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Chapter 1

1 Preliminaries and function spaces

1
We will be concerned with functions andfidirential operators defined
on then-dimensional Euclidean spac€'.RThe points of R will be
denoted byx = (Xg,...,%n), & = (£1,...,&n), etc. and we will use the
following abbreviations:

IX :(fo)%,sz (A, ..., AXn), X+ & = ijsﬂ'i
J

S will denote the sphergx| = 1, dS, the element of surface area on
S, and dx will denote the standard volume element ifl.RIf v =
(v1,...,vp)is a multi-index of non-negative integeli$ = v + - -+ + vy
is called the (total) order of. We will also use the following standard

notation:
O (0N (9" o
ox] \oxg 9% P& =6 b

a,(x) = Ay,..vy (%)

In generak, (x) will be complex valued functions on"Runless oth-
erwise mentioned. We will also have occasion to use vectoisvaatri-
ces of complex valued functions. The notation will be obsgifnom the
context.



A general linear partial diierential operator can be written in the
form

(1.1) a(x, aix) = Zy: a,(x) (a%)v

The maximunm of the total ordersv| of multi-indices occurring in

(1) for whicha,(x) £ 0 is called the order of the operata)(x, 6%) The

transpose or the formal adjoint a(x, 6%) is defined by

12 ufxg)u= e () mou

vl<m

The adjoint ofa(x, 6%) in L2 is defined by

@y a(e)u- Y e (s) meu

[vl<m

In most of our considerations we will be considering systerhs
linear diferential equations of the first order. We refer to these ais firs
order. We refer to these as first order systems. A first ordgesy can
therefore be written in the form:

0 N 0
(1.1) (A(x, a_x) u)j = Ax (x, a_x)uk’ i=1...,N,

n
whereAj (x, aix) = ajk,p(x)& + bj(x) andu = (ug,...,un). The

p=1

X

0 0
’ t — tA. . —
(1.2) (A(x, ax) v)j Ej Ajx (x, 8x) vj, k=1...,N,

formal adjoint ofA(x, (;9 ) is defined by
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where'Aj (x, 6%) uj = 2:1(—1)%(ajk’p(X)Uj) + bj(X)u, and the ad-

joint in L? of A(x, 6%) is defined by
/ * 6 — * ﬁ . —
(13) (A (x, ax)v)k - Z,: Al (x, ax)V" k=1,...,N

whereA]Fk (X, (%() Vj = %(—l)(&)(ajk,p(x)vj) + bjk(X)Vj.

We shall now introduce some function spaces used in the kecgie
U will denote an open set inR 2(U), £(U), £M(U), 2’(V), &’(U),
Z(R"), .’(R") will denote the function spaces of Schwartz provided
with their usual topologies. The spaceroftimes continuously dier-
entiable functions which are bounded together with allrtberivatives
up to ordemin U will be denoted byz™(U). 2™(U) is provided with
the topology of convergence If°(U) of all the derivatives up to order
m.&["3(U) stands for the space of functionslif(U) whose distribution
derivatives up to ordem are functions inLP(U). For f € &3(U) we
define

(9 14
Ifllsmwy = 1fllpm= () ||(3—X) FllEp )P
[v|<m
&5(U) is a Banach space with this norm. Cleafl{f(U) c éaL"p(U) for
k < mand the inclusion mapping is continuous. The space of distri
butionsf € 2’(U) which are iné@L”[“)(U’) for every relatively compact
subsetU’ of U is denoted byfl_”,}(loc)(U). This space is topologized by
the following sequence of semi-norms. {§,} is a sequence of rela-
tively compact subsets &f, coveringU, we define

pn(f) = ”f”(onl_n;)(Un) for f € g[rp](loc)(u)

g’L",}(IOC)(U) is a Frechet space with this topology. This space can also
be considered as the space of distributidns 2’(U) such thataf €
&%(U) for everya € 2(U). Evidently &§73(U) c g’L’EOOC)(U) with 4
continous inclusion fom > 0. The closure ofZ(U) in &3(U) is de-
noted byZ/",(U) and is provided with the induced topology. As before
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2%W) Q'L‘D(U) for everyk < mwith continuous inclusion. In general
2%(U) = &3(U) (for a detailed study of these spaces see Seminaire
Schwartz 1954 for the cage= 2). HoweverZ}(R") = &3(R").

