = O(N) — B(pn).
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To show this, let

A2 =pp2... Propr<pPr<- <P <z

Then we have

r-1
O(1) - O(p1pz-+- pr) = » (O(prp2-+- pj)) = (O(P1P2- - Pj1)
i=0

r—

=

Op (pP1p2---Pj)

j+1

o

=

J
> 0p, (4@ Pj2).

j+1

o

J:

which amounts to

O(r(22) =0(1)- > Opa(a p),
afrz;(zp)

and this is apparently equivalent to the assertion of therlam

The Buchstab identity obviously admits of iteration. Andstate 46
the result of the infinite iteration in a compact from we inlnce the
function®y defined by

O4(n) = ) u(nO(m).

rid

Then LEMMAI[A yields readily

(2.1.2) S(Az©) = » u(dOu(L)Ad

dip(2

which is a little generalized version of the exact-sieve kHtasthenes.
As is commonly remarked in sieve literaturg,_(211.2) is aasse
identity, for, it involves too many terms to be handled witthus, if we
want to keep the number of terms within a manageable size,ave h
to discard certain summands on the right side; the cost ofgdso is
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to give up the exact identity. Since the process of castingyasome
summands in[{2112) is equivalent to attaching the weight $dme
specially chosen divisors ¢#(z) and the weight 0 to all other, we are
naturally led to the problem to find a weighted version[of [2)1

To formulate the answer to this problem, we introduce artrayi
functionp definedN and satisfying

p(1)=1,
and put
d
o(d) = p(—=) - p(d), o(1) = 0.
(d) p(p(d)) p(d), (1)
Here and throughout the sequel, the symbol

p(d)

stands for the least prime factor @t 1.
Then we have the fundamental

Theorem 6.

SAZO) = Y udpAOu(LIAd + > u(@)o(d)S(As. p(d); O).

dip(@ dip(@

Proof. is quite simple. Inserting into the right side the exprassio

S(A, p(A); Oa) = > p(OOur(L)Agcl,
{IP(p(d))

which is a particular case of {Z.1.2) we immediately recaher left
side. m]

But the following alternative argument seems to be moreunst
tive, if tedious. We introduce an arbitrary functidrdefined onN and
satisfyingA(1) = 1, and as a first step we modify (ZI1.1) trivially as

(2.1.3) S(A.Z©)=O(1)A - > AD)S(Ap, p; Op)

p<z
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= > (1= AP)S(Ap, p; Op).

p<z

Similarly, we have

(2.1.4) S(Ap. P Op) = Op(DlAG — > A(PP)S(Ap. i Opr)
p<p

= > (1= ApP)S(App. s Opp).

p'<p

Inserting this into the first sum ovgron the right side off(Z.113) we4s
get

S(AZ0) = O(L)JA - > OpDA(P)IAY

p<z

+ 3 APAUPPISApp. P Opp) — > (1 - A(P)S(Ap. p; Op)
p<p<z p<z

+ > APDAUPP))S(App P'; Opp)-

p<p<z

This is the cas& = 2 of the identity

S(AzO= ) udOa(LF(DIA
s
(2.1.5) + (=1 D7 AA)S(Ad, p(d); Oa)
ot
+ dz(]) #(d) (d)S(Aq. p(d); Oa),
Ip(z
w(d)<k

whereg ando are defined by

p(d) = A(p1)A(P1P2) - - APz -- - pr). p(1) = 1

and g
#(d) - p(@) (). 51) = 0
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if d=p1p2---pr, Pr > P2 > -+ > pr. We may establisH{2.1.5) by the
induction onk: we need only to replac8(Ag, p(d); ®4) of the second
sum on the right ofl{Z.115) by the expression

S(Ag, p(d); Oq) = Oa(L)Adl = Y AAPS (Adp. P; Oup)
p<p(d)

- > (1= A(dP)S (Adp, P; Oup)

p<p(d)

which is a special case df{Z1.3), getting the formla®).with k + 1
in place ofk. We then takek in (Z1.8) stificiently large & n(2), say),
and obtain
(2.1.6)

S(AZO) = ). udOs(FAIAl+ Y, AFADS(Ad. P); O)

dP@ dP@

This is equivalent to the assertion of THEORIEM 6, becausés as
easily seen, we can always findiguch thap™= p.

Compared with the first, the second proof has an advantadein t
the procedure of truncation-iteration of the Buchstab fitheis clearly
exibited in it. Moreover, it will turn out that the formulat (ZZ1.6) of
THEOREMI® is more convenient for our later purpose.

We now restict ourselves to the case wheérés the unit measure
placed at 1 so th&#(A, z ®) is equal to

S(A,2) ={ac A;a¢ Q(p) for all p < z)|

and
Oq(1)=1

for all d. Then we have, by{21.6),

217)  SA= Y u@pdIAd+ Y u(AFDS(A. pd).

dP@ diP(2

Further, let us set

(2.1.8) 0< A(d) < 1
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so that
(2.1.9) O<p(d<10<o(d)=<l

And let us try to express ‘good’ upper and lower boundSE4, 2)
in terms of|Aq| via the formulal(Z.117). This means, in other words, that
we have to discard the term8§Aq, p(d)) on the right side of {Z117); this
should be done, of course, in the manner to keep at a minimanods
caused by doing so. In general, we can assume, howevemgattire
than the trivial information

S(Ad. p(d)) = 0.

This implies, in particular, for = 0 and 1,

CISAD - Y udidiAd > FHASA ),
aP@ w(d)z?zlp((zr)nod 2)

since we havd{Z1.9). Here the equality holds if weogef) = O for all
d|P(2) such thatw(d) = v + 1 (mod 2). The simplest way to attain this
is to set

(2.1.10) Ad)=1it = lw(d)=+1 (mod 2)

which we shall impose on henceforth; we writg,, &, for p, & with A
satisfying this condition. Then we have

(2111) S(AD = > udp (@Al + (1) > F(AS(Aa. p(d)).

diP@) diP@
In paticular, we have 51
(-1)(S(A2) - ) u(d)p,(@)IAdl) > O;
dP@

this means that we have neglected $(Ay, p(d)) on the right side of
@I11), and thus a certain inaccuray is brought in.

Now, we note trivial but crucial fact th&(A, 2) is a decreasing func-
tion of the parameter. Thus the negligence &(Aq, p(d)) with p(d)
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which is ‘small’ for Ay causes most likely a relatively ‘large’ loss, to
avoid this we should better set = 0 for suchd. One of the most fruit-
ful devices to make explicit the ‘smallness’ pfd) for A4 is to introduce
two parametery andg > 1, and to defingd(d) to be ‘small’ for Aq if
p(d) < (y/d)Y2. The simplest way to realize this in termsbis to set

() = 1 ifwd)=v (mod2)p(dPd<y.
10 ifwd) =y (mod 2)p(d¥d >y.

besides[[Z.1.10). Then andd, are the characteristic functiops(d) =
py(d;y,B) ando,(d) = o,(d; y, B) of the sets

d=pip2---pr.P1>P2>---> pPr;
(2.1.12) Di(y.p) =14 d;

pg;l\,pzkw_l .pr<yforl<2k+v<r

and
(2.1.13)
d=pip2---pr,p1>p2>--->p,r=v (mod 2)

Di(y,8) =1 d; :
ov(PipP2- pPro1 =1, p§+lpr—l"' p1=zy

respectively.
In this way, we are led to

Lemma 8 (ROSSER'’S IDENTITY) Letp, ando, be as above. Then
we have

(21.14) S(AD = ) u(@pu(@IAd + (-1)" Y] oo(dS(Ad. P(d)).
dP@ diP@

We should note here that this is a logical dentity, so theaghof the
parmaetery andg is at our disposal. Since the largesind the smalles
give the widerD(ly)(y,ﬁ), the support 0p,, as can be seen frof (Z71112)
if is desirable to takg andB as large and small as possible, respectively.
Under a fairly general condition to be specified in the nexptér, we
shall show how to determine the smallest, i.e. the optimhlevaf g,
and also a very penetrating device which allows us talkeexpectedly
large in some practically important situations.
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2.2 The Fundamental Lemma

In this section, we shall first show an important applicatdbfRosser’s
formula which is also a basis preparation for the next clrapte shall
then turn to a tentative explanation of Rosser's motivatiehind his 53
formula which was introduction rather abruptly in the ahove

First of all, we have to make precise the information|dg. We
assume that there exists a non-negative multiplicatiostfons and a
parameteX such that

6(p) < p forall p,
and
(22.1) Ry = ad - 20

is small, in one or another sense, thrd|P(2), lying in a certain range.
Then we introduce the notation

V(z)z]—[(l—&?).

p<z

X

We note that we have an analogue[of (4.1.1)\V():
0
V@ =1-) 5Py (p).
oz P

And this is utilization, in much the same way as in the same agy
in the proof of [ZZ11K), to prove the identity

s(d , s(d
222 V@ = Y u@p@ 2 + 1 Y o Dv(p).
d d
diP(2) diP(z)
We shall need also an information on the size of the eleménts o
D (y. B).
Lemma9. If z < y? andp,(d) = 1, then we have

1 B— 1 w(d)/2
IOgd < [1 - E (m) IOg y.
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To show this, we may restrict ourselves in the case 1, w(d) =
2r, for others can be treated quite similarly. Thusdefd) = 1,d =

1Pz P2r, Y2 22> p1 > -+ > pxro1 > pa. By @ILI2), we have,
forO<j<r-1,

]
i+2 < P2je1 < | ————| .
P2j+2 < P2j+1 PPz P2

This implies

: 1)l )
log| ——————|>(1- lo ,
g(plpZ---p2j+2) ( B+1 g P1P2. .. P2j

whence inductively we get

y _(B-1Y
IogoI > (,3—+ 1) logy

which gives the assertion of the lemma for our present case.
We can now prove the very important

Theorem 7 (THE FUNDAMENTAL LEMMA) . Leté be such that, uni-
formly forany2 <u<v,

(2.2.3) ul_[pw(l B %O))_l : C(%)k

with certain positive constants C and k. Also, let /S, s> 2. Then
there are two sequenca{y,sév)} (v = 0,1) depending only on y and k such
that

0] 0 = 15160 < 1,60 = oford >y,

55 and uniformly for g{q, P(2) = 1,

(-1 {S(Aq, 2 - XV(z)? (1 +0 (eXp(—ES log S)))}
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(i) > (1) ) €)Rag
diP(2)
d<y

where the constant involved in the O-symbol depends in C aofl k

Z2Z3)at most.

To prove this, we put

&9 = u(d)o,(d; v, B)

with a suficiently largeB. Then (i) is immediate. As for (ii) we apply
LEMMA Elto Ay, and modify the dentity byi{Z.2.1), getting

(-1)" {S(Aq 2 - %Mxuy, z)} > (-1) ) &) Rag
q d(le(z)
<y

where

U2 = Y AL u@p

dP(2)

Then [ZZP) gives

B2 =va+ 0y Y Do @vipa)
=1 dP@
w(d)=2r+v

(2.2.4) =V(@@) + (-1)710,(y, 2),

say.
We note that itr, (d) = 1 thenp,(d/p(d)) = 1, and thus by LEMMA
[ for we havew(d) = 2r + v,

oo < (1[5 ﬂ)"’gy
B

1
or log p(d) > — ([3—1) logy,

sinceo,(d) = 1 implies p(d)’d > y. On the other hand, the last ins6
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equality implies alsa@”@*# >y, soB + w(d) > s, for, we havez = y/s.
Thus, on the right side of{2.2.4), we have (s— 3 - 1)/2.
Collecting these observations, we have

2r+v

~ 1 (B o(p)
U,(y,2 < —V yﬂ(ﬁ+1) AR
r>1/2(Z:S—ﬂ—1) 2r +v)! ( ) ([

Then, noticing thallZ2 3) gives

we have

k
2.2.5) U,(y,2) < V(2 (/—g)
r>1/2(s-p-1)

,3+ 1 % ﬂ+ 1 ﬂ 2r+v
{k(ﬁ_ l) (r log ([?1) + Iog(gc))}

We now suppose thatis large, and we pyg = s/3. Then we have

2r
U,0,9 <V@ ) (%)

r>s/3 S

2r +v)!

< V(@ exp(——; log s) .

57 If sis not large enough then we takeso large that the right side of
ZZ3) converges. This ends the proof of the theorem.

Now, let us digress briefly from rigorous discussion and axpthe
motivation of Rosser’s device introduced in the procediegtion; this
may help one to see that Rosser’s seemingly complicateditigéna
sort of logical conclusion when we try to seek for optimalsi@roce-
dures.

One may have the impression that the introduction of therpeter
y andg is abrupt and arbitrary though the idea to eliming{édy. p(d))
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with p(d) ‘small’ for Ay from the identity [Z1.11) is quite natural. But
this is actually related closely to the concept of the sig\Vimit, which
may be roughly formulated as follows.

In many practical problems, the information on the sizaAgf is
given in the form

(2.2.6) D" IRdl = o(XV(2)
AP

uniformly for z <y, ands¢ is almost constant at primes, but, for the sake
of simplicity, we assume here that

2.2.7) [ (1 _ o) )_1 < ('Ogv)k @2<u<v)

U= p logu

wherek is a positive constant.
Returning to the identity {Z.1.11), because[of (2.2.6) wg matrict 58
A by the condition

(2.2.8) Ad)=0 for d>y,

in addition to [Z1.7I0), without loss of much generalityethwe have,

by ZZ1),
S(A, 2) = XV(2){Us(y Z po) — o(1)}

where 5(d)
V@Us(y.z50) = ), ul(d)=5"po(d).
dP(2)
d<y

But, sinceS(A, 2) is non-nagetive, we have more precisely

S(A, 2) = XV(2{Ts(y z po) — o(1)},

where
T5(Y: Z po) = max(Q Us(y, z po));
the identity
d d
VA= Y @@+ S o D (p(a))

dP@ dP@
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implies
1> Ts(y,Z po) > 0.
Next we put
wma=@w%nmzmx

wheres satisfies[(Z.2]7), and Z1.8), [Z1.ID) and(Z.2.8).

Obviously we have
S(A, 2 > XV(D{ek(y. 2 - O(1)}.

Our interest lies, naturally, in such a choicey@ndzthatek (Y, 2) >
0; so we consider the quantity

ak(y) = inf{s; ek (v, y') > 0}.

And we point out the important fact thak (y) remains bounded as
y tends to infinity. This can be seen easily from THEORHEM Thus
we may consider, further, the quantity

B(K) = lim supa(y)-

y—)OO

If s> B(K), then we have the possibility of
S(A,yY%) >0

for a suficiently largey, but, otherwise, we can say nothing definite
about the lower bound fd8(A, y*/S) than that it is non - negative. This
is the reason thai(k) is called thesieving limit.

Now, if we want to keep at minimum the loss caused by discgrdin
certain termsS(Aq, p(d)) on the right side of [Z1.11) we should, of
course, put,(d) = 0 for all d such that there is the possibility of the
existence of atleast onewith

S(Ag, p(d)) > 0. But, if Ais such that allAg(d|p(2),d < y) satisfy

10ne may say that this is a tautology, for our proof of THOEORHEMepends on
Rosser’s sieve idea. To avoid such a confusion, we rematkaaaould have proved
THEOREM 7 by Brun’s (cf. [21, Chap. 2])
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the analogue of{2.2.6), i.e.,

> 1Ral = 0D xv(p(a),
t<y/d
ap(p(d)

then we have the possiblity &(Aqg, p(d)) > 0 for p(d) < (y/d)f%
providedy/d is suficiently large. And this observation leads us imme-
diately to Rosser’s device.

We should deep it in our mind, however, that although Rosser’
weightsp, may simulate well the extremal (or optimal) sieving pro-
cedure, there is no reason to believe that they give acttialyptimal
estimate ofS(A, 2) generally. In fact, it is known that, for the sieve prob-
lem withk > 1, the Rosser weights do not yield optimal results. But,
very fortunately, for the linear sieve problems (ile+ 1) which con-
tain most of important classical problem Rosser's methad indeed
produce optimal results as we shall show in detail in the okapter.

2.3 A Smoothed Version of Rosser’s | dentity

Returing to the main theme of this chapter, we shall give apoim
tant modification of the fundametal identity (Z11.7): we Ibgect a
smoothing device into it. This will play a vital role in theviestigation
of the error term in the linear sieve which will be developedZ.4.

To this dfect, we take up an intervaty, 2), 2 < z; < z, and dissect it 61
into smaller ones which we shall denote generallyl loyith or without
sufix; so, we have

[21,2) = U | ( disjoint ).

Next, let K with or without suffix stand for the set - theoretic direct
product of a sequence ¢§’, andw(K) for the number of constituent
I's. If K = I1l5---1; thenl < K means thatl) < min(l;) where () is
the right end point of; also,d € K implies thatd = pyp,--- pr with
P;j € I;. Here we have to introduce the convention thatK for empty
K. Note that we do not reject non- squarefigethis convention will
have dfect in the formula of LEMMATD below.
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Theorem 8. Let A be an arbitrary function defined on the set of all K
and satisfyingl(K) = 1 for empty K.
Putg(K) = A(11)A(l112) - - - (1112 - - - 11); #(K) = 1if K is empty, and
w(K) = g(lalz- - Ir—1) =@(l1l2- - 1r); w(K) = 0if K is empty, where

K=lilo--- I, 1>l > - > ;.

62 Then we have
S(A2 = ) (-1)"M¢(K) ) S(As 21)
K deK
+ (1K1Y > S(Adpy. P)
1<K p’'<p
p’,pel
deK
+ (1 My(K) > S(Ag, p(d)).
K deK
To prove this, we first modify modify the Bushstab identityitlly
as

S(A2 =S(Az)- Y A1) )" S(Ap p)

| pel
(2.3.1) == A0)) Y SR, ).
| pel
Also, for eachp € |, we have

S(Ap. P) = S(Ap.z1) = D S(App P) = D, D - S(App. P)

p'<p I’<l p’el’
p'el
= S(Ap.21) = ) S(App, P) = D A1) D, S(App, P)
p'<p I’<l pel’
p'el
= >2@=a31") " S(App ).
I’<I pel’
Inserting this into the first double sum on the right side[0B{®),
we get
S(A2=SAz)- > A1) SAz)+ > al) > S(Apy. D)
I pel I p'<p

p'.pel



2.3. A Smoothed Version of Rosser’s Identity 53

=2 @=20) D S(Ap. P+ - A1)(L - A(11l2))
|

pel lo<ly
D S(Apipyy P2) + D~ A11)A(112) D" S(Ap,p, Po)-
pi€ly lo<ly p1€l1
p2€l2 p2€l2

This is obviously the case= 2 of the identity

S(AD = ), (1K) ) S(As.21)

w(K)<r deK
(23.2) 0 (1PM(K) > S(Agpp.p)
1<K p’'<p
cu(K)<r—l p/pel
deK>
+ ) (F)PMy(K) D S(Ag, p(d))
w(K)<r deK
+(=1) ) (K) )" S(Ag, p(d)).
w(K)=r deK

We may establish this by induction enwe need only to insert in
the last double sum the expression

S(Ag. p(d) = S(As.z1) - Y. S(Adp: D)

p<p(d)
pdeK
= DTAKD) > S(Adp, ) - Y (1= AKI) > S(Adp, ).
1<K pel 1<K pel

Having obtained[{Z3]12), we takesuficiently large and conclude

the proof of the theorem.