When we consider spaces of vectors or matrices of functiansse
the obvious notations, which, however will be clear from tomtext.
For instance, iff = (fq,..., fn) wheref; € g’L’Q(U) then||f||gLrg stands

2

for (g ||fj||f¢L22(U)) .

WhenU = R" we simply writeZ, &, M2/ etc. forz(U), .. .,

We will denote the space of all continuous functions iof an inter-
val [0, T] with values in the topological vector spaé&" by £™M[0, T].
It is provided with the topology of uniform convergence (onin with
respect ta in [0, T]) for the topology of&™. Similar definitions hold
for é@[‘;[o, T], 9[“2[0, T], .@E’;(IOC)[O, T], M0, T], etc.

We now recall, without proof, a few well-known results on #pa-
cesé|p(U) andéﬂ}(loc)(U).

Proposition 1 (Rellich). Every bounded set iff"j(U) is relatively com-
pact in é@mgc)(U) form> 1.

In other words, the proposition asserts that the inclusicapping
of £3(U) into g’L",]acl)c)(U) is completely continuous.

The following is a generalization due to Sobolev of a restilF.o

Riesz.

Proposition 2. Letge LP, h e L9 for p, q> 1 such that—; + é > 1.
Then the following inequality holds:

(1.4) f ?)((th;?/?dxd < Kliglice - lIhllLe

_X_

whered = n(2 - %) 1 and K is a constant depending only on p, g, n
but not on g and h.
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Proposition 3 (Sobolev) If h € LP for p > 1 then the function

h(y)
1.5 f(x) = A
(L5) ®= | 5o
where n> 1 > n_ n(1- E), isin LY Where} = 1 + A 1
o p p n

Theorem 1(Sobolev) Let U be an open set with smooth boundéty

(for instancedU e C?). Then any functiorp € &5(U) with pm < n
m
n

itself belongs to #(U) where g satisfiesé = —; — —. Further we have

an estimate

(1.6) lella) < Cliellsm,,

The contant C depends only on p, g, r and n but not on the functo

For the study of this inequality and delicate propertieshefinclu-
sion mapping see S. Sobolev: Sur un Théoréme d’analystidonelle,
Mat. Sbornik, 4(46), 1938.

2 Cauchy Problem

In this section we formulate the Cauchy problem for a lineffedential
0 N .
operatora(x, a_x) To begin with we make a few formal reductions.

Let S be a hypersurface in"Rdefined by an equatiop(x) = 0
whereg is a suficiently often continuously dierentiable function with

its gradientpy(Xg) = (g—z(xo), e g—;(xo)) # 0 at every pointxg of S.

. 0 o
Letndenote the normal at the poirjto S and% denote the derivation

along the normat.

Supposexg is a point onS; let ug, ..., Un-1 be functions ort de-
fined in a neighbourhood of;. A sety = (up, ..., Un 1) of such func-
tions is called a set of Cauchy data 8rfor any difereential operator



of orderm. The Cauchy datd are said to be analytic (resp. of class
&M, resp. of clasg) if each of the functionsig, U, ..., um 1 IS an ana-
lytic (resp. mtimes continuously dierentiable function resp. infinitely
differentiable function) in their domain of definition.

Let there be given a functioh defined in a neighbourhodd in R"
of a pointxg of S and Cauchy daté in a neighbourhood® of xg onS.