Now, let us introduce two parameteysand > 1, and imitate
Rosser’s device. We sgat= 1, the characteristic function of the set
(2.3.3)

r=v+1 (mod 2)

K=l lily> > >, or

r=y (mod)2and YP*(l,_y)---(I) <y

And let ®, andA, stand for¢ andy with this choice of1, respec-

63

64
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tively. Then®, andA, are the characteristic functions of the sets
(2.3.4)

K=o iy >lo> o>y, )
vrerrin i~ 02 " forallkwith <2k+v<r

(P i (P RERY (F) RS Y}

and
l1>1>---> I, r=v (mod 2)

K=lqlp--1;; O,(lalo---1r-1) = 1%,
(lr)ﬂﬂ(lr—l () >y)

respectively. Then THEOREM 8 gives the following smoothedsion
of LEMMA 8]

Lemma 9.

S(A2) = ) (-1M90,(K) ) | S(A4 1)
K

deK
+ D (“10,(K1) > S(As.21)
I<K p'<p
P, pel
deK
+(=2) )" AK) D S(Adpp. ).
K deK

65
Further, in this we replac8(Aqpp P’) by largerS(Adpy, z1) and dis-

card the conditiorp’ < p, getting

Lemma 10.
(-1)'S(A.2) = (1) ) (-1)*00,(K) >’ S(Ad, 1)
K deK
- D 6K > S(Adpp. ).
1<K p,p'el
w(K)=v+1 (mod 2) deK
NOTES(I1)

In our definition of a sieve problem, we have introduced thaghite
0, but this has nothing to do with later development of our whsion.
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However, THEORENIB will probably serve for the future deyeirents

of the theory of 'weighted’ combinatorial sieve methods efhihas been
initiated by Greaves; in fact THEOREM 6 is generalized \asif his

identity [[20], (2.8)].

THEOREMI[® in its conventional form can be found in Halberstasa
and Richert [[21], p. 39], which seems to originate in Levis’ork [44]
on Brun’s sieve. On the other hand, the idenfify (2.1.6) withsimplest
choice off occors in lwaniec130].

We may call THEOTEMEhe fundamental theorem in sieve meth-
ods for various specializations gf give all sieve method known at
present, except for the local sieve of Selberg. Especiaily) the aid
of THEOREM[B, we can reveal the mechanism lying behind ARe
sieveﬂ).

We set

p(d) =pu(d) > Agdg,(t =1).
[d1.dz]=d

Then, after some rearrangement, we get

S(AD =) (> A

acA d|P(2
acQ(d)

=30 T 0D (n+ anp))?

p<z aeAp, acQ(h)
aguQ(q) hip(p*.2)
q<p.

wherep, q are primesp* is the prime which succeeqs andP(p*, 2) =
P(2)/P(p™). This remarkable identity is due to Halberstd.

We should remark also that, via a special case of THEOREM 6, Fer
vry and lwaniec([1B] obtained a stricking result pertainiagdombieri’s
mean prime number theorem.

In the proof of THEOREMJ7, we followed the argument of Fried-
lander and Iwanied_[14] which is quick and elegant compar#h the
one via Brun’s sieve; here, already we can have the glimptegiower
of Rosser’s idea.

1By the courtesy of Professor Halberstam
!By the courtesy of Professor Halberstam
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In explaining Rosser’s idea, we had to appeal to a rough inodge
the concept of the sieving - limit. We stress that our debinitof the
seieving limit applies to some restricted class of sieve@dares only;
for a more general treatment of the matter, see Selberg [75].

The idea of introducing a smoothing device into Rosser'sesie
method is an outstanding contribution of Iwanigcl[31] to theory of
sieve methods. This will result in a highly flexible error #rtein the
linear sieve, as we shall see in the next chapter.

We are not in a position to speculate how Ilwaniec was led to his
novel idea; readers are referred to his own accaourit [33].

The argument developed il_8R.3 is due to Motoghashil [[6Q], I
which is a refinement of lwaniec’s



Chapter 3

TheLinear Sieve

THE OBJECT OF this chapter is to develop a detailed accouthef 68
fundamental result of Rosser and Iwaniec on the linear siBesser’s
theory determines the optimal mainterm in the upper andrid@eands
for linear sieve problems, and lwaniec’s theory enhansgsatver grea-
tly by introducing into it a highly flexible error - term.

We shall first study the nature of expected optimal upper ane
bounds for linear sieve problems by employing Rosser’'srsigproce-
dure described in the preceding chapter. This will lead @sdifference
- differential equation, and solving it, we shall find the mostadlé
choice of the paramet@; which will, in turn, be fed back to a rigorous
argument to prove Rosser’s linear sieve. And an examplea8elberg
will be used to confirm that Rosser’s result is indeed optirialen we
will focus our attention on the error - term in Rosser’s linsi@ve; we
shall inject into our discussion the smoothing device ishiced in the
last section of the preceding chapter, and obtain lwankskrsear form
for the error - term.

Throughout this chapter, we shall retain the notation amdeation
introduced in the preceding chapter.

57
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3.1 A Difference-Differential Equation

69
First of all, we have to give a precise notion of the dimensiba sieve

problem.

We require that which is introduced a{fZ2.1) be not wild locally,
and constant on average. Namely, we assume that there isstaobn
A; > 0 such that for all primep

5(p)

3.1.1 0 —<1-
(3.1.1) <2<

1

Ay’

and that there are constatsd, > 0 and a positive parameterwhich
is not too large such that for any<2u < v

o(p) v
L S Py p-kiogy <A
UZ;KV 5 log p 9s <A

ThenS(A, 2) is called ak - dimensional sieve problenfAnd, in the
present chapter, we are concerned with the kasd exclusively. Thus
we assume throughout the sequel the conditibns{3.1.1) and

5(p) v
(3.1.2) L< USZFKV 5 log p — log Y < Ao

forany 2<u<w.

It is known that [3.111) and(3.1.2) imply
6(p) -1 logv 1
e J1[-5) =gl
as well as
s(p)\* _logv 1
e [1[-"0) =gt olioga)

for any 2< u < v, where the implied constants dependAnandA; at
most. In particular,[{3:113) allows us to use THEOREM 7. Alsoour
argument, we shall make multiple use of the basic
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Lemmall. We assum@.T.1)and @3.1.2) Lety(t) be a non-nequative,
monotone and continuous fuction forta > 0. Then we have, for any
2<u<v< xt/lre,

logx
Togu

6(p) Iogv Iogv
> P (p)w(logp] f Y- D+ OLMVE):T)

u<p<v

Iogv

log §
M = maxy | ——=|.
usé<v’ | logé
After these initial remarks, we now start the investigatieading to
the determination of the optimgl in the Rosser weights, under the
basic assumptions131.1) ald(311.2).
To simplify the convergence problem which we shall encauater,
we introduce here another parametgsuch that

where

logy
3.1.5 1 < expl ———— |,
(319 <09 a7
wherey is the parameter which occurs in the definitionopf Further, 71
we put

z=y"s,

and assume that
(3.1.6) 0< s< 109

logz;

so thatzy < z Then we apply Rosser’s identity (LEMMB 8) to the
sequence
{fae Aja¢ Q(p)forall p< z},

getting

SAD= > u@n@SAaz)+ (1) > ou(d)S(Aa.p(d)).

diP(z1,2) diP(z1,2)
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and thus

(3.1.7) (—1)"{S(A, 2= >, ud)(DS(Ag, 21)} >0,

diP(z1,2)

whereP(z1, 2) = P(2)/P(z.). Similarly, we have
(3.1.8) } }
Vo =V@) Y udp 2w S o Do)

diP(z1,2) diP(z1,2)

To eachS(Ay, z1) of BI.1) we apply THEOREMI7, and get

-1yt {S(Ad, ) - XV(zl)@ (1 + O(exp(—g log h)))} < Z IR4rl,
rP(z1)

r<z)

whereh is at our disposal. Insertion of this info{311.7) gives

(-1 HS(A,2) - XV(DKu(Y, Z 6))

(319) < Z Ryl + O{exp(_g |Og h) XV(Z]_) Z 5(d)gv(d) } ’
r1P(z1) diPz.,2)
r<z
where
. §(d)
(3.1.10) V(2Ku(Y, Z 6) = V(z1) Z FONCE=S
diP(z1,2)
Since

DD vz vi

diP(z.2)
and also we havé(3.1.3), tilzterm of [31) is

o} {exp(—g log h) XV(2)(log 2)2} .

We now set
h = log logy,
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and collecting above estimates, we get

(3.1.11) 1)V1{S(A 2 — XV(@K.(Y, Z 6)}
< > IRl + XV(2)(logy) "%

diP(2)
d<yo

whereyy = yexp(logz; log logy). 73
Next, we put

Hu(y. z 6) = max(Q Ku(y. z 6));
obiviously, we have
Hi(y. z 6) = Ka(y, z 6).
We should note also thdi(3.1.8) implies
(3.1.12) Hi(y,z6) > 1> Ho(y,z6) > 0.

Hence our problem is now transformed into the asymtoticuaval
tion of H(y, y¥'S; 6) in terms ofs, i.e., we will seek for the continuous
function ¢,(s) such that

(3.1.13) JNimH,(y, Y5 6) = ¢u(9),

if it ever exists. Note that we are going to fing&s) not depending on
¢ apart the basic conditions (31L.1) abd (3.1.2).

If (BZI.I3) holds, and if we assumge_(Z12.6) with= yg, then we
would have

(3.1.14) XV(y*)(go(9) — 0(1)) < S(A, %) < XV(Y"/*)(@1(s) +0(1)).

The direct proof of[[31.13) seems to be quitidult if not impos-
sible. Thus we make a round-about, by assuming first theegxist of
the limit ¢,(s); on this assumption, we investigate its nature, and then
feed the obtained information back to the actual proof ofth@anptotic
formula for H,(y, y~'s; 6). The optimal choice of will emerge out of
this process.
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Thus let us assume more preciesely thai(311.13) holdsranlifdor 74
all boundeds. Then

(3.1.15) ¢y is monotone,

since it is clear from{3.118) that,(y, y*'S; 6) is monotone with respect
to sfor each fixedy. Also, because of (3. T112), we have

(3.1.16) #1(9) = 1> ¢o(s) = 0.

Now, since we havd {3 1114), the obervation made[1nl§2.2 en th
sieving limit suggests that if we want to let Rosser’s sigymocedure
simulate well the optimal one which is supported to exist, sheuld
confine ourselves to the most critical case

(3.1.17) B = Inf{s; ¢o(s) > O}.
This shall we assume henceforth, and will turn out to be dexis
@I10) gives
(3.1.18)
0
VO V@) - Y VK pio)

21§p<min(y1/5,y/%1)
1
sincep1(p) = 1 impliesp < y8+ 1. So we have, fos <8 + 1,
VMoK, Y 6) = VP 1)Ka(y. y71; 6),
thatis, fors< g + 1,

sp1(s) = B+ 1), (B +1)
(3.1.19) = D,

say. On the other hand,gf+ 1+ ¢ < s, then we have (log/p)/log p >
B+ ein F1I8), and by the assumptidn (3.1.17), we have

y y
Kol=.,p;0|=Hgl=,p;o
o(p P ) O(p P )
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for sufficeintly largey. Thus, forv > u > 8+ 1+ & we have, byl[{3.1.18),
VHLY. Y75 6) = VY ) Hu(y. ¥y 6)

_ o(p) .
= ;Z T V(D)Ho(p p,é)-
yv <p<yt

But, by our present assumption, the last sum is equal to

o(p)y,

A+ D, =

<p<ylu

which, sincegg is monotone and bounded (cf_(3.1.15) ahd (3]1.16)),
can be expressed, with the aid of LEMNIAI11, as

Vo et |

1+ 0W)TVGY) [ doft- 1t

provided
(3.1.20) L = O(logy)

76
We shall assume, in the sequel, this harmless conditiol. arhus
we get

V(y*Y)
Vo)

H1(.y¥16) — UHi(y. Y4 ) = (1 + o(1) f dolt — L)dlt,

and by [3.TH)
Vp1(Y) — Uy (1) = f dolt - )t

for B+ 1+& < a < vwith any fixede > 0. But, because of the continuity,
we see that this holds f@gr+ 1+ << v; namely, we have

(3.1.21) 6&01(9) = po(s— 1) forp+1< s
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Simirlarly, we have, fov > u > 8 + &,

VO - Vi Haeyh o) = Y 2P

1
v

V(H: (2. P:5),

(=

yv=p<y

providedy is suficiently large. Thus, as much the same way as above,
we have

Vo(V) — Udo(U) = f g1(t - D)dt

for max(18) < u < v; here the condition k u is needed bacause of
EI1I9). And, we havg < 1, the last equation contradicts the bound-
edness obg. Hence we may assume hereafter that

(3.1.22) B> 1

Then we have
(3.1.23) &bo(9))" = ga(s—-1) forpg<s
which is of course supplemented by

(3.1.24) ¢o(s) =0fors<p.
Collecting [31.117),[(3119)[(3IR1N-(371124), we amv led to

the investigation of the ffierence-dterential equatio
(3.1.25) &(9) = pua(s—-1forg<s
on the boundary condition

(3.1.26) sp1(S) = D, ¢p(s) = 0fors< 3,
(3.1.27) $o(s) < 1 < ¢a(s) forall s> 0,

whereg > 1 andD > 0 are to be determined so that
(3.1.28) do(s) > 0fors>p
and the asymptotic formul&{3.1113) holds on the condif@i.PD).

1In the sequel, we shall use the conventign= ¢, if j = v (mod 2).
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3.2 The Optimal Value of g

In this section, we shall now show a detailed solution of #s¢ pproblem.
This requires a little lengthy discussion, and we start withfollowing 78
two important observations on the nature of the expectadisnlg,.

Lemma 12. If ¢, satisfiesB.1.23}@B.1.2T) theng, and¢g are strictly
decreasing and increasing, respectively. In particu@rL.Z8)is redun-
dant.

To prove this, letu, be the least root of’(u) = O, if exists. By
BI12%) andl(3.1.26), > B + 1. But we have, by[(3.1.25) and (3.1127),

0 = Uo7 (Uo) = ¢o(Uo — 1) — ¢1(Uo) < ¢o(Uo — 1) — ¢po(Uo)
= 65(W) = Z(0o(W) ~ 411l ~ 1)) € (Gr(W) ~ 1l ~ 1)
— 1 4 /7
J‘ﬁl(u )

whereup -1 < U < up, U -1 <u” < u. However, we have’ (u”) <0
because of the definition @b. Henceg,(u) is strictly decreasing. And
so we have, fou > g,

Uo(U) = (U — 1) — go(u) > ¢p1(u—1) - ¢1(u) > 0
whencegpg(u) is strictly incresing fou > g.

Lemma 13. We assumg3.L1)and 3I12) Let¢, be a solution of
@IZ5}@EZT) Then we have, fa2 < u < v < yYA,

|
VO (22) =V 3 w0 Do 3

diP(u,v) Iog u

(LV(V) log? V)

log®u

wherepy(d) = pv(d; Y. B). 9
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To show this, we note firstly that the previous lemma allowsous
appeal to LEMMATL, and we have

logy
Togu

oAp) Iog% = Iogv logv
u<23p<v T¢V+l [m Iog f dys1(t—1)dt+0 (V(V)L g u)

logy
logv

. log ¥\ . ,
sincegy, 1 (% is bounded i < y2; here, we should observe also
that we haves > 1. But this integral is, by[{3.114) and(3.1125),

logv (logy (logy) logy  [logy
V(V)Iogy{logu¢v(logu) Iogv¢"(logv)}

—V()¢v('°gy) ()¢v( ) (V(v)'ogv)

log?u

Thus, noting thaf{3.1.26) |mpllezs)(

v( )¢v('°9y) v( )¢V('°gy)

logu

) 0if p?*1 >y, we get

y

s(p) log logv
- Z D Pv(p)¢v+1[ log p) ( LV(v )Iog U)'

usp<v

80 This is obviously the case= 1 of the formula

log 2 3
logu

VO (2] V() Y ) ”¢v+w(d>[

Iogv diP(u,v)
w(d)<r

o(d

e W

diP(u,v)
w(d)=r

log ¥
V(@) dver (%)

(3.2.1)

+

L 5@
O(IOQZU) V(v)logv+w(dz)<r > V(p(h) log p(c)
diP(u,v)
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We may establish this by induction onlf v+ w(d) = 0(mod2) then
pv(d) = 1 impliesp(d)? < y/d, so

log &
Gyrw(d)+1 (Io—gd;] =0(1)

for £ < p(d). If v+ w(d) = 1 (mod 2), then the same holds obviously.
Hence we have, as before,

log log §
V(p(d))Py+w(d) (Iog p(d)) V(U)Pv+w(d) (|Og 3)

log 7 L
6(p)V(p)¢V+w(d)+l[ o9 p ] + O(LV( p(d)) log IO(S))’

u<p<p(d) P

where the left side is the one appearing in the second suln. A3
Inserting this into[[3.2]1) and eliminating the terms wiloge pd such

that
log 75
¢V+w(d)+l m =

we readily ontain[[3:2]1) far+ 1 in place ofr. To conclude the proof of 81
the lemma, we need only to takesufficiently large in [32211) and note

that the error-term is, by {3.1.3),
j log®v
} (LV() i )
log®u

LV(V)logv v 1 5(p)
oy 2T (2, b
og-u j=0 usp<v
After these preperations, we can now proceed to the detatimin
of gandD, and sap,.
Put

G(u) = ¢1(u) + ¢o(u).
Then by [3.1.26) we have, f@r < u,

(UG(U)) = G(u-1)
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which gives
, 1 1 )
IG' (W)l = =IG(u—1) - G(u)l < = max |G'(t)!.
u U u-1<t<u

Thus we have
G'(u) =O(r(u+ 1))

which implies obviously that there exists a constarsiuch that
(3.2.2) G(u) = A+ O(r(u)™)

foru > g.
On the other hand, if we put

g(u) = ¢1(u) — po(u)
theng(u) > 0 by (3.1.2F), and we have, far> 3,

= [ eat@e = ug - - vt 1)
u-1

= ug(u) + (u - 1)(ug(w)y’
= (u(u - 1)g(u))’,

since (g(u))’ = —g(u — 1) is implied by [3.1.25). Hence we have
(3.2.3) | eateras = - g + ¢
u-1

for u > B; settingu = B8 and recalling[[3.1.26), we, have
C=(2-p)D.

Then, by the monotonicity afig(u), one may deduce froni{3.2.3)
the asymptotic formula

(3.2.4) g(u) = % (1 + o(é)) +O(r(u)™b).
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But we haveg(u) > 0; so, we get, in particular,
(3.2.5) B=2

From [312V) and(3.2.4), we infer that= 2 in (322), and thus
gu(U) =1+ (—D“% (1 + o(%)) + o(r(u)-l) .

This shows clearly that = 2 is likely the most favourable choice in
the sense that the®,(u) would converage to 1 very strongly agends to
infinity. The same can also be inferred from the combinatiof8d_T0)
and LEMMAI[I3, for it gives

VY9)lg,(9) — Koy, yY/5; 6)l

(3.2.6)
é(d logy/d log?
e N e (e I (B
dIP(zy ") 9z 09 4
provideds > ; this could be small only wheg = 2. 83

Therefore, we now put
(3.2.7) B=2;

this would be the optimal value @f for as we have mentioned already
B was to be taken as small as possible, and we havel(3.2.5).

Next, we shall determine the value Bfon the condition[{3.217). To
this end, we consider the Laplace transforn@gd):

Alr) = f ) e "'G(u)du.
2
BI12%) andl(3.1.26) with = 2 give

3
((A(@)) = A@D)(L-€e7)-D(Ee ¥ + f e (- 1)"Xdu).
2
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Solving this diferential equation on the boundary conditiéfeo) =
O, we get

7A(r) = D f [e—2t ¥ f ue:t“l ]

T 2
Lo g Lot
[—fe—du fe 1du]dtxexp[fe— fe—dt].
u t t
1

t

Then observing that

(3.2.8) lim 7A(r) = A= 2,
7—=+0
and that
1 1_et R oot
-e e
f n dt - det = v (Euler’s contant)
0 1
we have

3
_ )
2¢" = D{h(2)+fu_1du}

2

h(u) = fwexp[—tu f”e? - j e_i: 1d§] dt.
1 i

o

where

But it is easy to check
(3.2.9) ub (u) = —h(u + 1)(u > O);

this implies that
f h(”)d U= h(1) - h2),

2
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whence
D = 2¢’/h(1).

On the other hand_{3.2.9) implies also that
h(1) = — lim_uh (u)
u—+0

(o9

lim ufexp —tu-
u—+0

forf o[
[

]d

and this limit is equal to 1, whence we obtain 85

1
e ‘f f
3
t
. r e§
lim ufexp —tu- | —
u—+0 &

[o]

D =2¢.

Collecting the above discussions, we see thai (3.1.25)RAPH)
have now the new form:

(s44(9)" = py+a(s—1) fors> 2,
(3.2.10) sp1(S) = 26, ¢p(s) =0 for 0<s< 2.

And, in the sequal, we lef; and¢ stand for the functions defined
by this equation; in fact, it is clear thai{32110) defines tontinuous
functions inductively starting from the range<0s < 2.

Then apply the above argument to the equafion{3.2.1).

We now haveC = 0 in (322.3), whence we have

(3.2.11) $1(S) > ¢o(9).

On the other hand, this time we halde= 2e¢”ab initio, and through
the analysis of the Laplace transform &f= ¢, + ¢1, we getA = 2
again. Hence, by13.2.2) arld(3R.3) witk= 2, we obtain

(3.2.12) #,(9) = 1+ 0((9) N (s> 2).

Finally, we note that by LEMMATI%1 andgo are strictly decreas-
ing and increasing, respectively, agcreases in the range> 2. 86
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3.3 Rosser’'sLinear Seve

In this section, we shall demonstrate that the asymptdatioa (3.1.18)
actually holds for the functiog, defined by the equatiofi (3:2]110), and
thus establish the fundamental result of Rosser on therlgiege.
According to [3ZB) and{3Z112), it Sices to consider the estima-
tion of the sum
pv(d)
(3.3.1) > SaliC) exp(

dIP(z0.y*/3)

_logy/d
logz, |’

where we should stress that we have 2; this is due to the fact that
we have already fixed the value @to be 2, and thus, in the sequel, we
shall work on those, with 8 = 2.

To this end, we shall prove first the crucial

Lemma 14. AssumingB.T.1)and 3 I.2)we have, forang <u<v<
x1/2.

Z 5(p1p2) V() exp(— |09|]O>;/ El pz)
2

log x){ ( logv )}2
<npV(vV)exp[-—— <1+ 0|L
M) p( 09} {1+ o129

1/1
n—§(§+|093)<1

uspppr<v  PLP2
P3p1<X

where

To show this, we divide the sum to be estimated into two pgkts
andy,,; according tau < p; < min(v, x/4) and to maxg, x/4) < p; <
v, respectively. First, we consider the case where

(3.3.2) v< x4

Then we have’;, = 0, and bu LEMMA[T1,

IEDIND)

Uspi<v uspe<pi
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log p—ﬁ
logu

_ Z 6(p1) V(p1)log p1 fel—tdt

uspi<v IOg p1

log PI
logv

log =
+0 le.ﬁpl exp __pl
log? u log p1

e logv s(p) log 5
Sé(lJro(LIOQZU)) Z p p vP)ex ( log p

u<p<v

since, according td{3.3.2), we have

(AJII—‘

X
log p1/log —

Yy

Thus, again bu LEMMATIL, we have

e Iogv))
<-|1+0fL
; 3( (Iogzu

Iogx

V(v) logv f et (LV(v)logveXp(_loﬂ())

“logx log?u logv
logx
Togv
e logv log x
<t roltiegy)) voreel foga)
Next, we consider the case where 88
(3.3.3) xM4 < v < X2,

As before, we have

2= 22

u<py<xi/4 Uspz<py
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e logv 5(p) logx/p
_(1 O( Iogzu)) 2, —p Vmex ( Iogp)

u<p<xi/4

w

Iogx

(1+O(L |09V)) V(V)'Og"feltd (LV(V)Iogv)

log? u log x log? u

-2
<e—(l+O(L Iogzv)) ()Iogv
log“u log x’

On the other hand, we have

<
I Xl/ASp1<V u5p2<(i)1/3

log % log §
Togu

_ Z 6(p) V(Io)logjlt)fe“dt (LV(p)Iogp)
log 3 log? u

x4<p<v

se‘2(1+0(L '092")) 3 o(p) logp,,
log“u p Iog‘—)

x4<p<v

- (oo Io0L ) | Voay d o, VODlow)

log?u log x | t—1 log?u
(o1 1299 violeat o [ ]
Iogu 0g X oo~

89 Hence we get

where
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and [33B) is equaivalent toR¢ < 4.
Now we have

4y E | & 1,03
@ O="z¢ {(5—1)“3*'09&—1}

1
= g?eé_on(f),

say. In the interval X & < 4, Ap(¢) attains its maximum & = 3 and
3 5
A0(3) = |Og§ - 1—2 < 0.

Thus

1(1 e
nggiA(g) =AQ2) = > (5 + log 3) > R

Which gives rise to the assertion of the lemma.
We now proceed to the proof di{3.1113). For this sake, weapl
B I.20) by the stricter, but still harmless, condition

3 logy
334 = 0{ogtonys )

and we set in the above discussion

 expl - 198Y
(3.3.5) A= eXp((Iog Iogy)z)

so that[[3.1b) is satisfied. 90
We divide the sum[{3:31) into two par}s; and ., according to
w(d) < 2B andw(d) > 2B, respectively: her® is to satisfy

1
(3.3.6) $= > log logy.
Then LEMMAM@ (withg = 2) implies that in}}; we have

logy/d _ 37° logy
logz; 2 logz

= loglogy (o,(d) = 1),
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whence we have, uniformly fa> 2,

(log logy)*

(3.3.7) V(z1) Z << V(Y5 ==L o0y

because of{3.35).
To estimate),», we note first that ip,(d) = 1 andp(d) > wthen

logy/d ) .
log p(d) /"

this follows from [31.B) and the fact thai(d) = 1 impliesp(d)d < vy.
Thus, for instance, we have

po(d)od) (_ logy/ d)

(338 VW) exp(—%) << V(p(d) exp(—

(3.3.9) V(z1)

w(d)=2r+1 logz,
dIP(z0.yY9)
po(l)o(p)o(¢) logy/p
<< Zl/s of V(p) exp log p
Z1<p<y
QP(p.yMs)
w(t)=2r

91 for po(pf) = po(€) in this sum. Usingl(3:318) once more, we see that the
last sum is

PO CLEIVE T T4

lep<y1/5 p [lp(pyl/s IOg p(f)
w(t)=2r

po(6)o(£) ( Iogy/f)

<< logloglo ————=V(p(¢)) exp|— ,

glog logy ZUS 7 VP@O)exp| -
{P(py
w()=2r

since we have

Z (;)) log l_[ (1_@)_1

71 <p<yl/s 71 <p<yls
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<< logloglogy
because of(3.113) and(3.B.5). But the last sum éisrequal to

y
Weo) 50 oap) 109 5o
k P1p2 logpz )
KIP(z1.y~'®) pEpL<y/k
w(k)=2(r-1) u<pr<pr<p(K)
To the inner-sum we can apply LEMMATL4, sinpg(k) = 1 and
w(K) = 0 (mod 2) implyp(k) < (y/K)Y/?; thus the last sum is

logy \\? 5(K)po(K) logy/k
Iogzzl)) k V(p(k))eXp(_log p(k))'

<n (1 + O(L
KIp(zo,y~'®)
w(k)=2(r-1)

Hence, by induction om, we see that the left side of (3.B.9) is,
uniformly for s > 2,

2T
<< {;7 [1 + O[L:ngy)) } V(y*'®) log log logy.

Al

92
In much the same way, we can show, more generally, that

Vi) Y, DD o Iogy/d)

AT d logz;
diP(z0.y")

irz

2
<< {n(u o(L'ngy ]] } V(y"/%) log log logy.
log

71

uniformly for s > 2 and for allj > 1.
Hence by[[3:3M4)E(3.3.6), we have, for any fixgd> 7,

3" << V(y*)(log logy) 5.
2

By this and[3.317), we see th&i(313.1) is

V(yYs) ~3/10
0[N 0g 0gy) ).
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provided [3:331) holds ansi< 2.
Therefore, by[(3.216), we obtain

Ku(y,¥"/%;6) = ¢(s) + O(log logy)~**°)

uniformly for all boundeds > 2 on the assumptions{31.1), (3]11.2) and
B3:3), whence we have indeed provEd (311.13).

Summing up the above discussions, we have established

Theorem 9 (ROSSER’S LINEAR SIEVE) Provided@11)and (12)

with L = O(Ioi) we have, uniformly for all & 2,
(log logy)®
(-1 {S(AYY%) = XV(y)(9,(s) + O((log logy) >%)} < » " IRdl,
d<y

whereg, is defined by3.2.T0)

Remark. According to [(3:1.111), the sum ovdron the right side should
have been extended up 9. But this blemish can easily be removes
by taking into account the basic properties¢g{s). We should note
also that we have actually established this theorem on thengstion
@BI8), but if it is violated, then the theorem follows frahe funda-
mental lemma (THEORENM 7).

Now it remains to show that Rosser’s linear sieve is an optiesalt
in the sense that it is impossible to improve upon the maim-tender
the prescribed general conditions.

To this end, we introduce the sequer®&®(x) = {n < x ; the total
number of prime factors af is}. congruent tor (mod 2) wherex is to
tend to infinity. We have, for angt < X,

. X X x\1/2
|Afj)(x)| = 24 + o(a exp(—c(log a) ))

Thus we have
X=x/2,6=1,

and we put
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y = xexp(—(log)*?).
Then

(3.3.10) DUIRY ()1 = O(xexp(—c(log ™))
d<y

Also we have, fors < 2,
S(AM(x), xM%) = n(x) + O(X**),
S(AO(x), x!/%) = 0;

that is, we have, for k¥ s< 2,

(3.3.11) S(AM(x), x/5) = XV(xY/9) (¢V(s) + o(i)) :

log x
o= [10-5)= o+ Ofge)

On the other hand, the Buchstab identity gives,dert,

where we have used Mertens’ theorem:

S(A(X), x/3) = S(AM (%), x1Y) — Z S (A(V+1) (5) p) .
Xl/t§p<xl/s p
Thus, by LEMMA[T] and[[32230), we can inducively confirm that
@3.11) holds for all boundes> 2.
But the relation[[3.311) yields readily 95

S(AM(x), y"/%) = XV(y"*)(,(s) + O((log X)~/?))

for all boundeds > 2. Recalling [3:3.110), this means that the main-
term XV(yY/%)¢,(s) of THEOREM[ is asymptotically attained by the
sequencé(x).

It may be worth remarking that fok)(x) Rosser’s formuld{Z114)
with p,(d) = p,(d; x, 2) ando,(d) = o, (d; X, 2) takes the critical form

S(AY(0.2 = ) (Ao (DAY ()
diP(2)

namely, the second sum di(Z.11.14) does not appear at alls fidiu

AM(x), Rosser’s truncation-iteration procedure of the Budhalantity
causes no essential loss.
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3.4 lwaniec’'sLinear Sieve

Having determined the main-term in the linear sieve, we @am focus
our attention onto the error-term, which has been left inruaerform in
THEOREM 9: We shall inject the smoothing device develope8l
into the argument leading to THEORHM 9.

As before, we assume always{311.1) dnd (8.1.2).

We begin our discussion by showing a smoothed version of LEMM
3 (withp = 2 and¢, defined by[[3.2.710)). But to this end, we have to
specify the mode of the dissection of the intenal £ which was in-
troduced in §[Z]3. We put

z=22z

whereJ is a large integer, and,, z are large parameters to be deter-
mined later in terms of. And we defind to be one of the intervals

(3.4.1) bz L zz) 1< <),
Further, in view of the result of £3.2, we set
B=2

in the definitions 0®, andA, (cf. (Z33)).
Then we shall show

Lemma 15. We assumdf3T1) and (31.2) Let ¢, be defined by
(ZI0) and let z< y*/2. Then we have

| d log ¥
K

= logz
log?

z Iogz))}
0{V(z L+logzlo .
" { ()Iog3zl( gz g(|0921

We shall prove first that, for

(3.4.2) deK, ©,(K) = 1,
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we have

| y [ X
V(p(d))Py+w(d) ( |0; ?ﬁ)(d) ) V(@)dvrua ( |((J)§ Zd )

log g5 >
- Z A,(KI) Z (p)V(p)¢v+w(d)+1[ log p )

1<K pel

N O{MLPQM(L + w(d) log 22)} ,
log” z

wherea, is defined atlfZ3]13). In fact, sinde{3M.2) implies 97

log &
¢v+w(d)+l[ o gd;] =0(1)

for & < p(d), we have, just as in the proof of LEMMATL3,

(3.4.3)

[ y log ¥
V(p(d))$y-+w(d) ( |O;) gp(d) ) V(@)dviu@ ( I(c));J Zd )

~ 5(p) lo gd] ( V(p(d)) log p(d))
21<;p(d> P V(p)(ﬁw(d)ﬂ(' ogp +olt log? 2,

If v+ w(d) =0 (mod 2), then the last sum ovpiis
(3.4.4)

log -
DK Y 6(p)v(p)¢v+w(d)+l( IogTDp) + 0{ > 6(Pp)V( )}

1<K pel p<p(d) pdeK

becausel, (K1) = 1, on our present assumption ahd{3.4.2). This error-

termis, by [(3.IB),

(3.4.5) O(V(p(d» log p(d) '05 2 )

Al

On the other hand, if + w(d) = 1 (mod 2), then the sum overin 98
guestion is represented as

(3.4.6) D > YD

é<K pel 3I,<K pel  p<p(d)
(1) (K)<y (1*(K)zy pdeK
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where K) = (I1)(12)...(I;) if K =I1l5...1;. The first double sum can
be put in the form[{3.4]4) without the error-term, and thé $asn overp
has obviously the upper bourld(3J4.5). It remains to esértra middle
sum; it is equal to

(3.47) Yoy Ay ()¢[ gl"]
I<K el p logp

(H3(K)zy p3<y/d

p<p(d)

Here we have, by the mean value theorem,

Iogd—yp Iogd—yp
¢o[ Iogp]: ¢o[ Iogp]_¢°(z)

< Iog(#) /logp,

which is
< w(d)log z,/ log z,

for pel, deK, (1)3(K) > yimply
p2dZ @3 > (13(K) > v.

99 Thus [3:4) is less than a constant multiple of

w@ 0z 3 Ay,

o9z, £y P

092 2 V(p(@) log P

< (d)

Collecting these observations, we obtdin (3.4.3).
In much the same way, we get

logy logy
V0. () = Ve, oo

log
-Z@mzamm{mJ(m

Pel
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+0 {V(z)logz
(o]0 i}

(L +log zz)}.

Then the formulal(3:413) allows us to iterate the last ond, &fter
the infinite iteration we get the formula of the lemma, apaohf the
error-term which is

V(2)logz < L +rlogz 5(p) r
ol 5t 5,

r=0 71<p<z

| (067
=o0V(Z L +logzlo ,
{ ()Iog3zl gzlog o921

whence the assertion of the lemma.
We are now at the stage to combine LEMNA 10 with LEMNIA 15.
For this sake, we introduce very mild restrictions ®andL. We 100
assume that, forany8u<v,

5(p? _
(3.4.8) > % = 0((log logu)™),
u<p<v
and that
(3.4.9) L= o192 )
loglogz

Further, we set if(3.4.1)

(3.4.10) 21 = sz, 2= ZTg,T = (log Iogz)‘l_lo'
thus, in particular,
(3.4.11) J < (loglog2)¥/1°.

Also, we assume, in the sequel, that

(3.4.12) y> 2.
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Now by the fundamental lemma (THEORHM 7) we have, for a cer-
tain sequenc(f&v)} which is independent df,

1) {S(Ad 2) - va(zl)(uo(exp(——log H)))}
(3.4.13) > (-1) > &Ryt

f<
fIP(z1)

whered|P(z, ), andH is at our disposal. We set
H =17 = (loglogz)**°.

101 On the other hand, modifying the inequality of LEMMAI10 (with
B = 2), we have

(-1) {S(A 2) - XV(21)Z®V(K)( 1)w(K)Zé(d)}

deK

> Y0, 1)”‘”“02( (a2 - “Pxvea)

deK

- Z 0,(K1) Z (S(Adpu’ z) - 6(dpg)XV( 1))

1<K deK
w(K)=v+1 (mod 2) p, pel

- > O,(KI) >’ %xvm).
K

1<K d
w(K)=v+1 (mod 2) p, pel

Insertion of [3.4.113) into this yields

(-1 {S(A ) - XV(Zu)ZG)v(K)( 1)w<K>25(d>}

deK

(3.4.14) > Z @V(K)(_l)v+w(K) Z é:]cv+a)(K))|_-\,df
K deK
f<
fIP(z1)
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D GO ST

1<K deK
w(K)=v+1 (mod 2) P,Pel
f<z'1'|
fIP(z1)
H 6(d)
—olexp{—-—=logH || XV(z1) ) 0,(K) —
(ool 7 toah ) xvez) 3 0,060 3=
é(d
—o(xV(@) Y 0,KN) Y (dpp)
1<K deK dpp
p,p el

102

By G1.3), [34.B) and(3.4.10), the last Germs are easily esti-

mated to be
(3.4.15) 0KV(2)7°).