The Cauchy problem for the fiierential operatoa| x, 6% with the

Cauchy datas on S consists in finding a function defined in a neigh-
bourhoodU’ of x in R" satisfying

0 o,
(2.1) a(x, a—x)u =finU
g g m-1
andu(X) = up(X), %u(x) = w(X); (% ux) = um-1(x) for
x € V.n U’. When such al exists we call it a solution of the Cauchy

problem.

In the study of the Cauchy problem the following questiorisear
the existence of a solution and its domain of definition, uniqueness
when the solution exists, dependence of the solution on sl data
and the existence of the solution in the large. The answdhet®e ques-
tions will largely depend on the nature of thefdrential operator and
of the surfaceS (supporting the Cauchy data) in relation to théfett
ential operator besides the Cauchy datand f. In order to facilitate
the formulation and the study of the above questions we fiedtenra
preliminary reduction.

By a change of variables

(X1, -5 Xn) = (X, -0, X0)

with X} = X1,..., X ; = Xa-1 andx;, = ¢(X) the equation

(2.1) a(x, (%) u=f

is transformed into an equation of the form

h(x,sox)(a‘;)mmz...:f
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wheregy = (8_90 O¢ )

oxg ..,a andh(x, &) = |y|Ema,,(x)fv, &E=(&,...,6n). 8

The summation above contains derivativesuadf orders< m in the
xp,-direction.

(1) If h(x, ¢x(X)) # 0 in a neighbourhood of the point under consider-
ation we can divide the above expression for the equatiom®y t
factorh(x, ¢x) and write

o \" N A
@2 (5] v 2 4095 U= gy
vp<m-1

This is called the normal form of the equation.

axi u=f
“ox)

The Cauchy problem is now given by

j
( 6,) a(xy ..., X _1,0)=uj(x},....,x, ) for j=0,1,...,m-1

(2) In the case in whicln(x, ¢x) = 0 at a pointxy of S the study of
the Cauchy problem in the neighbourhoodxgtbecomes consid-
erably more dficult. In what follows we only study the case (1)
where the equation can bebrought to the normal form by aldeita
change of variables. This motivates the following

Definition. A surfaceS defined by an equatiop(x) = 0 (¢ being once
continuously diferentiable) in Ris said to be a characteristic variety or

characteristic hypersurface of the operaiéx, aix) if h(x, grade(X)) =
0 for all the pointsxon S. 9
A vector ¢ € R" is said to be a characteristic direction>atvith

respect to the dierential operatoa(x, a%) if h(x, &) =0.
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Clearly, if S is a characteristic variety of a fiferential operator

0 . L
alx, a_x) then the vector normal t8 at any point on it will be a char-

acteristic direction at that point. For any poit S the set of vectors
& which are characteristic directions atform a cone in thef-space
with vertex at the origin called the characteristic conehaf bperator

9 . . .
a(x, 8_x) at the pointx. In the following we restrict ourselves to the

case wheres is not characteristic for the fllerential operator at any
point and hence assume the operator to be in the normal form.

3 Cauchy - Kowalevsky theorem and Holmgren’'s
theorem

The first general result concerning the Cauchy problem ljaxthe fol-
lowing theorem due to Cauchy and Kowalevsky. This we recahaut
proof. For a proof see for example PetrouskKy [1].

From now on we change slightly the notation and denote a pbint
R™1 by (x,t) = (X1,..., %n t) and a point of Rby X = (X1, . . ., X).

Let

(3.1) LE(%)m+ Z av,j(x,t)((%)v(g)j

[v[+j<m
j<m-1

be a diferential operator of ordam written in the normal form with
variable cofficients.

Theorem 1 (Cauchy-Kowalevsky) Let the cogicients g ; of L be de-
fined and analytic in a neighbourhood U of the origin in {xet) space.
Suppose that f is an analytic function on U and an analytic Cauchy
datum in a neighbourhood V of the origin in the x-space. Tlnemet
exists a neighbourhood W of the origin in thet)-space and a unique
solution u of the Cauchy problem

Lu=finW and
(3-2) (a

ju
a) =uj on Wn{t=0} for j=0,1,...,m-1,
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which is defined and analytic in W.