Also, by virtue of LEMMAI[ILH the sum oveK, d on the left side of
@BZ413) is equal to

XV(2) {qbv (:g—g;’) + 0(12)}
py(d)s(d) l0g 3
(3.4.16) +0{XV(21) d|zp(:z> g | P (Iog zl] '} ’

because®,(K) = 1, deK imply readily p,(d) = 1, wherep,(d) =
0,(d;y, 2) is defined atllZI12). We have to estimate this error-term
on our present suppositions. As before, it iffisient to consider sum

,(d) log §
va S 29sq) exp[——),
1 d;(z) d logz;

which is divided into two parts as

(3.4.17) V) Y +V@) ).

w(d)<2B’ w(d)>2B’

whereB’ is to satisfy

3% = 71 = (loglog2) ™.
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103

We have, by LEMMAD,

_B
V(z1) Z <V(z) Z ’O—V(d()f(d) exp(——3 Iogy)

w(d)<2B’ dp@ 2logz;
1
(3.4.18) = O(V(Z)T_4 exp(——)).
T

On the other hand, LEMMAT4 gives, as before,

logz 2)®
V(z1) w((;zzBl < V(2 {n (1 + O(L o, )) }

= V@ {n(1+06%))”
(3.4.19) < V(z2)(log logz)™ %,
in which we have used(3.4.9).

Collecting [3.4.TH) {(3.4.19), we obtain
(-1)" {S(A, 2 - XV(@) (¢V (:g%z') +0((log |ogz))—%)}
> 3" 0,(K)(-1) K N prreliRy,
K

deK
f<z
f|P(Zl)
(3.4.20) - > O,KI) > EPRappr.
1<K deK;p,p'el
w(K)=v+1 (mod 2) f<z,fIp(z)

In order to transform further these double sums, we make &ere
crucial observation.

Lemma16. Lety= MN > Z2 with arbitrary M,N > 1. Then®,(K) = 1
implies that there exists a decomposition=KK1K> such that(K;) <
m, (K2) < N. Also, if@,(KI) = 1,1 < Kandw(K) = v+ 1 (mod 2)
then we have a decomposition K K;K, as above, and moreover, at
least one of the following three cases occurs:
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((Ka)(1) < M, (K2)(1) < N} {(K1)(1)? < M, (K2) < N,
{(K2) < M, (K)(1)* < N}

To show this, leK = I1lo... 1, 11 > Io... 1. We have|)) < z<
VY < maxM, N); so (1) < Mor (I1) < N. Let us assume that we have

already the decomposition ...l = KiJ)Kg) such that I((gl)) <M

and «g)) < N. Since®,(K) = 1 gives obviously j;1)%(1;) ... (I1) <y

foranyj <r — 1, we have eitherl‘(i’))(lm) < Mor (KEJ))(IM) <N;

for, otherwise, we would havelj(Ll)z(ng))(Kg)) > MN =y, a contra-
diction. Thus we get, inductively, the first assertion oftfdrama. As for
the second assertion, we note that the stated conditia, bimplies
(K)()3 <y, which readily yields the claim.

We now return to[(3.4.20), and we assume that

y=MN>Z;MN>1

We have, by the lemma just proved, 105
Z ®v(K)| Z é:(fv+a)(K))RC”| — Z ®v(K)| Z f(fvm(K))RdfldgL
K deK K dieKy
f<zZ doeKs
fIP(z1) f<Z

fIP(z1)

whereK = K1Kj, (K1) < M, (K2) < N. But the last absolute value is
obviously not larger than the expression

(3.4.21) sup E @mBnRmnl
@B momz
n<N

wherea = {am}, B = {Bn} are variable vectors such that| < 1,8, <
1. On the other hand, by the second assertion of LEMMA 16, the se
ond sum on the right hand side §f(3.4.20) can be written as

Z ®V(K|) Z é:(fl)Rdldszf'

1<K di1eKy
w(K)=v+1 (mod 2) doeKs
p,p el

f<z

fIP(z1)
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whereK = K;K5 and one of the three cases listed in the lemma occurs.
Let us assume, for example, that we hakg)(1)?> < M, (K2) < N. Then 106
we havefdpp < MZ andd, < N; thus, again the inner sum is, in
absolute value, not larger than the expresdion (3.4.2Her@ases can
be treated in just the same way. Finally, we observe thatuheoer of
admissibleK, | in the formula [Z2.20) does not exceetf 2which is
less than log, because of{3.411).

Therefore we have now established

Theorem 10 (IWANIEC'S LINEAR SIEVE). We assume@11)

@I2)and @ZB)with L = O(Iolg?ﬁ)zz)' Then we have, for any MN 22,

-1yt {S(A, 2) - (¢V ('Ogﬂ) +0 ((log log z)—%)) XV(Z)}

logz
<logz sup| ) amBnRml.

@B mem
n<N

where ¢, is defined byBZI0) anda = {am},8 = {Bn} are variable
vectors such thatym| < 1,165 < 1.

Remark 3.4.1. In the above, we have actually proved this inequality
with MZ" in place ofM on the right side, but this blemish can easily be
removed in much the same way as in the remark to THEOIRREM 9.

NOTES(l11)

THEOREM[® was first proved by Rosser, but his work has never
been published. Being anticipated some ten years by Resserk,
but independently, Jurkat and Richértl[36] proved essntize same
result as THEORENI9 completely; in their remarkable prodb&ey’s
sieve was used as an aid to start the truncation-iterationepure of
Buchstab’s identity which is quite similar to that of Ross&osser’s
argument is briefly sretched in Selberg’s expository pdpg}, and also
Iwaniec [28] worked out the full detail of this fundamentah\& idea.

Our proof of THEOREMDP follows the argument of Motohashi|[60
I] who combined some of important ideas of Jurkat and Richatt
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those of Rosser. This fact is embodied in LEMNMA 13 and LEMMA 14
especially, LEMMA[IB shows well how natural Rosser’s ideaTée
analysis of the dference-dierential equation {3.1.25) which is devel-
oped is 8[3P is conducted partly by employing the ideas of e jB
[9]; the use of Laplace transform is also indicated by Selliéf]. Also
we note that[(3113)[(3.1.4) and LEMMAI11, LEMMATI2 are qubte
from Halberstam and Richert[[lL2], see p.53, p.144, p.21d@Aa27,
respectively].

Our argument may be generalized, at least in principle, g0 &6
clude the K-dimensional sieve problems withz 1, but then we should
have t overcome anew thefliitulty pertaining to the convergence prob-
lem arising from the infinite iteration procedure; in our €athis was 108
solved in LEMMAIIZ. For the general case, see Iwaniec’s WX fo
which we owe much.

The observation that Rosser’s linear sieve is optimal istdugel-
berg [75%] (cf. alsol[73]), and our example is quoted from ¢harrelated
subject was studied by Bombieri [7] (cf. also Friedlamdest dmanied
[14]]) in a more general setting.

THEOREMIID is due to Iwanie¢IB31]. This far-reaching improve
ment of Rosser’s linear sieve was a major event in the thebsjeve
methods; it allows us to combine verffectively the linear sieve with
various powerful analytical means, e.g. hybrid mean vaderdms for
Dirichlet polynomials. Some of the deep consequences ¢f applica-
tions to fundamental problems in analytic number theorysareeyed in
lwaniec’s own expository paper[33]; later in PART Il we dhgile an
important application to the theory of the distribution afype numbers.

One should note how nicely lwaniec exploited the partictibaim
of Rosser’s weightg,. Prior to lwaniec’s discovery Motohashi[52] did
the same for Selbergs?-sieve.

The argument di314 is due to Motohashi_[[60], 11] which is east
ghtforward refinement of the one developed in the precedautian;
LEMMA [@lis a refined version of Iwaniec’s decisive observati

ADDENDUM @). After studying the first draft of the present chap09
ter. Professor Halberstam kindly showed us the followinggbeating

2By the courtesy of Professor Halberstam
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observation.
From [31.ID) and LEMMAZIZ (withp = 2 and ¢, defined by

@BZID)) we get, for X z <2<+,

(i) (-1V@E {Kv(y, z,6) - (¢—V(I0ﬁ/) " O(L = ))}

logz log®z;

log ¥
V@) Y, @@ (1—%@( o ]]

diP(z.2) logz,

But all summands on the right side are non-negative, andehenc

() (-1K(y.z0) = (1) (¢('°iy) . o(L log*2 ))

logz log®z;

which is essentially equivalent to the assertion of THEOREM

Namely, we can demonstrate Rosser’s linear sieve withaniny
painstakingly the convergence lemma (LEMNIA 14); just thmeaan
be said about the corresponding part of our proof of Iwagi¢ioear
sieve. This is a remarkable observation, for, it may be agpéiqually
well to the higher dimensional sieve situation and providss$er’'s sieve
(in the sense of[30]) with a more accessible proof.

Our LEMMA [4 is thus to be regarded as a means to ensure that
what was disregarded in deducing (ii) from (i) is, in factghgible.
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Chapter 4

Zero-Free Regionsfor £(s)
and L(s, x)

WE NOW TURN to the applications of the results obtained ingthe= 110
ceding chapters to some basic problems in the theory of gtghiition
of prime numbers. As the first of such applicatons we shalhshadhis
chapter that, to some extent, the sieve method can takedhe plhich
has long been occupied solely by the complex variable meitdie
investigations of the fundamental properties/¢$) andL(s, y). More
precisely, we shall demonstrate that, by employing, imstdee Selberg
sieve for multiplicative functions, the classical functitheoretical con-
vexity argument can be dispensed with in deducing Vinogradcero-
free region and Page-Landau-Siegel-Linnik’'s theorem ftioerelevant
elementary estimates of the zeta-and L-funtions.

We shall also dwell on the Brun-Titchamarsh theorem; thimis
cluded here, because of its relation with the exceptionedszef L-
functions.

4.1 Vinogradov’'s Zero-Free Region for £(s)

In order to extract the informations on the distribution ofee numbers
from the Euler product fot(s) which connects prime numbers with
a fairly smooth analytical expression, we need to extendzére-free 111
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region of(s) as far as possible to the left of the lime= 1. Probably
the simplest way to get arffective zero-free region of this sort is the
one due to Landau; he deduced, for 2,

(4.1.1) %(s) = O((logt)") for o > 1 — c(logt)~®

from de la Vallee Poussin’s inequality
(4.1.2) () (o +it)* (o + 2it)] > 1(o > 1).

For the sake of a later purpose, we stress [hai{4.1.1) iearestary
result in the sense that in deriving it we do not need to apfettie
complex variable method.

Although [£TP) already yields a relatively good estimafethe
error-term in the prime number theorem, to get finer resultshave
to seek for a wider zero-free region. And a general theoretranfiau
which is a consequence of Hadamard-Borel-Caratheodooyisexity
theorem, thus much involve in the complex variable methadyerts
our problem to the one of estimatidgs) in the vicinity ofo- = 1. Fur-
ther, the elementary formula

(4.1.3) CEDIRES +O(N™)

Nl—s
n<N S=

1

which holds uniformly foro- > 0, |t| < N reduces it to that of the sum
Z nt.

And for our purpose, it is desirable to have an estimate which
particularly dfective for thoseN much smaller thaift|. In this context,
the followingpurely elementaryesult of Vinogradov is the hitherto best
one:

Lemmal?7. For N < ct, t > 2, we have

_ 3
Z n' << N exp(—cIOg 2N )
= log-t
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This yields, via the general theorem of Landau mentionedebo

é//
(9 = 0((togt?*(oglog""?)

c
foroc>1- (log0)73(10g Iogt)1/3(t > 3),

(4.1.4)

which is the deepest zero-free region §¢s) known at present, and has
had profound influence on diverse problems involving primmbers.

Since its discovery, it has long been maintained that Viadgv's
zero-free region{4.114) represents one of the most impbasaalytical
properties of/(s), partly because only Hadamard'’s global theory of in-
tegral functions and the convexity principle of the Bot&rathéodory
type have been able to derive it from the result stated in LEMMI. 113
We can, however, break away from this prevalent notion irttikery of
the zeta-function, for, as we shall show below, there existelemen-
tary argument with which we can deduce a result of the samih deyp
#13) from LEMMALLTL.

Our proof of the last assertion depends largely on a spetstrnce
of the Selberg sieve for multiplicative functions as welleasauxiliary
result ([Z1B) below) from the theory of elementary prauffthe prime
number theorem with remainder term.

We begin our discussion by making the second point explidie
shall require a special case of THEORIEM 4, and as we have kechar
in 8 [IL.3 the necessary upper bound Rx(x) (cf. (.38)) can also be
obtained in an elementary manner. Here we prove this fachfocase
k = 1 only, since this is dticient for our present purpose.

We see from[[1.318) (wittk = 1) that, retaining the notations of
8 [.3, it sufices to deal with the sums

(4.1.5) Z u(uyu™, Z u(uulogu,
u<x u<x
(ud)=1 (ud)=1

wherex < zcan be assumed to befBaiently large. A routine argument
transforms the first sum into the expression:
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D u@fym+0| > (uf)

uf<x uf<x
fld® fld=
f</X f>+/x
1
= > - Y pu +O{x‘1_10 ﬂ(u-)]
£d u>x/f pld ‘/ﬁ
f<+/X

Then we appeal to the elementary estimate
(4.1.6) D™ << (logy) ™y > 2).
n<y

This implies

1—
3 uu << (?) " logx L,

u>x/ f

whence the first sum il.{4.1.5) is

<< (logx ™[ | (1 + %)

pid

In much the same way, we can show that the second suminl(4.1.5)

<< ]—[(1+%).

Inserting these intd(1.3.8k = 1, we immediately obtain an ele-
mentary account of THEOREM 4 for the case 1.

Now, to make explicit the first point, i.e. the sieve aspecbuof
argument we have to make a rather lengthy preparation; tinglexity
is caused mainly by our elementary treatment of variousnesés.

First, we introduce two parametet&ndB such that

is

(4.1.7) (logt) ™% < § < (logt)?/3, (log logg)*/® > B> 0
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and we shall assume always in the sequel Bandt are sificiently
large. We shall use the notations

Y(t) = (logt)**(log logt)*”%,

Q(t) = exp(Y(t))(log logt)*’?,

E(t) = (logt)®¢(1 - 6 + it)] + (logt) °&’;

the last one allows us to use the convention:
0{(log t)°E(t)} = O{E(t)}.
Further, we introduce the multiplicative function
f(n) = o(n, -6 — it)[%,

whereo(n, a) is the sum of the a-th powers of divisors of n; here, we
should note that as a special case of an identity due to Rgarame
have, foro > 1,

[ee)

418) > (S = L(9L(s+20)(s+ 6~ )(2(s +8) L.

n=1

Afterwards, we shall apply the Selberg sieveft@nd for this sake,
we prove first the following lemma; the argument employedaproof
is the one common in the problems pertaining to sums of diisac-
tios, and so we may be brief.

Lemma 18. Let 116

HR) = > fmn 2

n<x

and
F =1+ 201+ 6 +it)PcA+6)

Then we have
H(X) = (26)~.Z x% (1 + O(E(t)))

provided
Q(t) = x > expBY(1)).



117

98 4. Zero-Free Regions fd(s) andL(s, x)

To show this, we note thdf{4.1.8) implies

f(n) — Z M(d)d_%dizsdgé”tdzé_it
d2d1k2d3d4:n

o)

(4.1.9) H(x) = Z 1(d)d2ED Hy (xd2) + O(x1/5),
d<x%

where

Hl(y) _ Z dIld£1+26d§1+5+itd_l+5_it

= " .
d1d2d3d4<y

We decomposeél;(y) into three parts as follows:

Ha(y) = Z u‘lv‘1+25K(1—5it, 1-6—it; u—yv)

uv< 4y
—L++ity Lot Y
b Y utety K(1—26,1,uv)
Uv< Yy
(4.12.10) -K@-6+it, 1-6—it; VYK - 26,1; fy),
where
K(sw;y) = Z m~>n~".
mrey
Similarly, we have
‘) — -s y —w y
K(sw;y) = Z m U(W, m)+ Z n U(s, n)
m<+Yy n<+y
(4.1.11) -U(w, Vy)U(s V).
where
Usy)= Y n™.
n<y

Hence the problem is reduced to an asymptotic evaluatiah sfy)
atthe pointss = 1, 1- 25, 1-6=+ it. The first two cases give nofticulty;
we have

1
U(Ly) =logy+vy+ O(;/)
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(4.1.12) U(l-25y) = iy25 +(1-268) + O(y‘1+25),
26

wherey is the Euler constant. As for the poirgs= 1 — 6+ it we require
LEMMA [ We setN = tin @I1.3), getting

Ule+ity) = (e +it) - Y mo ™+ O™,

y<n<t

but the lemma implies

. 3
Z Nt << maxx@ exp(—c(IOg X );

y<nst ysxst (logt)?
thus we get 118
(4.1.13) U(o + it,y) = (o + it) + o((logt)°E),
provided

oc>1-6,Q(t) >y = expBY()).
In particular, we have, far- > 1 - 6,

(4.1.14) (o +it) = o(log®t).

Inserting [Z1.1R) intd{4.111) (but with= 1 — 26, w = 1) we get

K(1-251y) = }IogyU(l—Zé, Vy) + }Iogy+y J(1-26)
2 2

y26

+ 52 UL+ 25, V5) + U'(1- 25, V9) + 02 log°t),

whereU’(s y) = &U(s y). But we have, foy < Q(t),

U'(1-26,y) = (1-26) - 4% logy + % + o(y‘% log°t).

Hence we have, foy < Q(t),

K(1-25,1y)
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1 1
= 55¥ 41+ 26) + (7 + logy)((L - 26) + ¢'(1 - 26) + oy 2(log 1)),
On the other hand, noting{Z.1114), we see thai (411.13kgive
K(o +it; o = it; y) = [¢(o + it + o(log t) %)

on the same condition as that for(4.1.13). Inserting thetse(d. T.1D),
we obtain

H1(Y) = (20)7"¢(1 + 26)I¢(L +6 + ity

—¢@-25) Y mrtnl ot og mn+ O(E(L)
mns Y

for Q(t) > y > expBY(t)). But this sum ovem, n admits the similar
decomposition ag{4.T111), and again by virtue of LEMMA 17 caa
readily estimate it to be &(t)) Hence we have

Hi(y) = (26)*¢(1 + 26)I2(1 + 6 + it)y? + O(E(t))

for Q(t) > y > expBY(t)) Then by [£1.IB), we obtain the assertion of
the lemma.
Also we shall need

Lemma 19. Let

Ib() = > f(n),
(nf]D<)X=1

and

(9]

Fp= > f(pMp™

m=0

Then we have

Io() = Z x| [ Fo"(1+ 0E(®))

piD

provided
logx >>log D, Q(t) > x > expBY(t)).
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This corresponds to the conditi@y) of § [.4. The proof is quite
similar to that of the preceding lemma, so we omit it. We stiaet
mark, however, that at a point in the proof, we require théovahg
observation:

1\t 1 \*t 1 1
e e g

-1
1
> (1 - p2(1+5)) ’

whence

Fp—1> p 2349,

This corresponds precisely t64) of § [L.4.
Now we consider the Selberg sieve for the multiplicativection f:

2

Z f(n) Z@d (®1 = 1).

n<N dn
d<R

By LEMMA [9land the general theory developed i &11.4, we see
that the optimal choice ddq is given by

Gg(R/d)
(4.1.15) @4 = u(d) a® ];j[ Fpr
where
Gay)= . 1w’ [(Fp-1).
o
And this yields 121
2
(4.1.16) > ) (Z 04| =.ZG1(RIN(1 + o(E(t)))
n<N din

providedQ(t) > N > R0 > expBY(t)).
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On the other hand, the sievéfect of [41.1b) is embodied in the
assertion that

(4.1.17) Gi(R) < (26) L7 (1 + o(E(1)))

providedQ(t) > R > expBY(t)); this follows immediately from LEM-
MA 8 if we note that

Gi(R) = R f(mn~+2,

n<R

Having these preparations at our hands, we can now procemd to
elementary proof of Vinogradov’s zero-free region.

So, let us assume thé(s) takes a small value &= 1 — 5+ it, or,
more precisely, the ineqality

(4.1.18) IK(1 -6+ it| > (logt)™

holds for aj satisfying [4.L1); the value & is to be fixed later but, for
a while, let us take it for a large parameter.
Using Agl) and ®4 which are defined in THEORENI 4 and at

#11%), respectively, we put

wq = Z @dlAi),
[d1.07]=d

so that, for alln,
(4.1.19) Z wd = [Z @d] [Z Afjl)) ;
din dn dn

in particular, we have

(4.1.20) 3 wg= {1 tn=1

T Oif ngz
Further, we set

¥ =1,z=exp(dAY()), R = expAY(t)), X = exp(LOAY(t))
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whered, z occur in the definition of\él).
Then we consider the sum

S

n<x din
— Z wdd—l+5—it Z O'(dn, -5 - |t) n—l+5—it.
d<z2R n<x/d

This inner-sum can be readily estimated to be

Oa{(logt)°i (1 =6 + it)| + (log 1)~}

by appealing to LEMMAL. Thus, i is suficiently large, the assump-
tion (@I11I8) implieZ = o(1), whence recallind{Z.1.20), we have

1 1 _
5 < Z f(n)2|Zcud|n 145,
z<n<x dn
Hence, by[[4.1.19) and Schwarz’s inequality, we get 123
2 o 2
Lean® 3 () [Z @d] o Z[Z Ag)] ",
z<n<x din n=1\dn

whereé = 1+ Y(t)™1. But, by virtue of THEOREM®M Kk = 1, with
its elementary account given above, the last infinite sum($)0 Then

E116) gives
1<<a . Z x? Y(0)G1(R) ™M1+ (logt)%¢(1 — & +it)]}.

Hence noting[[4.1.17), we infer that for an appropriatelpsgnA
the assumptior{4.T118) implies

1<< 5 X2 Y(1),
which is apparently equivalent to
Y(t) ! <<

This and [4.T11) give rise to the assertion:
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Theorem 11. The estimate

c
(logt)?/3(log logt)1/3
is obtainable without using the theory of functions.

é%(o- +it) = o((logt)®)for o > 1 — (t>3)

4.2 The Deuring-Heilbronn Phenomenon

Now let us apply similar considerations to Dirichlet’sfunctions.

124 The important point in the study of the distribution of zeob& (s, x)
is that it is required to have results which hold uniformly ¥@rying y.
This raises dticult problems, and the incompleteness of our knowledge
onL(s y) is reflected in the fact that the following statement, theoth
rem of Page, Landau and Siegel, is the best zero-free regidr($, )
known at present.

Let us denote by (T) the set of all zeros of all(s, y) for primitive

v (modaq), g < T, which are in the regioft| < T,0 < o < 1. Then,
except for at most one elemesit of Z(T), we have, for alpeZ(T),

Co
4.2.1 R 1-—

( ) P < logT

wherecg > 0 is dfectively computable. This exceptional ze#p =

B1(T) which may also be calle@i-exceptional, if exists, is real and sim-
ple, and comes fron(s, y1) for a unique real primitive character.

Further, for any fixed > 0, there exists a(e) > 0 such that
(4.2.2) B<1l-c(e)TC.

@21) is due to Page and Landau, and(4.2.2) to Siegel. dhe n
existence of such exceptional zeros has never been provédndeed
this seems to be one of the mosfiidult problems in analytic number

125 theory. It can be shown, however, thapif ever exists, then a strange
phenomenon occurs among other elemen®&®). This was discovered
by Deuring and Heilbronn in theirfkort to determine the asymptotic be-
haviour of class numbers of imaginary quadratic fields. ifteds, Lin-
nik succeeded in obtaining a quantitative version of thaitifig, which
he called the Deuring-Heilbronn phenomenon, and runs bsivsl
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There exists anfiectively computable constaot > 0 such that for
all peZ(T), p # B1, we have

C1 Coe
oot 9\ poreat)

It seems worth remarking that this impli€sS{412.2). We nb,tby
an obvious reason, we may assume that there is agerad,_ of an
L(S xe): xe( modae), such thaB, > 1 — €. Then let us takd so large
thatge < T, [yl < T, B8 < 1—co(log T)~L. This means that we may put
1 - e on the left side of[{4.2]13), and we gEI{4]12.2).

It should be stressed that Linnik's result has the importeature
that a sieve estimate, i.e. the Brun-Titchmarsh theoreaygpl a crucial
role in its proof. In this context, perhaps it may not be suipgshat we
can show the following statement by means of Selberg’s siesthod.

(4.2.3) Rep < 1-

Theorem 12. Page - Landau-Siegel's theorem and the Deuring-Heil-
bronn phenomenon can be proved without appealing to theryhafo 126
functions.

The proof is quite similar to that of THEOREM1, save for the
point that we have to be careful in obtaining an elementamgidound
of L(s, x) for realy in the vicinity of s= 1. Thus, to avoid unnecessary
repetition, we shall show only the main steps of our argument

We observe first that modifying the reasoning employed irptioef
of @I1) and using the well-known elementary result

(4.2.4) L(Lx) > cq 2(logq) 2
for real, (modq) it can be shown easily that, for glkZ(T), Rep <
1 - T2, providedT is suficiently large as we assume hereafter.

Now let 1 - 6 + iteZ(T) be a zero ofL(s,y); we may assume of
course thall —2 < ¢ < 1/4, say. We put

h(n) = > y(d)d P
dn
Then we have

(o9

> h(n)n~s

n=1
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= {(9L(s+ 26, Yo)L(S+ 6 + it p)L(S+ & — i, )L (2(S + 6), o) 2,
whereos > 1 andyg = yy. And we consider the Selberg sieve for the
multiplicative functionh:

2

D> eyl (@ =1).

n<N din
d<R

The optimal value 0B} can be found by the argument of{&11.4, and
we can infer that it yields the estimate

(4.2.5) <<g 6N

for the last sum, iN > R* > TB with sufficiently largeB. This is proved
in much the same way as in the case(@); in fact, we need onhy{Z4.7].3)
and its analogue fdc(s, y).

Then, as before, we defing, by

2.wh={), %

din din

P

din

Andwe set) = 1,z= T* R=TA x = TI9% with a large constant
A. After some elementary estimations we have, for any nomefwal ,
(modq).q<T,

Zw(d)d-é—“}[z w;] ns

dn £n
= -1+ K(s Y)M(s x) + o(T™Y),

(4.26) > x(n

z<n<X
provided

(4.2.7) REs) > 3/4,[Im(s) < T.

Here
K(sx) = L(s x)L(s+ ¢ + i), x¥)
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and

M(sx) = ) wpr(dd ] | -

e o p§+|‘r ps+5+|‘r

Now letp = 8 + iy be a zero oK (s, x) in the region[[4.217). Then
settings = p in @.2.8), we get

>R3> wjn® >

z<n<x an

Thus, by virtue of [£.2]5) and THEOREIM K = 1, we obtain

(1+ v(p)  xv(p) )

N =

(4.2.8) 1<< 6T20A1A) ogT.

We now observe that eitherifis complex, ifiy is real, non-principal
andrt # 0, or if ¥ is real, non-principaly = 0 and 1-6 is a multiple zero
of L(s ¢), then we hav&K (1 -6 +it, ) = 0. Namely, in these cases, we

may putp = 1 -6 + it in @Z38), getting
c

0> ——.
g logT

But if ¢ is trivial we have already proved this, in fact much more,
in the previous section. Thus, in the remaining casis real, non-
principal, and 1- ¢ is a simple zero ot (s, ¢). Here we may assume
obviously tha® < ¢’(log T)~* with a certain small constant > 0. Then
EZ3) implies that all elements @{T) except for 16 are in the region 129

with an dfectively computable’” > 0. This proves[{Z.2]1). Finally, if
1-6is the T-exceptional zero theh {4.P.8) implies the Deutiteglbronn
phenomenorf{4.2.3). This ends the proof of the theorem.

4.3 The Brun-Titchmarsh Theorem

The undesirable possibility of the existence of exceptiaeeos causes
much trouble in most applications of Page-Landau’s theptkas many
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attempts to eliminate this defect in the theoryLefunctions have been
made from various directions. Among them is a sieve-thaalebne
which, despite not much prospect of its success, seems tmtib de-
scribing explicitly because of its simplicity as well as tmmpleteness
of the hypothetical assertion deduced by it.

This idea rests on the plausibility of the estimate

(4.3.1) a(x; k&) < (2-n) (k < x°)

X
(k) log(x/k)

with some #ective constantg, ¢ > 0. From this, we can deduce the
non-existence of exceptional zeros. The proof is quite Emin fact,
let us assume thai(s, ), real, (modk), has areal zero4¢. Then we

put
b(n) = > x@d
dn

which is positive and multiplicative. We apply Selberg's\& tob(n):

2

I(N) = > b | D" Aa| (a1 =1).
n<N din
d<r
By an argument similar to (in fact, much simler than) that lo# t
preceding section, we can infer that, fiir > R* > k¢, the optimal
chioce of14 givesI(N) < 6N. On the other hand, we have

I(N)> > b(p)
R<p<N
>a(N)-(R) - > 1
p<N

x(p)=-1

Thus the hypothetical estimafe{413.1) implies

o(K) N
N~ 2 7 Teg Nk

1) > (1~ o)y

1 N
3logN
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provided logN >, logk, whences >, (log K)~* or the non-existence
of the exceptional zeros as claimed.

But we have[[T.2.15) which is close f0{Z13.1). Because sfftit,
considerable féorts have been spent to improve upbn (1.R.15), and they
are closely connected with the development of the sieve odeitself. 131
And the purpose of this section is to see how far the moderowntof
the linear sieve takes us on this matter.

Precisely speaking, we are going to improve ujon (112.14neg
alised version of the Brun-Titchmarsh theorem. For thiesake shall
first show briefly a special instance of the hybridization whhiec’s
linear sieve and the multiplicative large sieve.

Thus, let k, ¢) = 1 and put

Sxzx) = Y, x(Da,
r=¢ (modk)
(r,P@)=1
r<x

where{a,} are arbitrary complex number, and as ude@ is the prod-
uct of all primes less them> 2. And we consider the estimation of the
expression
2. ISz,
/\/ED
where
o = {X; primitive (modq),q < Q, (qg,k) = 1}.

But, by the duality principle (LEMMADR), it sfiices to deal with

D(x2) = Y 1> x(bP

r=¢ (modk) xeO
(r,P@)=1
r<x

where{b,} are arbitrary complex numbers. The argument leading1sa
LEMMA [Qlgives

D(x2) < ) (-1)*M01(K) ) Da(x 1)
K

deK

+ D 6u(Kl) Y Dyyx2),

<K p,p el
w(K)=0 (mod 2) deK
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where 2< z; < zand

Daxz)= > 1> (b

r=¢ (modk) xeoO
r=¢ (modd)
(r.p(z)=1
r<x
the mode of the dissection of the interval,[z) is the one given at
(@410), and of coursg = 2 in the defnition of®;. We then follow
closely the reasoning of EZ3.4 up [0(3.4.20); by using thatma

0 if (d,k) >1

Rik ) ={ % x(m) - E(EEx if (dK) =1,
n=¢ (modKk)
n=0 (modd)

n<x
wherey isto  modg,we may express the result as

xe logy ’
D7) < e [on o)+ 0(1)); I

+ 37 by, 4 3 (K1) T ANy (x )
K

X-pen deK
f<z&

1) (X,

COX e 3R
1<k deK
w(k)=0 (mod 2) p,pel
f<z*
fIP(z2)

133 provided logkQz <« log xlog <« logz, wherey is the Euler constant,
and the conventions are just the same as tho§e1n (B.4.20).
Next, to this we apply the smoothing device:

xé!
D(x,2) < }fD(W, z)dWW for anyn > O,
n
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and then appeal to LEMMAT6. We get

() < {2 (00 (SZR) + o)) + oo BN} 3

¢(K)logz logz =
whereMN > 7, and
= supsupsupZ| Z arrﬁnR%)(W,)(l;)I;
w<2x a,8 yeO Yeo  m<M
n<N
(mnk)=1
w 90((1)
RPwx) = ) x(Mlog— -~ E@x(dgwy (moda).
r=¢  (modk)
r=0 (modd)
r<w
134
Herea = {am},B = {Bm} are, as before, variable vectors such that
laml < 1,160 < 1.
Hence, by LEMMA[2, we obtain
(4.3.2)
e’ logMN 2 5
50 20 < {25 PR+ oltou’E) | ad
XZED: ¢(K)logz logz ¢ %nlod K
gt

provided logkQz < log x < logz, andMN > Z.
Now we proceed to the setimation Bf For this sake, we quote the
following basic aids.

Lemma20. For anyyeoand T > 1, we have

0 X X f IL +it, ypél4dt < (KQRT)L+e,

Xeo ¢ (mod k)

and also, for any H> 1 and t,

1
i) = % |3 xweth 2 1 < (1t + k@),

xea ¢ (modk) h<H
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Lemma2l. Let a, be arbitrary complex numbers, and let=5 3 |an[2.
n<N

Then we have, for any ¥ 0,

‘ {(,\( &)ixen, ¢ (modk) such that| > anyé(n)] > v} ‘

n<N

< GNV 2+ G3NVO(kQ)te.
Lemma 22. Lety be non-principal (mod g). Then we have
D xmn® < (it + 1)L
n<L
provided L> 8" with n = n(e) > 0.
To estimateE, it is suficient to treat

Es(AB) =1 > anBaRRYW.x¥),
xea A<m<2A
B<n<2B
(mnk)=1
whereyen; A, Bare independent variables, and BkQ < log x, w <«
X, as we shall assume below. To this we shall apply two methods.

Thefirst methodrests on the expression

(433) > amBaRGYW.xY) =

A<m=2A
B<n<2B
(mnk)=1

1
2rip(K)

1/2+ioo
_ _ — ws
[ L idas s i ds
1/2-ic0
where
Asy)= > xMan™,Bsy) = > x(MBan~".
A<m<2A B<n<2B
Thus using Holder’s inequality, we get

1/2+e

X _ ,|ds 1/4
- { f Z|L(sw§)|“ﬁ—2}

Ey,(A B) <
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B 1/4 B 12
x{ | Z|M(axw§)r‘%§} { | Z|N(s,w§)|2'|%§} ,

. . 1
where integerals are along the line = > and sums are ovefed, 136

& (modk). Then the multiplicative large sieve inequality and (i) of
LEMMA POlgive

Ey(A B) < X2+ (3)1/2 (A% + sz)l/4 (B + k@)Y=,
’ vk
Hence, if we set

-
Q vk

)37 N = M2 > kQ?

with a small fixed; > 0, we have
E < x¥¢/k.

Inserting this into[(3.4]2), we obtain

_ @+ o)X 2
(4.3.4) ; IS (X Ds ’X) ga(k) IOg D r=¢ %od k) o

(r,p(D3))=1
r<x

for -
X
== Lk 27€,
(Q\/E) @<

The second methods more involved, and rests on the observation
that, apart from a negligible error, the left side[0f {4l 3s3¢qual to 137

l/2+ch
1 — — — — WS
. 20 f H(s, WA id)B(S vid) L ds
2rip(K) c (mzod 9 e 2

wherec is suficiently large, and

_ 24 W
H(s.x) = h;)((h)h H= 1
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Now, for each pair ofy andswith Rg(s) = 1/2, letK, s(U, V, W) be
the number of charectexs, yeo, £ (mod k), satisfying simultaneously

U <IH(s x| < 2U,V < JA(S xu€)| < 2U, W < [B(S xyé)| < 2W.
Here, by an obious reason, we may assume that
(4.3.5) [logU|,|log V|, |logW| < log x.
By virtue of (ii) of LEMMA BOland LEMMA 21}, we find readily
Ky.s(U, V,W) < XF
with

F:min{Aﬁ:/EQz’ka? kQ?s A +kQ2A B

W2 U4 V2 Ve W
kQ?B H? szHz}_

Twe oot U [

in particular, we have

12+ 1/2+ix¢ d
X
Ey(A B) < f sup UVWF%,
k e UV E
—ix

whereU, V, W are to satisfy[{4.3]5).
Then it sfices to show

(4.3.6) UVWEF < |gxY/27

for somen > 0. Actually, we shall prove this on the assumption

1/2-6
(4.3.7) AB< (W) KQP < X300

for someé = 6(n) > 0. For this sake, we shall consider four cases
separately: ()F < AV~2, BWZ (i) F > AV2 BW?Z (i) F <«
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AV—2 F « BWZ (iv) F > AV2 F « BW™2. But, because of the
symmetry, we do not need to treat the case (iv).
Now if (i) holds, then we have

A B
UVWF UVWmln( )
< V2 W2
But, by virtue of [£37) we may appeal to LEMMAIR2?2 which gives
U < [9LY2x7", whence we havd (4.3.6). Before treating the case (ii),
we remark that for ang; > 0 we have

< U(AB)Y2,

min{a1, @z, ..., < a‘lela/gz s

with anyg > 0, Z g = 1. Thus, in case (ii), we have
i=1

Q& k@ AKQ* BKkQ H? k@9
V2O W2 V6 U We TU4T U4

+min}sz k@ AKQ BkGF H*kQ szlﬂ}

V2O W2 e owe  ylz coy4

- T (52 o2
s

# () (R (S (5

Herea, 8,7y, ', B,y are to be chosen in such a way thef WFis 139
bounded by a quantity not dependingldsV, W, and also a+ 2,8 +y =

1,20 + 28 + v = 1. We should put, obviouslw = 12, and

20+ 68 = 1,2/ + 66" = 1. Sowe findv = &, = 16,a = &8 = 7.
Inserting these into the last expression, we get

F < |S(UVW)KQ(AB) {min(L, H2 (kQ?) %) + min(L, H? (AB) %))
F < I8(UVW) k(AR {(H%(kQZ)%)% ' (H%(AB)Z_I‘*)%}
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< [$UVW)H{XB(KQ)E + xBkQP).
And this is, by [Z317),
< [S(UVW) X,

whence we gef{4.3.6) again. In much the same way, we can s$taiw t
if (iii) holds, then

F < [s(uvw)™ {x%(sz)llsNg + X%z(sz)%NliZ}’
which is, by [£37),
< ISUVW) (xB k) + (P )
< |S(UVV\/)‘1XO~49‘

This amply implies[{4.316).
This, we infer that we have

(2+0(2))x

¢(K)logD1 _, (modKk)

(r.P(DY3)=1
r<X

1
(4.3.8) D IS( D, )P < la[?