Remark . The domainW of existence ofu depends orJ, V and the
maximum moduli ofa, ;.

It is not in general, possible to assert the existence of atieal of
the Cauchy problem when the Cauchy data are only of dassowevr
for a certain class of éierential operators-such as Hyperbolic operators
- the existence (even in the large) of solutions of the Cauymroplem
can be established under some conditions. This will be dotieei sub-
sequent sections.

If up andu, are two analytic solutions of the Cauchv problem in
a neighbourhood of the origin with the same analytic Caudta the
theorem of Cauchy-Kowalevsky asserts that u,. Holmgren showed
that for an operator with analytic cfigcients the solution is unique, if it
exists, in the clasg™ (m, we recall., is the order df). More precisely
we have the

Theorem 2 (Holmgren) If the cogficients g ; of the dfferential oper- 11
ator L are analytic functions in a neighbourhood U of the amighen
there exists a numbeyp > 0 satisfying the following: for an® < £ < gg

if the Cauchy datas vanish on(t = 0) N D, then any solution & &™ of

the Cauchy problem

Lu=0in D, and

j
(%) u=0on (t=0ND, for j=0,1,...,m-1,

itself vanishes identically in ) where D. denotes the set

{xnerr

X2 + [t] < s}.

Proof. By a change of variablesx(t) — (X,t') wherex, = x(k =
1,...,n) andt’ =t + X2 + --- + x4 the half space > 0 is mapped into
the domain

Q= {(x’,t’) e R™

v XP > o}
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in the (x,t") space. The transformed functiof(x’,t’) and its deriva-
tives upto orderrf — 1) in the direction of the interior normal to the
hypersurfacglt’ — [X'|?> = 0} vanish identically on the hyper-surface.
Hence extendingl’ by zero outside the domaiR we obtain a function
in &M, which we again denote hy, with support contained if®. The
differential operator is transformed into anothefatiential operator of
ordermwith analytic codficients. m|

Thus we may assume thais a solution of an equation

(3.3) Lu= (%)mu + > A (aﬁx)v(%)J u=0

[vl+j<m
j<m-1

with support contained i®. Let'L be the transpose operatorlofind
V be a solution ofL[V] = 0inQ, = QN {0 <t < h} satisfying the
conditions

g P m-2
(3.4) v(x, h) = av(x, hy=...= (a) v(x,h) =0
on the hyperplane & h). Then we have
(3.5) f (u'L[V] = v L[u])dx dt= 0.

Qn

On the other hand, integrating by parts with respect to thialies
t andx yields

. o g m-1
Lh(u L[V] — vL{u]Ddx dt= Lh(—l) u(x, t)(a) v(x, t)dx
because of the conditiors{B.4).

m-1
(3.6) Hence f(—l)mu(x, t)(%) v(x, t)dx = 0.
t=h

Now consider the Cauchy problems

tL[V] =0
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j m-1
(%)Jv(x, 0)=0,j=1...m, (%) v(x,0) = P(X),

P(x) running through polynomials. By the Cauchy Kowalevsky dhe
rem, there exists solutiongx), in afixed neighbourhoodt| < h sat-
isfying the above Cauchy problems. Hence there Is & 0 such 13
that, for every polynomiaP(x) there exist Mn Qy, satisfying [3H) with

m-1

%) u(x,h) = P(x). Hence by[[36u(x,t) is orthogonal to every

polynomial P(x) for t < h. Henceu(x,t) = 0 for 0 < t < h. Replacing
t, by —t we obtainu(x,t) = 0 for —h <t < 0. Henceu(x,t) = 0 in D,
which finishes the prove of the theorem.