XeO

1-€
X 9
01~ ) @<
Now we specialize the sequenta} by settinga, = 1ifr is a
prime, and= 0 otherwise. Introducing this inte(Z.3.4) afid(413.8), and
estimating trivially the contribution of primes less thBnor D1, we
obtain

Theorem 13. We have

> xR

0<Q x (modq) p=¢ (modk)
(9.0=1 p<x
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(2+0(1))x . ; ¢
mﬂ(x, k, f) if sz < X200 ",

<
- (2+0(1))x . . 1
Alog =7k ) i kQ < xee

Specifically,
@O 30-€
—e== . jf kK < X20
¢(KTog 35 ’
(4.3.9) m(x k. {) < (2+0(l)l)(>3</8 if k< x2—¢
¢()Tog = '

These are genuine improvement u®.T4)and (T.Z1%)but far
from @31)

NOTES (V)

A clear-cut proof of Vinogradov’s result states in LEMMAI1@rc
be found in the text book[42].

Montgomery [[48], Chap 11] has proved, by analytical meaimast
if there is a zero of(s) very near the liner = 1 there are other (in fact
many) zeros nearby; actually, he obtained a quantitaticelatt of this
phenomenon, from which the zero-free region of Vinograduioivs.
On this matter see also Ramachandra [64].

For a proof of [4.1)6), see Wirsing [82], where much more tivhat 142
is required here is proved.

THEOREMI is due to Motohashi[51]. Apart from Selberg's/sie
and THEOREMH an important ingredinent in his argument is Raum
jan’s identity. It seems that Ingharn_[27] is the first who @ifgd the
information about the zeros ¢{s) from Ramanujan’s indentitly. Bal-
asubramanian and Ramachandia [1] discussed Ingham’snidksadil.
In this context, it may be worth remarking that de la Valle@$%in’s in-
equality [ZT.R) corresponds to the following identity loé tRamanujan
type: for Re(sy 1,

Z lor(n, iu)|*n~S = £(9)%2(s + iu)*2(s - iu)*2(s + 2iu)Z(s — 2iu)G(s, u),
n=1
whereu is real, andG(s, u) is regular for Re$) > 1/2. From this, we

can extract interesting information on the relation betwte size of
/(1 + it) and the existence of zeros in the vicinity of the line- 1.
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Linnik's proof [[4/4], 1l] of the Deuring-Heilbronn phenomen
#Z3) is formidable. Considerable simplifications werade by Kna-
powski [43]; in his argument, the power sum method of Turawvite.
Further simplifications were given by Montgomery[50]; hepdoyed
a special version due to himself of the power sum method.rLita
[40] and Motohashi [I55], 1] worked out a conceptually mudhmgler
proof of (£Z38) via the Selberg sieve. The argument deeslop § [4.2
is quoted from Motohashi [57].

For an elementary proof of{4.2.4), see e.g. Gelfond [18heT
elementary treatment of the basic theorylefunctions originates in
Linnik's work [46]. Pintz made an extensive study on this teat

Brun-Titchmarsh’s theorem states, in its original formattithere
exists an absolute constadit- 0, such that, for anit < x, we have

X
n(x k1) < Cw(k) " E

This was obtained as a particular application due to Titesmaf
the really revolutionary idea of Brun, and shows clearlyateantage of
his elementary method over analytical methods, for, thterdias never
been able to yield suchffective and uniform an estimate afx; k, ¢)
as this. For a detailed history of the Brun-Titchmarch teearsee the
relevant part of the text bookR1].

The assertion thal[{4.3.1) implies the non-existence oégtxanal
zeros is due to Motohashi_[B9]; formerly, it was known onhatthif
#31) holds, theh(s, x), ¥ (modk), does not vanish in the interval

c
1-— 1
logklog logk <s<

Siebert [/8] has extended the matter so that dfgcéve improve-
ments on the main-term in the limear seive applied to arittmpeogres-
sions would yield a result similar to our assertion. It skidug noted also
that, as can be seen easily from our argument, in order ténotsta re-
sult it sufices to haved (4.3 1) for all but@(k)) residue classes (mdd.
Such statistical study of the Brun-Titchmarsh theorem wigted by
Hooley [24].
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In this context, it is quite intersting that the estimateh# sort

(X + h) — (X) << &
which is closely related to the Brun-Titchmarsh theoremygald an ef-
fective zero-free region faf(s). This was observed by balasubramanina
and Ramachandra in the paper quoted above; in fact, theinetita

IZ(L+it) >> (log(lt] + 2))2

by using the above result arfx), and moreover, this was achieved with-
out using de la Vallee Poussin’s inequality unlike all othrthods.

THEOREMII3 is due to Motohashill[54]. V], which is a large
sieve extension of the results of lwani€cl[32] who showWed.®; the
estimation ofE is done by following the relevant part of Iwaniec’s work.

(i) of LEMMA E0lcan be proved by employing an idea of Ramas4s
chandrall6B] (see alsbl[6]), and (ii) is an easy consequeihie bEM-
MA Edl is a simplified version of the large value theorem of Hayxl
[26]; for its quick and elegant proof, see Jutllal[39], LEMNEA is due
to Burgess[[10].

In the paper quoted above, lwaniec proved also the estimate:

(2+0(1))
¢(K) log(x¥/2/k7/4)

3

n(x K, €) < x for k < %3,

This remarkable result was obtained by an ingenious cortibima
of his linear sieve and a special instance of the dispersiethod of
Linnik. These results of Iwaniec are substantial improvetmieipon
those due to Motohasi [52] who using the Selberg sieve pr@&iid)
but, for smaller values k.
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Chapter 5

Zero-Density Theorems

THE MAIN OBJECT of the present chapter is to prove in detailedlw 146
known zero density estimate for the Riemann zeta-functibickvwill

be required in the next chapter. The argument has nothing twoitth

the sieve methods developed in PART I, but the result willtialained
with the linear sieve to produce a deep consequence on fifegedice
between consective primes.

We shall prove also a zero-density estimate of the Linniletfgr
Dirichlet’s L-functions; there the hybrid dual sieve for intervals will
play an impotantale, and we shall have a nice instance of a fruitful
unification of sieve methods and analytic methods.

5.1 A Zero-Density Estimatefor £(s)

As usual, we denote bM(a, T) the number of zeros = 8 + iy of Z(9)
satisfyinga < 8 < 1,|y| < T. Itis expedient to consider the estimate of
N(a, T) — N(a, T/2) instead oN(a, T); so we assume henceforth that
satisfies

T
(5.1.1) aS,BSl,E < LT,

and thafT is suficiently large.
We divide our discussion into three parts according to theevafa 147

121
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Cael 0<ac<3/4

For a while, we assume further that

w

(5.1.2) % +(logT)t<ax< 7

Let x, y be two parameters such thatx < y,log xy = 0(logT),
and put

M(8) = > u(m)n™s.

n<x

Then considering the Mellin integral

2+ic0

% f{(p+w)M(p+w)r(w)dew

2—ico
we get

e+ ) anmnre ™ = MY *r(1 - p)

+ % fg(:—zL +ily + u)) M (% +ily + u))y%‘ﬁ””r(% -B+ iu)du,

where we should observE{G1.2), am(d) = >, u(d). On the left side,
din

d<x
we may truncte the sum gflog T)? with a negligible error; on the right
side, the first term is negligible while the integral may bentted at
u = +(log T)2. Thus we have

(5.1.3) 1<<| Z AAMPeY

x<n<y(log T2)
(logT)?
1, 1 . 1 .
+y2 %logT | §+|(y+u) M §+|(y+u) [du.
—(logT)?
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Next, from each each horizontal strip
2n+y<t<2n+v+1(v=0,;n=0,%£1,+2,...),

we pick up a zero of(S) satisfying [5.1]1), and le®, be the resulting
set of zeros. Then we have

(5.1.4) N(a, T) = N (a, %) <« (%ol +124))log T

since, as is well-knowrnN(O,u + 1) — N(O,u) < log(u + 2). Hence it
sufices to estimatgz,|. By (5.1.3) and Holder's inequality, we have

(5.1.5)

BN <1224 D1 DT amre™Ph +yilogTI ¢
peZ, x<n<y(log T2)

2

T i {gueoo-apfo

—(logT)? PER, PER,

To proceed further, we require discrete mean-value themfenthe
Riemann zeta-function and Dirichlet polynomials:

LemmaZ23. (i) Let{t;} be a set of real numbers such thiagt< T and
[tr —t| > 6 > O0forr = r’. Then we have

N (% + itr) " << (67t +logT)T(log T)*.

(i) Let{s} be set of complex numbers such thafRe> 0,|Im(s)| < 149
T, and|iIm(s) — Im(s)| > A > Oforr # r’. Then we have, for
arbitrary complex numberg,},

Z| Z amM 52 < (671 + log M)(T + M) Z lam?.
r M<m<2M M<m<2M



150

124 5. Zero-Density Theorems

(i) Let{s}be as above. Then we have also

1
DD, eI P << (ATH(M +(s)T2logT) > lawl.
r M<m<2M M<m<2M

Applying (i) and (ii) of this lemma to[{5.115), we get readily

1
()| << 128,|% (P& + Tx2)2 gt T
+1%,)3y2 T4 (x+ T)2 log° T.
Namely, we have

|Z,| << (yz(l—a) + T2 4 Téy%(l—Za)) |OgCT;

in this, we set ,
X=T,y=T2aq,
getting
|%,| < T2 log®T.
This and [E.TH) yield
(5.1.6) N(, T) < T2_3—a(1 —a)log®T

in which we may now negleci{5.1.2) by an obvious reason.
Case2. 5/6<a <1l

We proceed as before, up [o{5]1.3): But this time, we seether
(5.1.7) X = TBED 4 5y = T2y

with a small fixed; > 0. Then recalling the well-known estimagf% +
it) << (It + 1)"®log(t| + 2), we see that the second term on the right
side [B.LB) isT~"19). Hence we have

1<<| Z a(nnPe ™|,
x<n<y(log T)2
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From this, we can infer that there exist Bnx < N < y(log T)? and
a subsez® of %, such that

(5.1.8) 2| <<y 12" log T
and for allpe@,(,l)

(5.1.9) (logN)™ <<, | > amn*e.
N<n<2N

To proceed further, we require a large-value theorem ofcBiliet
polynomials.

Lemma 24. Let{s} satisfy the condition given in (ii) of the previoussi
lemm. And let us assume that there is 29, such that for all r

V<| Z amM ™.
M<m<2M

Then we have

(s << L+ 6 H)3M(V2G + VTG log? T)

G=| > lanl

M<m<2M

where

Before applying this to our situation, we choose the intdégsuch
that for theN of (5 1.9)

(5.1.10) N2 < Tm < NK;

obviously, we have Z k <<, 1. Then we raise the both sides BI.(5]1.9)
to 2k-th power, and use LEMMA24, getting

] <<y (NP7 4 (T N2HE-3)) [oge T
Now if k = 2, then we have, by (5.1.7) arld(5.7.10),

T < N4 < yA(log T)® < T=+9n,
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and ifk > 3, then [E1.1I0) implies
Te1 < NX <« Tea(+en) < T3,
Hence we get 152

AW <<, T(29)(-0) |ogolo) T

Thus, by [5.I4) and(5.1.8), we obtain
(5.1.11) N(a, T) << T(@1+) -0 |oga) T,
Case3. 3/4 < a < 5/6.

In this case, we require a zero-detecting methdtedint from the
above. We note first that, by an elementary consideration;amecon-
fine ourselves to those zerps- B + iy of £(s) that satisfy[[5.T]1) and

(5.1.12) () #0fora+n* <o <1,|t—y <log?T,

wheren is a small positive parametr to be fixed later. We pick up such a
zero which lies in one of the horizontal stripg2v <t < 2n+v+1(v =
0,1;n=0,+1,+2,...),and Iet@v be the obtained set of zeros. Then we
have

N(e. T) = N(a, T/2) <<, ({%o| + |%1]) log™ T.

Also, we remark tha{{5.1.12) implies

(5.1.13) {7t =0,T7)

. . 1
in the regione + 2* < o, [t — 9| < E(Iog T)2.
Then we put

s - 53]

153 wherexis to be chosen later, and for a while, we assume onrty2< T.
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We have, folR€(s) < 3/2,

2+ic0

N(s):% f ﬁr(WT_S)XW_SdW.

2—ioco

In this formula, let us confing to the regionor < o + %, |t —y| <
%(Iog T)?, and then shift the line of integration to the broken lina =
u+iviu=2,v—-y>1(logT)? a+2p* <u<2,v=7y=(logT)?
u=a+27* V-9l < 2(logT)2. Then, by [5113), we get

(5.1.14) N(9) = 0, (x*+27-0T").

Next, we consider the function

N(94(9) =, bin(o > 1)
n=1

2
where b(n) = > u(d) exp[— ()9() ]

din
As before, we consider the expression

2+ic0

= 1
(5.1.15) Z b(nn?e™™Y = o f Z(SN(9r(s— p)y**ds
n=1 g
wherep satisfies[[5.1.72). Again, we shift the line of integratiorthe
broken lines s: o = 2,t—y| > g(logT)Z;a +nt-pP <o <2t =
1 1
v+ é(logT)z; c=a+nt -1 lt—yl < é(log T)2.
Then using[[5.1.34), we see that the last integral is
0y (y]7 Xn4+n2Tn5Cp(T)) ,

where Co(M) =  max |[La+n*—n?+it).
t—y1<§(log T)?

42
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But by a convexity argument we can show that
?, 5
(5.1.16) Cp(T) <, TZ*T,
which implies that the right side of (5.T]15) ig(@) if we set
(5.1.17) y =T xT7".

Thus we put these values af y in (&1.1%); we can truncate the
sum on the left side at(log T)?, and noting thab(1) = 1 + 0(x 2) and
b(n) = 0((n/X)?) for 1 < n < x, we can infer that

1<, Z b(n)ne="Y|

x(log T)-2<n<y(log T)?

for all p which satisfy [5.1.112).

Then, as in CASIE]2, we have &h x(logT)™ < N < y(logT)?,
for which there exists a subsé, (1) of %, such that%, (1) > |%,)|
(log T)~! and for allpeZ, (1)

(logT) ™ <, | Z b(n)n =",

N<n<2N

We raise the both sides of this td& 2 th power so thatNK1 <
T=1 < NX. Obviously, we have x k <, 1. Ifk > 3, we can argue
as before, and gef(5.1]11) for our present value.dBut, if k = 2, we
have

Tm1 < N2 < TH21(log T)*

because of{5.1:17), and using LEMNIAI24 we obtain
L@?\(,l)l <y (|Og T)C (T2(1+2’7)(1—“) + Tsai-l(l—a))
<, (log T)eT (371 +4,)(1-0)

since 3(3a — 1) > 2 for @ > 5/6. Thus we get(5.1.11) in CAJE 3 as
well.

Finally, taking into account the zero-free region of Vinagov, we
may summarize the above discussion as
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Theorem 14. For0 < a < 1, we have
N(a, T) < T@@+al-a)

where

— if3/4<a<1
_ 131 sae=4
#a) {% if0<a<3/4

The zero-density result which we shall require in the nexsfptér is
not this theorem but rather the following consequence of it.

Lemma 25. Let{a,} be arbitrary complex numbers such that| < 1, 156
and put

K(s) = Z apn”>.

K<n<2K
Then we have, fod < o < 1,

l_
T§+€K) C HT<K<TS
Z K@)l < § /.16, \1 .
- (—Tf( ) ifTs <K<T
i<T
pza

wherep = B + iy is a complex zero af(s).

To prove this, let us choosewaamong those in the rectangla2y <
t<2n+v+la<o <1 (v=01), for which|[K(c)| is the greatest,
andZ, be the obtained set of zeros. Then we have obviously

DK < IogT{ R }lK(p)l.

L peR'0  pe’1
yI<T

B>

We have, by Schwarz’s inequality,

> K@)l < N(o, T)? { > |K<p)|2} .

PEX'y PER'y
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If K> T, then, by (ii) of LEMMA[Z3, we get

Z LK ()P < K2ED |ogl T;
PERy

on the other hand, the last theorem implies
(5.1.18) N(a, T) < T(£+9)0-a),

157  whence the first assertion of the lemma. As for the second wsider
three cases separately. Firstly, ikQr < 3/4, then, by the last theorem,

Z K(p)l < (T N(a,T)Kl‘Z")% log® T

PEX'y
1 .3 .. (1-a)
< Kol (T Z%ﬁg)TTz(lw) A0 ) log° T
< Kot (T%J'T_Z(i?ﬁ*ﬁ*e)(l_a) log°T
16 1-a
< (T?“/K) log® T,
since
2+ < 16/5
20-a) =1
if 0 < a < 3/4. Secondly, if 34 < a < 11/12, then again, by the last
theorem,

. .
3 Ik = ke (ki o n
PER),

68, 1 3 \(1-a)
« K1 (T 50 T 200 T 2D +€) log®T.

But, fora < 11/12, we have

6- 8a 1 3 8 1 3
5(1-a)  2(1-a) 2@Be-1) 5 10(l-a) 2@z-1)

Finally, if 11/12 < a < 1, then we appeal to (iii) of LEMMAZ3,
158 getting

< 16/5.
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D7 K ()l < (N(@ T)(K + N(a, T)T2)K2")2 log° T.
PERy

But, fora > 11/12, we have by the last theorem
TIN(e, T) < T14%€ < K.
Hence the sum in question is
3 1-a
< (KTm+E) log® T,
and noting that forr > 11/12 K < T, we have
3 16 -1
KTz@D < T5K™,

which ends the proof of the second assertion of the lemma.

Here we should note that in the statement of the last lemmaawe h

neglected log-factors, because of Vinogradov's zero4fegéon.

5.2 A Zero-Density Estimate of the Linnik Type

Most of the estimates dfl(a, T) can be extended to those Nfa, Ty)
the number of zeros di(s, y) in the rectangler < oo < 1,|t| < T. But
they are of limited value, because the theory of Dirichldunctions
is greatly hampered by the lack of a zero-free region confybartp
that of Vinogradov for the Riceman zeta-function. For sompartant
problems in prime number theory, however, this deficiengy loa cir-
cumscribed by the combination of the Deuring- Helibronnnareenon
(#Z3) and the zero-density estimate of the Linnik type:

(5.2.1) Z N(e, T,x) < (@) 90 < a < 1),
x (modq)

which is especially strong near the line= 1.

We have seen already that the Selberg sieve for multiphedtinc-
tions is capable to yield a very simple proof of the Deuringibronn.
In this section, we shall apply again a similar idea_téunctions, and

159
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show that the same holds for oncdhdult zero-density estimates of the
Linnik type.

Our main tool is inequalityl(I.Z10k = 1, or more precisely, the
following one more step hybridized version of it.

Lemma 26. Let S(y) be a set of complex numbers such that for any
s, SeS(y) we have Rg) > 0, [Im(s)| < T, and|Im(s) — Im(s)| > 6 > 0
if s # §. Then we have, for any complex numbigxg,

/lz(r)q - -2
> e 2 21w
(rq;Q:L plrq x (modq)seS(y) n<N
r,q)=

1 2 2 log® N
< (67" +logN) Z(n + Q°T)lay| (1 + Iog(Iog 21))
n<N

Here, y is, of course, the one the defined@ZI1) Here-after,
we shall take T for a dficiently large variable, and for the sake of
simiplicity, we assume, up ®&.Z1) that all Dirichlet characters are
non-principal and have conductors less than T.

Now let us denote, bN(e, T, x), the number of zeros df(s, y)
in the rectanglexr < o < 1,]t| < T, save for theT-exceptional zero
(cf. 8 [42). We note first that because of Page-Landau’s ¢me@nd a
reason to be disclosed later, we may assume that

c
with a fixed small; > 0. Then, for eacly = 0,1 we pick up a zero of
L(s, x) which lies in the above rectangle and also in one of the bot&
strips

2n+v 2n+v+1
<t<
logT logT
and denote by, (y) the resulting set of zeros &fs, y). Here, we should
quote the zero-density lemma: the number of zerds(afy) contained
inthe diskjs— (1 +iu)| < 1-aisO((1-a)logT),if -T <u< T, and
«a satisfies[(5.212).

(n=0,%1,+2,...),



5.2. A Zero-Density Estimate of the Linnik Type 133

Thus we have

N(a, T,x) < (1 - @)log T(1Zo(x)| + 1Z1(x))).

Next, let us recall the formuld{1.Z115); there, we $et 1 and 161
& = AW (cf. THEOREMM). Then LEMMAS implies that, for each
square-free, the function

(5.2.3) M (s iAW)

¢(r) Z

(d)

-2

Dlr
satisfies
(524)  LsOM(sxiA®) = > (i (n) [Z AE,”] n-s
n=1 din
We note also thaf{5.2.3) gives, for0o < 1,
(525) Mr(sa/\/: A(l)) < Z(1+19)(1—a')+5r—a'—1+6
whered, z are the parameters appearing in the definition 6t.
Then we consider the Mellin integral

2+ic0

= f L(s )M (5.0 AD)r (5 - p)x*ds

2—ico

wherepeZ,(x); in this, we set
(5.2.6) 9=m’r <R=T",z=T3R, x=T#"

with the same; as that of [[5.212). Shifting the line of integration=
(logT)~%, and noting [5.212) and(5.2.5), we see that this integral is
O(T /2). On the other hand, we haMe(1.3.11) dnd (5.2.4).

Hence, after some simple consideration, we get 162
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I

dn

1<l > x(yr(n)

z<n<x(log T)?2

for anyoeZ,(y) and square - free< R.
Now, noting [I.ZIR), we see that gives

gR Y Y iz« Y A
1<g<T y (modaq) r<R "D(rq)
1<g<T
(rg=1
* 2

ZAg)} e,

dn

DD xe(n)

x (modq) peZ,(y) z=n<x(logT)

Then, appealing to LEMMA6, we infer that the right side is

2
< logT Z ZAS)] nt-®

z<n<x(log T)2 \ din

o 2
< (xlog? T)>E9 |og T Z [Z Agl)} q-1-(ogT)"1

n=1\dn

< (xlog? T2 |og T;

the last line is due to THEOREM 4. Hence we have

|ZV(/\/)| <, T(7+277)(1—a/)’
1<g<T y (modq)

which implies
(5.2.7) DD N Ty) <, TO30),
1<g<T y (modq)
But, as is well-knowm, we have, forQa < 1,

(5.2.8) > Z N(a, T, x) < (Q?T)2(@-9) |ogt QT.

q<Qy (modaq)
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163
Thus, taking into account Vinogradov's zero-free regian/i®), we

obtain, from [5.2J7) and(5.2.8),

Theorem 15. We have, foD <o <land T> 1,

N(a, T, y) < T8,
g<T x (modaq)

NOTES (V)

The zero-density method originates in the discovery madBdiy
and Landaull3] of evidence which supports statisticallyniRian’s hy-
pothesis. But the actual emergence of the zero-densityadedh an
indispensable tool for the study of the distribution of pesnstarted,
when Hoheisel[123] found that the estimate of the type

N(a,T) < T jog° T(0< @ < 1)

yields a result on the fference between consecutive primes which had
never been obtained without assuming the Riemann hypstfasj(s)

or sometimes similar to it. Namely, Hoheisel found a way toiéthe
Riemann hyothesis for the investigaton of the distributairprimes.
Afterwards, the discovery of the zero-free ) of Vinogradov’s type 164
made it clear that the small@rin the above estimate M(«, T) would
yield the better results on prime numbers.

In this context, Huxley’s resul[25]:

T ot T if0 < <3/4

NQ’T < i
(@, T) {T&]i_l(l—a)k)gcT if3/4<a<1

is so far the best among various estimatedN@f, T), for it gives the
smallestl, i.e., 12/5, ever obtained.

In Huxley's proof of this, a dficult estimate of (3 +it ) due to
Haneke was employed. The reason that we develped, for TASE 3,
zero-detecting method of Bombiefil [5] is that we wanted tgpdnse
with Haneke’s result. This caused a slight decrease in thétgwf the
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obtained estimate, THEOREMI14, dK«, T) if compared with Hux-
ley’s, but, for the applications which we have in mind, thidl give no
difference.

(5 1.13) can be proved in just the same way as in Titchmar&j, [[
p. 77]; (1.I6) can be proved similarly, but we need alsdihetional
equation forZ(s).

It should be remarked that, in[&5.1, we used twice the device o

165 raising a Dirichlet polynomial to a high power so as to letke a form
suitable for the application of LEMMAZ24 - the large-valuethiem of
Huxley [25]; this nice idea is due to Jutila]37].

LEMMA PHlis due to lwaniec and Jutila34]; the weighted versi
of the zero-density estimates was first considered and ugehltida
[39].

What Hoheisel did for'(s) Linnik did for L-functions; namely, he
found the way to avoid the extended Riemann hypothesis imvesti-
gation of some important problems concerning primes iamétic pro-
gressions. This possibility was first realized in his famwosk [[47], 1]
in which he proved a result similar tb{5.P.1). But it shoukldtressed
that it is Fogel's [12] who actually obtained the estimatettad type
&2Z1). In Fogel's argument, Turan's idéal[80] is vitaldahis is the
same in Gallagher’'s important work ]15] where an estimatglar to
that of THEOREMIb was first proved.

In Linnik’s Turan’s and Fogels’ works, a sieve result, itee Brun-
Titchmarsh theorem occupies an important place; the samébeaaid
about Gallagher’s quoted above, for he used Bombieri-Dawels the-
orem [T.ZIB) which is apparently a large sieve extensiaheBrun-
Tichmarsh theorem. This sieve aspect of the theory is nowemaate
explicit in our proof of THEOREMIB, for, as we have shown ific&,1

166 the pseudo-charactes is directly connected with the Selberg siever for
intervals.

LEMMA P&l can readily be proved by combining{T.2.1@)~= 1,
with the argument of Montgomery[1[48], Chap. 7 and 8.

One should note that in our proof of THEORHMI 15 Selberg’s ob-
servation [[5.2Z14) is vital (cf. Montgomer{ [50]. For a moefinned
treatment of the matter related to THEOREM 15, see Motohfsdji
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and Jutila[[40].
For the history of the zero-density method, we refer to Mongry
[48] and Richertl[65].
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Chapter 6

Primsin Short Intervals and
Short Arithmetic
Progressions

IN THIS FINAL chapter, we shall demonstrate that the sievehoe 167
can actually detect prime numbers in some veffidilt and important
situations, if it is correctly combined with analytical nmsa

In the first section, we shall inuect Iwaniec’s linear sientoithe
study of primes in short intervals and prove a remarkableltreshich,
in spite of much &orts, has never been attained by the sole use of ana-
lytical means. On the other hand, in the second section, aleeshpoly
Selberg’s sieve to prove a deep result pertaining to the pgame in an
arithmetic progression, and illustrate the versatilityhog fundamental
sieve method.

6.1 Existence of Primesin Short Intervals
As is well-Known, THEOREMIY or rathef (5. T]18) yields
6.1.1) () — (¥ = (14 0(1)

o log x

139
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Whenevem > 7/12. This implies of course

l €
(6.1.2) Prs1 — Pn < P27,

pn being then-th prime.

Our aim is to show that if we geve up an asymptotic estimataskit
for a positive lower bound far(x) — n(x — ), then the value of can
be taken less theryZ2, so that[(6.1]2) can be improved.

Adopting the notations introduced in the second chaptermag
write .

a(X) — x(x — h) = s(A, x?),
where
A={nx-h<n<x},X(<1),
and Q is the simplest oneQ(p) > nlimplies pin. Thus Buchstab’s
formula [Z11) gives, forany 2 z < x2,
a0 -x(x-h) =SA2- > S(A,q. @
z§q<x%

The remarkabale fact in this identity is that we can compay&rg-
totically the sum

(6.1.3) Y, SAq0)
Q<0g<2Q

for some# which is definitely smaller than/12, if Q is in a certain
range.
To show this, we set

(6.1.4) Xxi<Q<X2,0> %
and we assume hereafter thais suficiently large. Then[{&113) is

obviously equal to
% la)5)
al=|—-—nl—]]|.
Q<0<2Q a a

1In this section, the letteay stands for prime numbers.
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But it is easy to see that this is also equal to

(6.1.5) @ng(w(g)—w(%h))m(ﬁ)

wherey is usual Chebyshev function. Replaciady its explicit for-
mula we get readily

L)

=hu@)- D) UG
P <T
B>0

X —(x=hy _(xlogX)*
p +( T )

Herep = B + iy is a cmoplex zero of(s), and
U= > a5
Q<0<2Q

also
(6.1.6) T = xt0+,

wherer is a small positive constant. This sum opds

1-(logT) 1 .
<h f X U (p)lda,
i D V(o)

yI<T

B>«
because of Vinogradov’s zero-free region. Thus appeatngefMMA 170
we can infer that this ig(h(log x)~19) either, ifQ > T andT®/5+¢Q <
X or, if T4 < Q < T andT0/5+¢ < Qx=7. Namely, if

(6.1.7) X5 < Q< X5
and

6 7
(6.1.8) —+2<0< —,

11 12
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then we have

X Xx—h

1. Zl-y[=—]||=h log x))).

(6.1.9) Q;ZQ(w(q) w( - )) U(L)(1+ o((l0g )°5))
We should note here thdf{6.11.7) abd{6.1.8) imply (6.1.4).
Now we set

11-160

(6.1.10) z=x 5 "I,
and put
(6.1.11) Z=x75"2

Then, by [6.15) [[6.119) and by partial summation, we get

X X—h h
2 (”(a) - ”(T)) = (C0)+ ol

z<g<Z

whered satisfies[(6.1]18) and

[ (69-1)(& -3)
C2(0) = log (3(1 —o)11- 69)) '
Thus we have
(6.1.12)
n(X) = m(x = h) = S(A, 2) — (C2(0) + o())(h/ log x) — Z S(Ag. 0),

qu<x%
provioded [6.118) holds.
Next, we appeal to THEOREMILO; we set thétg) as abovey =
1,X=h,and
Ry = [x/d] — [(x = h)/d] - (h/d).
Obviously, all conditions required there are amply satikfidence
we have, for anM, N > 1 such thaMN > 7,

(6.1.13)
e7h log MN
SA2 > |ng(¢o( g )—o(l))—logzsmuﬁp|m§ﬂanﬂann|
n<N

wherey is the Euler constant, andy| < 1, |8n| < 1.
Now we introduce the crucial
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Lemma?27. Let Z be as ife.1.11) and let

11 7
1.14 — <fH< —.
(6.1.14) T T
Then we have 172
| > ambnRmd < hx®”
mn<Zx¢

for any{an}, {bn} such thataq|, |bn| < X°.

Before giving the proof, let us see the implication of this éur
problem: We may seM = N = Z in (&I1I3) provided satisfies
(&1.13), which we shall assume henceforth. Then, we natd@il. D),
E&I1.11) imply 2< 2logZ/logz < 4, and thatpo(u) = % log(u - 1) for
2 < u < 4 because of(3.2.10). Thus we have

h
S(A 2 (L- o)
where g 13
©i0 =51 Iog(11— 169)‘
This and [&1112) give

(6.1.15) 7(x)-n(x-h) > (cl(e)—cz(e)—o(n»%— > (A,

z<g<x /2

provided [6.1.111) and{6.1.114) hold.
Now let us proceed to the proof of LEMMER7. Obviously, it suf-

fices to consider the estimate of

E(A,B) = E ambnRmn
A<m<2A
B<n<2B

under the assumption

(6.1.16) AB> hx™; A B< ZX.
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173
We put
A9= Y anmSBE= Y bnSLe= Y 3
A<m<2A B<n<2B §s€<L
where
X
(6.1.17) L=—"—>x%,

AB
because of (& 111), (6.1114) ahd (6.1.16). Then, by Psriaversion

formula, we get

a+iT XS — (X _ h)s
S

E(A B) = % fa _ A(9B(9L(9) ds— h(A(1)B(L) + 0(x'?)),

—iT

wherea = 1 + (log x)™%, andT is as [6.16). We divide this integral into
two parts, according tf| < VL and VL < |t| < T. And we observe the
following: If [t| < VL, then, by [ZI1), we have, for = a,

Ll—s _ (L/8)1_s

oL,
1 +0(L™)

L(s) =

and also s hys
KO st 4 o),

sincellhx! < x~¢, because of{6.1.16). Inserting these into

a+i VL s Hy
f A(s) B(s)L(s)%ds
a-i VL

174 we see readily that this is equal to

L
% f %A(S)B(s)xs‘lds+ o(hx'2)
a-i VL
= hA(1)B(1) + o(hx"'?).
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Hence we get

a—i VL a+T
E(A’ B) = % f f A(S) B(S)L(S)#ds+ O(hX_T]/Z),
a-iT ativL

Then it is apparent that there exists a @gtsuch thatVL < |t;| <
Tt —t,|>1ifr#r’,and

E(A B) < hZ IA(a + it;)B(a + it;)L(a + it,)| + hx"/?
r
Now let S(U, V, W) be the nmber of; such thatv < |A(a + it;)| <

2v,W < |B(a + it;)] < 2W.U < |L(a + it;)| < 2U hold simultaneously.
Here, we can, of course, assume that

|[log U], |log V|, logW| < log x.
Thus

(6.1.18)  E(A, B) < h(log x)° MaxUVWEU, V. W) + hx/2.

To estimateS(U, V, W), let us see first an implication &f < |L(a +
it;)] < 2U. For this sake, letVL < T; < T, and letS; be the set of all
tr such thafl; < t; < 2T, U < |[L(a+it;)| < 2U. We note that, for any
Ti <t < 2Ty,

1 e+iT1/2 Lw L W |
La+it) = 5 f LW +a +it)#dw+ o(%x).
e-iT1/2

175
Thus shifting the line of integration Rgw) = %—a, [Im(w)| < T1/2,
we get

T1/2

IL(a+it)| < L™1% f |§(} +i(u+t)

+ L Y2)og x.
2 g

| du
1+ u+t
—T1/2
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Raising both sides to-4th power and using Holder’s inequality, we
have

T1/2
1 du
L(a+it)* < L2lo 3xf S +iu+t)] [ ———— + L %log*
L(a-+it)* < L"2log A PRCER I o g
~T1/2
and thus
T1/2 1 du
4 -2 1003 o 4 -2 100?
[S1lU* < L™ log X£T1/21§1|§(2+|(u+tr))| 1o Ut + T1L™*log™ x.

Hence, by (i) of LEMMALZ3B, we obtain
1S1] < L72U~*T logE x.
This implies obviously
S(U,V,W) < L2 U™ T log® x.

Other estimates &(U, V, W) can be obtained by (ii) of LEMMAZ3
and LEMMA[Z4, and we find readily

(6.1.19) S(U,V,W) <« xX°F1

with
F—min1+T 1+T 1+T l+
1= V2 T V2ZA W2 T OW2B V2 | VEAZT W2

T T 1 T
WEBZ U4LZ’ U4 T U124 [

Then we consider the following four cases separately:
() F1 < V72, W2, (i) F1 > V=2, W2 (iii) F; < V™2, F1 > W2,
(iv) F1 > V2, F1 < W2, If (i) holds, we haveF; < (UVW)~1U. But
LEMMA [yields

3
(logL) ) oy

U <« eXp(-CW
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because of(6.1.17). Hence in case (i), we have
(6.1.20) UVWF, < X
On the other hand, in the cases (ii) - (iV) we can argue jush dsd
estimation offF treated in 8[4]3, and we get readily
Fp < (UVW)? {x‘lleTg—% + X_z_goT}’
Fu< (VW) {x $THBE + x BTiBR),
Fi < (UVV\I)‘l{x‘ngleAg + x—%T%A%},

respectively. And by virtue of{6.1.14) arld (6.11.16) theseadl O(x/4).
Thus by this and[{61.18) £{6.1120), we obtain the assenibthe
lemma.