Further general results on the uniqueness of the solutitimeaCau-
chy problem were proved by Calderdn [1]. We restrict ousglo stat-
ing one of his results(([3]).

Theorem 3 (Calderon) Let L be an operator of the forrf8) with
real codficients. Assume that in a neighbourhood of the origin all the
cogficients g j(xt), for [v| + j = m, belong to & (o > 0) and the
other cogficients are bounded. Further suppose that the characteristi
equation at the origin

(3.6) P(,& ="+ > 2,(0,06"4 =0

Vl+j=m

has distinct roots for any real # 0. If the solution u belong to €Cand
has zero Cauchy data (more precisely, Cauchy data, zero iaighn
bourhood of the hyperplane=t 0) then u= 0in a neighbourhood of the
origin.

4 Solvability of the Cauchy problem in the classs™

In this section we make a few remarks on the existence ofienkibf
the Cauchy problem in the clag¥" under weaker regularity conditions
on the coéicients of the dferential operator. We begin with the fol14
lowing formal definition.
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Let

4.1) L

ay oV (o)
@t W%; ax) \at
j<m-1

be a diterential operator of ordenin the normal form.

Definition. The Cauchy problem fdr is said to be solvable at the origin
in the class if for any giverf € & and any Cauchy datum of class
&x there exists aeighbourhood [ ¢ of the origin in the &, t) space and
a solutionu € &(Dy,1)) of the Cauchy problem fok with y as the
Cauchy datum.

Remark. The Cauchy problem for a general lineafféiential operator
L is not in general solvable in the clagsas is shown by the following
counter example due to Hadmard.

Counter example (Hadamard) LetL be the Laplaciamn in R®

oV (a\ (o)
@2 2=(5) +() +(7)
and ¢ = 0) be the hyperplane supporting the Cauchy data. Consider fo

the Cauchy data the conditions

u@mm=mmwww%umm=0

Supposeau(x,y,2) = uis a solution ofAu = 0 in z > 0 with the
Cauchy dataup, 0). Extendu to the whole of R by setting

a(x,y,2 = u(x,y,2 for z>0 and
=u(x,y,-2 for z<O0.

0 satisfies the equatiofnli = 0 in the sense of distributions. In fact, for
anyp € 2(R%) we have

{0, Ap) = fﬂ(x, Y, 2)Ap(X,y, 2)dx dy dz
Bs
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~ 2~ 2~
:Iim{— aﬁ@dxdyda[(au au)(,odxdydz

50 0z 0z a2 " ay2
14> |Z>e
and
ol dy a oul’ 8%t
f &de dy dz= f[(p&]_g dxdy— e ﬁgadz dxdy
[rae2>
Hence

- . ol al
.00 = Im{ [ otxy a0y edixdy- [ oy -0y, -ehixa)
=0

By the regularity of solutions of elliptic equationsis an analytic
function of x, y, zin R®. Sinceup(x,y) = u(x,y, 0) = T(x, y, 0), Ug is an
analytic function of k,y). Thus, ifug is taken to be iy but non analytic
there does not exist a solution of the Cauchy problemfor= 0 with
the Cauchy dataug, 0).

As far as the domain of existence of a solution of the Cauchip-pr
lem is concerned we know by the Cauchy Kowalevsky theorer) tha
whenever the cdicients ofL, f and the Cauchy data are of analytic
classes, there exists a neighbourhood of the origin andagtanfunc-
tion u on it satisfyingL[u] = f with Cauchy data/.. However itis notin 16
general possible to continue this local solutioto the whole space as
a solution ofL[u] = f. This is domonstrated by the following counter
example which is again due to Hadamard.

Counter example Let the diferential operator be

oV (8
() +(5)
A solution ofLL[u] = O is provided by

1 X—a

—a: X221y where a > 0.

uxy) = Re
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0 . .
Clearly u(0,y) and a—l:((o, y) are analytic functions o¥. However

this solution can not be continued to the half plane a as can be
easily seen.