Now, returning to[[6&.1.15), we have to seek for a good uppento

for
>, S(A0)

Z<q<xt/2

so that the left side of{6.LIL5) is positive fod & the range[[6.1.14). 177
For this sake, we consider the sums

>, S0, Z<Q<x
Q<0<2Q
Obviously, this is not greater than

1 1
05 2, SPa(ZX/Q)legq
Iog Q Q<0g<2Q
Then to each summand we apdly (3.4.20) with 1 and
(6.1.21) y=27%/Q;

in particular, the functio®, (K) is defined byl[Z.314) witk = (Z2/Q)Y/3
andy = ZZ/Q, and, of course, independent @f Thus we have, on
noting ¢1(s) = 2e”/sfor s< 3,

> S(A (Z/Q)"¥)logq
Q<0g<2Q
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2y logg
oW X

+ ey K) > e IRy logg
K

deK
f<zfIP(z1)

Q<0g<2Q
6122  + > oK) Y &PRypprqloga,

1<K deK
w(K)=0 (mod 2) p,p el
f<Z", f|P(z1)
Q<0<2Q
in whicht, z;, and the mode of dissection of the interval, & are as in
§ [3.4. Here we should note that, more precisely, we should Waitten
(Ry)ds and Rg)app - instead ofRgq+ and Ryapp+ respectively, but our
present choice af allows us to put the foumula as above.
Now let us estimate

E= > & Rygqlog q.01 (K) =1

deK
f<Z7,f1P(Z1)
Q<0<2Q
It will turn out that this can be reduced to an application BNIMA
Z4. To this end, we transform the factor lpgg being a prime, into a
sum of certain arithmetic functions. Let us put, for> 1,

Ms

AN =>" g log g,

n=1 og>U
> a@ms == (3 ey
n=1 U rin

r<u

(6.1.23) i 28NS = ~Z(9IM(9) + (G(9) + N(9)(L - £(IM(9))
n=1
with

M(9 = ) u(mn™.

n<uU
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N(9 = > q°log g,

g<u
log g
(=), <s—7)
2 o1

Then it is easy to see that, for aby> 1,

Z qSlogq = Z (AD 5« A@()n~s + Z A9 m)ns,
q n=1 n=1

(AW % 2@y (n) + 2®(n) = {

We shall use this identity with
(6.1.24) U=0Q/Z

HenceE is divided into two parts:

E= > (@@ ) Ry

deK
<75 fIP(z1)
Q<n<2Q
> A &) Ryry

deK
f<zr,f|P(z1)

Q<n<2Q
= El + E2,

say, We estimaté&; first. For this sake, we put

V9= > A9mns
Q<n<2Q

and
W= > (dh

deK
f<Z,f|P(z1)

logn if nis a prime
0 otherwise

179
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Then Perron’s inversion formula gives

1/2+iT’
(6.1.25) E, = % f Z(V(9)W(9) w ds+ O(hX_”/Z),
1/250T"

HereT’ is such that

2
flg“(cr+iT’)|do- < log T, T < T < 2T,
1/2

T being as[(6.116), which is an easy consequence of the meaa val

. 1 . .
estimate fong’(é + it)[%, and guarantees us that, in derivilg (6.1.25),

the shift of the line of integration causes only a negligibteor. Also,
noting thatQ > T and [E1.2B), we have, again by Perron’s inversion
formula

1 o1-iQ
V(S) = %
o1+iQ
=" (s+W)M(s+ W) + (G(s+ W) + N(s+W))(1 - Z(s+wW)M(s+ w))}
(2Q)" - Q" QY2 2
— dw+ o(ﬁ(log X) ) + 0(x)

wheres = % + it,[t| < T/, ando; = (logx)~! ; the first O-term being
due to the pole at = 1 - sof the integrand. Inserting this intb{6.1125),
we have

L o1-iQ SO " 1/2+iT’
e=-rs [ bl 4 [ aowiox
o1+iQ 1/2-iT’
{=Z(s+W)M(s+ W) + (G(s+ W) + N(s+W))(1 - Z(s+w)M(s+ w))}
1/2+iT’
X —(x-h)* -1/2 ﬁ
dsdw + 0< hx f ( S| +1) [Z(S)W(s)| |dg ¢ .

1/2-iT’
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181
: . 1 . 1 .
Using the mean value estimates Mrz +it)? and|W(§ + it)> we

can easily show that this 0-term ish3("/2). On the other hand, for the
inner integral of the first term we have, on notibg(6.1.2&)124) and
G(s+w) < logx,

Y4, 1

.
< hxY?logx Z+[f|§(%+ it)|4dt] L |§’(%+ it +W)|4
T T
1 o 1
24 4| ghd g g 2
+|§(2+|t+w)|]dt) x[f|W(2+|t)M(2+|t+w)|
T

1/2
1 .
(1+ N(§+ it +W)|2)dt]
< hx‘l/Z(Z+T1/4 Q1/4) log® x
< hx™,

in which we have used the estimate

f (I{’(%+ it +W)|4+|§(%+ it +W)|4)dt < Qlog® x.
S

ThusE; = 0(hx"/?), and we have
E = E1 + 0(hx"?).

Now let us estimaté&;. Noting that bothi®(n)A@(n) vanish for 182
n< U = Q/Z, we infer that

Er<(og %2 supl > AD(@a@ )& Ryry |
GL  G<g=2G
L<e<2L

deK
f<Z", f|P(z1)
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where

% < GL <2 Q<GL < 2Q.
We then recall that we ha¥®, (K) = 1. Hence by virtue of LEMMA
14 there exists a decompositith = K;K, such that K1) < ¢;Z/G,
(K») < ¢Z/L since we haveg = 2 = Z?/Q. Herecic; = GL/Q. Thus
we see immediately that we can again appeal to LEMMA 27, and we
obtain
E, <« hX‘C'73,

whence ,
E <« hxor,

Obviously, we can apply the same argument to the inner surhg of
third term on the right side of {6.1.P22). Thlis{6.1.22) gives

1 2h log q
S(Aq (Z2/Q)3) < (1+0(1)—5= —
Q;ZQ log(Z?/Q) QS;ZQ q

183 if Z < Q < x'/?2 and® satisfies[[6.1.14). Then, by partial summation,
we get
1

> S(Apd) <@+0mh ) q log(z2/q)

Z<q<xt/2 Z<g<xt/

= (C3(©) + o(n))

log x’

where

5 5
C0) = 551 '09(3(8@) - 3))‘

This and [E1.15) give rise to
NG
— — @ — —
a(x) — n(x - x°) > (H(®) - cn) g

with

H(®) = C1(B) — C2(®) — C3(®)
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T60-1

5 (3(28@ ~13)(89 - 3)) o ( (60 — 1)(80 - 3) )
5(11- 160) 3(1- ©)(11- 160)

provided
11 7
E) + 27] <0 < 1—2
In particular, we havéd(0.558) > 0. Therefore we have established

Theorem 16.

0.56
Prt1 —Pn < P

6.2 Existence of Primes in Short Arithmetic Pro-
gressions

Now we turn to the problem of finding primes in short arithrogiro- 184
gressions. The result in our mind is the celebrated theofdrmnik:

There exists an fiectively computable constan¥ such that the
least prime in any arithmetic progression (mg)ddoes not exceeg? .

By a combination of a dualized form of the Selberg sieve aradyén
ical means, we shall prove a fairly generalized version isfithportant
result.

We begin by making explicit the notion of the exceptionalrelater
which occurs in our discussion. Thus, @tbe a stficiently large pa-
rameter, and let + 6 be theQ-exceptional zero (cf. §4.2), if exists,
which comes from the L-function foy; a unigue real primitive char-
acter (mody;), g1 < Q. Then refining[[4.2]1), we have the following
assertion: there exists affective constank, 0 < k < 1, such that for
all primitive , (mod q),q < Q,

L 0 if x # xo0,x1
(621)  T(sy)+ollog Q={(s-1+0)" ifx=x,
~(s-gt  ifx=xo
in the region
o> 1-k(log QL 1tl < Q'°,
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wherey is the trivial character, and 0-constant fEeetive. 185
If, in the above, we have

6.2.2 0<6<
( ) =0= 2logQ

then we cally; the Q-exceptional character; hereafter, we shall assume
always thaty; stands for theQ-exceptional character, and-15 is the

zero ofL(s, y1) satisfying [6.2R).
Then Linnik’s theorem is apparently contained in

Theorem 17. If y; exists, then we put = §log Q, and otherwisen = 1.
Also, we put

Py X" A(n) if ¥ # X0, X1,
Bxx) =1 5 A + i x =1
> A(n) - X if x = xo,

n<x

whereA is the von Mangoldt function. Then, there exjgetively com-
putable positive constantg,ga; and g such that

*

~ ~ log x
DD W) — d(x—hy)l < aga hexp(—az Iog Q),
40 v (modq g

provided
Q% < % <h<xlogx< (logQ)>.

We may prove this by employing the Deuring-Heilbronn pheno-
menon, a zero-density estimate of the Linnik type (THEORER# ds
well as the explicit formula fog(x, y). But we shall exhibit below that
there is a more direct and conceptually simpler way to aehikis.

First we introuduce the multiplicative functidddefined by

> x1(d)d=® if yq exists.

1 if y1 does not exist
B(n) =
dn
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And, throughout the sequel, we shall use the results anddtse n
tions of 8[I.# by setting = B always: It is quite easy to see that
satisfies the condition<g), (C,) and C3) introduced there with

1 1
a:2+e,ﬂ:§ y—§+eD q1/4+‘,

1 if y1 does not exist
" L@@ +6,x1) if x1 exists.

Among these, the faat = 2 + € is obvious, ify1 does not exist, and
otherwise, itis a consequence of

(1M ey 1)
(6.2.3) Fp—(l__p) (1_ p1+5) >(1_ p2(1+6)) '

Hence we have in THEOREM 5

187

(6.2.4) Ys(M; Q,R) < (Q*RtMY/2)1+e,

We should observe also thBtsatisfies C7) of 8[L.4 withk = 2.
Further, we remark that we have, on setting B in (I.4.3),

(6.2.5) Gi(R) > 2 1Z logQ
provided
(6.2.6) R> QU2+,

If y1 does not exist, then this is implies Hy {1.2.12). On the other
hand, ify1 exists we argue as follows. We note that

GR >R Y £ (fr;) 2,
r<R

and we have, in our present case,

,u 2(r) p20-s

g(r) =/(s+1-25)L(1+ s-6,x1)A(9),
r=1
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where, as is easily seef(26) = 1, andA(s) is bounded fow- > —-3/4.
Thus, using Perron’s inversion formula and an elementaiynage for
L(s x1), we get

2 5
6.2.7) L0 B o+ OR M2
r<rR

Taking R appropriately in this, we get, in particular,
(6.2.8) L(1+6,x1) > 6,

since the left side of{€.2.7) is not less than 1, whehcedp.2.
Also we shall need a lower bound éf and this is supplied by

#Z3), which yields
(6.2.9) 5> Q Y?(logQ)™*.

Having these preparations in our hands, we may enter intadiuel
proof of the theorem. We observe first tHaf{6.2.1) &nd (Bignply

(6.2.10) Lf(s,x) =0(log Q)

for all primitive y (mod @), g < Q, and forson the segment

1- X~ if y; does not exis
it < QY o = og = 4||(()gQ ! X1 - 1
1- 690 if y1 exists.
Thus, specifically, we have
oo—iT S
o 1 L’ X
2.11 = —(sx)— 9
©21)  Hen=5s [ TlanTdstoxQ?)
O'o+iT

189 whereT = Q% and logx < (log Q)?, as we shall henceforth assume.

Next, we put

V(s x) = F(s Y)Me(s x; A®) - 1,
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where, foro > 1,

(o)

F(sx) = ) Bw(mn™,

n=1

andA®@ and M, (s, y; A®) are defined in THEOREM 4 and LEMMB 5
(with f = B) respectively. In particular, we have, for> 1,

6212) FsOM(sxiA®) = 3 v (DB [Z Aff’] s,

n=1 din

where®; is defined by[[1.4.30) with = B.
Then [62.11) is transformed into

oo+iT

~ 1 L’ 2 X5
i) =55 [ TlanVi(s?cds
oo—iT
oo+iT
(6.2.13) +— f Wi ( )X—sds+ o(xQ%)
e 27_” rsv)( S N
oo-iT
where
Wi(S x) = (Vr(S x) = DM (s x; AP)L (s x)H(S x)
with

H(sy) = 1 if y1 does not exist
0= L(s+ 6, xx1) if y1 exists,

We should note here that we have, foc@ < 1,
Mr(S, X: A(Z)) < Z(1+Zz9)(1—0')+eg(r)r—0'+e’

wherezand# occur in the definition oA®. Also, we havey(r) < r2+,

because of{1.216) and{&.P.3).

Now let us set in the above

(6.2.14) r<R=Qz=Q% 9=¢

190
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Then using a simple estimete fofs, x), we have

(6215) VF(S,X) < QSS’ WI‘(SsX) < QllO

for c(logQ) 2t < T = QX y (modg), g < Q. Hence shifting the
line of integration toR€(s) = (log Q)~2, |t| < T in the second integral of

€E&Z13), we get

oo+ T
~ _ 1 L 2 X 9 120
W0 =55 [ TP SdsoxQ ) if x> Q2
oo-iT

Thus, recalling[[6.2.10), we have
(%, x) = §(x = h,x)|

< hexp

T

kIOgX . 2 _9

21090 log Qflvr(O'() + it, y)[“dt + xQ .
.

191
We multiply both sides by:?(r)(k(g)g(r))~t, and sum first over <
R, (r,g) = 1, and next over primitivg. (mod g), g < Q, getting

DK@ TGHR D Wxx) — F(x—h.y)l
g<Q X (modq)
klog x
4logQ

< Ph exp(— ) logQ + xQ°,

where

T
2 *
ue(r) f : 2
£ 90KQ) | (%)d 2
0<Q
(rg=1

Then we observd {1.4.9), (6.2.5) ahd(8.2.8), and we get

*

DD IPsixx) - B(x—h.y)

g<Qy modq
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_ klog x _
1 _ 6
(6.2.16) <¥YZ "Ah exp( Zlog Q) +xQ.
Thus it sufices to show
(6.2.17) U< F

For this sake, we consider the Mellin integral
2+ico

1
Xr(l)(SX) = om0 f Vi (s+ w, y)I(W)Z¥dw

2—ico

whereZ = Q%0 & = ¢, |t| < T. Because ofl{1.3.11) and (6.2 12), this2

is equal to
Z Aij)n—se—n/Z]
dn

On other hand, we have, shifting the line of integratiorRiw) =
—00,

XB(sx) = Vi(s.x) + EQ)-FK@M; (1, x; A@)r(1 - 975 + o(Q29)
= Vi(s x) +xP(s x) + o(Q %)

say. Hence we have

D x(MBM) ()

n>z

Y <1+ + QP
wherey; is obtained by replaciny, (oo + it, x) in the definition ofy

by Xﬁj)(o-o +it,x), ] = 1,2. Then appealing to LEMMAI4 and noting
©2Z3), we get

2
Y1 < Z(ﬁ n + Q*n/2*€)B(n) [Z Aéz)} n-200g2/Z.

n>z dn

Thus, by [E2B)[[6.219) anf{6.2114), we have

2
1< F ) 1o(n) [Z Af)] nl-270g 202

n>z din
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sinceB(n) < 7o(n). This sum may be truncated at= 72, and then
the exponent L 20 of n can be decreased td — (log Q). Then by
viutue of THEOREM®, we get

Y <« 7.

193 As for ¥», we remark that

oo+T
f Ir(1 - 9)P’ldg < log Q.

oo—iT

Hence

¥, < .Z2log QZyz(r)g(r)er(l,)(o; APy,
r<R

by this and LEMMA®, we have
Y, <« 7.

Thus we have proved(6.2]17). Then the assertain of thedheor
follows immediately from[(6.218) an@{6.2]16).

NOTES (VI)

The extraordinary argument developed il &] 6.1 is taken from |
niec-Jutila [34] and its subsequent improvement [22] duédéath-
Brown and Iwaniec. The achievement of lwaniec and Jutila avesal
breakthrough that had come after lorfpets of searching for new meth-
ods which could oversome thefiii¢ulty in improving upon[(6.111)-the
prime number theorem of Huxley [25]. One should observertiat of
the best results and the sharpest tools in today’s analytitoer theorey
are mobilized in their argument.

194 We have obtained the exponent 0.56 as stated in THEOREM 16, bu
Heath-Brown and Iwnaniec have indeed obtained the expdnght ¢,
ie.,

Pl — Pn < Ph
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wheneve® > 0.55. We indicate here how to achieve this.

In our argument, we esimates(A, 2) from below by appealing to
THEOREMIID. But as a matter of fact we started our proof of THEO
REMILQ at the inequality stated in LEMMATLO. This means thaast
away the thrid sum on the right side of the identity stated&MMA Bl
Namely, we have actually proved in the above

_h
log x’

S(A2) = ) Ao(K) D S(Ad, p(d)) = (C1(6) — o)
K

deK

where conventions are as in-86.1. Now, as is apparent by firétida
of Ag, the part corresponding to those with w(K) = 2 continuous
essentially
= > S(Aw0).
(Z2/p)M3<q<p<z
On the other hand, for the sum owgin €1.12), we have, by Buch-
stab’s indentity,

> SR = > SALZHDY)- > S(Agpp).

Z<qg<xl/2 Z<qg<xl/2 Z<qg<xt/?
(Z%/0)"3<p<q

And we have obtained the upper bou@(@) + 0(7))h(log x)~1, for 195
the first sum on the right side. Collecting these observatiom see that
we have, for 1120< © < 7/12,

m(x) — (x = X°) > (H(®) - 0(1))%( + 11+ 1,

wherel, is the sum ovep, g in the last indetity. Now Heath-Brown
and Ilwaniec have able to give good lower boundd fandl, by means
of weighted zero-density estimates similar to LEMNA 25, kattthey
could conclude the right side of the last inequality is pesiat® =
0.55+ € even thoughH(0.55) < 0.

In reducing the estimate & to LEMMA P, we used a variant of
Vaughan's idea [81]. Our argument there should be compartttine
corresponding part of Heath - Brown and Ilwaniec [22].
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THEOREMIIY is the prime number theorem of Gallaghei [15]. The
argument developed i 86.2 is due to Motohashi [58]. It sthdaé
stressed that our proof be compared with Linnik's formidatsorks
[47]. The simplification is definitely due to the injection sitve in to
the theory.

Gallagher’'s important work [15] contains two novel ideasgads
embodied in LEMMALB and the other is hisfective use of Bomberi-
Daveport's extensior {I.Z113) of the Burn- Titchmarsh theg as has
been already mentiond in NOTES (V). These ideas were coraBain
with Turan’s power-sum method to produce a zero-densitynase sim-
ilar to THEOREMIb. Then using the Deuring- Heilbronn pheeown,
Gallaher obtained THEORERNTILY. In this context, it should tressed
that we have dispensed with zero-density esimates of Lintype the
Deuring Heilbronn phenomenon and the power sum methodeditrg

Itis also quite remarkable that, in Linnik's works, the gi@spect of
the theory was almost implict, but the succeding simpliforeg pushed
it gradually to the surface and in our proof of THEOREM 17 ,58ed's
sieve method governs the wholgar.

For a proof of [6.211), see Prachdr[62], Kap. IV].

We did not take care for the numerical percison of varioustaots,
which is important in the actual computation of the Linnikneant.Z.
On this matter, see Jutila [40], Grahaml[19] and Chen [11}ihanlast

work, it is claimed that? < 17, for suficiently large modulus.
It seems worth remarking that our argument[0fE6.2 yields als

%

Z Z N(a, T, y) < AT®0@),

o<T xy (modq)

whereN(a, T, y) is defined in ESR. This should be compared with Bom-
bieri [[6], Théorem 14]. For the proof, see Motohashi [[55.
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