For a class of dferential operators the existence of soluctions in the
large has been established by Hadamard, Petrowsky, Leaaging and
others. We shall prove some of these results later by usmgntthod
of singular integral operators introduced by Calderon ayghauind.



Chapter 2

In this chapter as well as in the next chapter we will be magadp- 17
cerned with the study of the Cauchy problem for systemsféédintial
equations of the first order, which will be referred to as finster sys-
tems.

1

If u(x,t) = (Ur(Xt),...,un(x 1)) and f(x,t) = (fi(x.1),..., fn(X t)) de-
note vector valued functions with components, a first order system of
eguations can be written in the form

0 d

1.1 M[u] = —u- A —u-B =f

(1.1) [u] = ~u ; <(x D7 -u—B(x u

whereAg(x, 1), B(x, t) are matrices of ordeX of functions whose rigu-
larity conditions will be made precise in each of the protdenmder

consideration.

Definition. The Cauchy problem for a first order systévfju] = 0 is
said to be locally solvable at the origin in the spatéresp. 4, resp.
D‘If’z) if for any giveny € &(U) (resp. #(U), resp. D‘E‘;(U))U being

an arbitrary open set in thespace containing the origin there exists a
neighbourhoodv of the origin in B! and a functioru € &(V) (resp.
H(V), respD;(V)) satisfying

M[u] = 0 andu(x, 0) = ¥(X)

15
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(V may depend og).

The following proposition shows that when the systdtrhas an-
alytic codficients the local solvability of the Cauchy problem implies
the existence of a neighbourhoddindependent o such that for any
¥ € & there exists a unique solutiane &1(V).

We define a family of open seB,. of R™! by

(1.2) D, = {(x, £) € R™jt) + x2 < s}.

Proposition 1 (P.D. Lax) [L]. Assume that the cgkcients of M are
analytic and the Cauchy problem for M is locally solvableta brigin.

Then there exists & > 0 such that for any given € &x(U) there exists
a unigue solution & &*(Ds) of M[u] = 0, u(x, 0) = ¥(X).

Proof. By Holmgren’s theorem there exists ag > 0 such that for
0 < & < g a solution,u € &% with u(x,0) = y(x) on D, N (t = 0) is
uniquely determined iD,. Letgy > &1... be a sequence of positive
numberse, — 0. Denote byAy m the set of ally € &4(U) such that the
solutionu of M[u] = 0 with u(x,0) = ¥(x) for x e D, N (t = 0) is in
é"L[zg]+2(Dsk) and satisfies

lullfoj+2 < M.
2

The setsAym are symmetric and convex. Furth&(U) = J Axm,
km

by the local solvability at the origin. We shall now show #tn, is
closedfor everyk, m.

Letyj be a sequence A, converging tayg in &(U). The corre-
sponding sequence of solutiongis a bounded set iﬁaL[E]Jrz(ng) and
hence has a subsequengg(x, t) weakly convergent iré”L[ngZ(Dsk). In
view of the Prop[1L of Chafl $ [ we can, if necessary by choosing a

. 01+1 .
subsequence, assume thgf(x, t) convenrges mé{zz(]lgc)(Dek). Let this
limit be ug. Sinceujp — Ug weakly in é”EE]JrZ(DEk) we havelluoll[g]+2 <
m. By prop?? of Chap[l§ [ (Sobolev’s lemmaiiy € £1(Dc,) and fur-

therM[uo] = 0. Againuj, — U in é”lff(]lgcl)(Dek) implies that this conver-
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gence is uniform on every compact subseDaf and henceip(x, 0) =
Yo(X). ThusAxm is a closed subset &fy(U).

Now by Baire’s category theorem one of tAgy, let us sayAy, m,,
contains an open set 6%(U). A m,, being symmetric and convex con-
tains therefore a neighbourhood of 04K(U). Since anyy € &x(U) has
a homg)thetic imagey in this neighbourhood, there is a unique solution
ue &2"%(D., ), afortiori, in¢(Ds, ) of M[U] = O withu(x, 0) = y(x).
€k, can be taken to be the requiréd m]

Theorem 1. Let the cogicients A(x,t), B(x,t) of M be analytic. If the
Cauchy problem is locally solvable at the origin in the spatthen the
linear mappingy(x) — u(x, t) is continuous from’(U) in to £1(De,).

Proof. The graph of the mapping — u is closed in&(U)x&1(De,)
because of the uniqueness of the solutioiijti] = 0, with u(x, 0) =
¥(X) in De,. Hence by the closed graph theorem of Banach the mapping
is continuous. O

This leads us to the notion of well-posedness of the Cauablyigm 20
in the sence of Hadamard. This we consider in the followirgjise.

2 Well-posedness and uniform-well posedness of
the Cauchy problem

By ak-times diferentiable function on a closed interval fl)we mean
the restriction to [Oh] of a k-times continuously d&rentiable function
on an open interval containing,[KJ.

The space of continuous functions toin [0, h] with values in the
spacesy" is denoted bye™[0, h]. It is provided with the topology of
uniform convergence in the topology &f" (uniform with respect td
in [0, h]). In other words, a sequengg € £™M[0, h] converges to 0 in
the topology of&™[0, h] if ¢n(t) = en(X,t) — 0 in & uniformly with
respect td in [0, h]. A vector valued functioru = (ug, ..., uy) is said to
belong tos™[0, h] if each of its components; belong to&™[0, h].

Similarly one can define the space&"[0, h] - D?,[0, h], L[0, h] =
D(L’Z[O, h] etc. These will be the spaces which we shall be using in our



21

22

18 2.

discussions hereafter. We also wri#0, h], &[0, h], D, 2[0, h] instead
of [0, h], &[0, h], D‘E’Z[O, h]. Following Petrowesky[12] we give the

Definition. The forward Cauchy problem for a first order systifris
said to be well posed in the spa€an an interval [Qh] if

(1) for any given functionf belonging to&’[0, h] and any Cauchy data
W € & there exists a unique solutianbelonging to&’[0, h] and
once continuously dierentiable with respect toin [0, h] (with its
first derivative w.r.t.t having its values ingy) of M[u] = f with
u(x, 0) = ¥(x); and

(2) the mapping{,¥) — uis continuous fron&’[0, h] x & into &[0, h].

Definition. The forward Cauchy problem for a first order systdfris
said to be uniformly well posed in the spa€ef for everytp € [0, h] the
following condition is satisfied:

(1) for any given functionf belonging to£’[0, h] and any Cauchy data
W € & there exists a unique solutian = u(x, t,tp) belonging to
&’[to, h] and once continuously fierentiable with respect tbin
[to, h] (the first derivative having its values #k) of M[u] = f with
u(x to, to) = ¥(x); and

(2) the mapping {,¢) — u is uniformly continuous from¥’[0, h], &%
into &[to, h].

The condition of uniform continuity can also be analytigatle-
scribed as follows: given an integeand a compact sé€ of R" there
exists an integel’, a compact sek’ of R" and a constant (all inde-
pendent ofgin [0, h]) such that

(2.1) sup|u(xt, t0)|év}|< < Cly(X g + sup (X, t)] o
to<t<h K" o<t<h K’

a v
wherelg(X)ls; = Sup '(57) a(x)!-

o<lvisr

Similar statements hold also for the spagésand D
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We shall now give some criteria for the well posedness of tine f
ward Cauchy problem for first order systefis For this purpose we
introduce the notions of characteristic equation and ottieracteristic
roots of a first order syster.

The polynomical equation

(2.2) def(al —i Z A Déc - B(x 1)) =0
is called the characteristic equation Mf and the rootst;(x,t, &), ...,
An(X 1, ) of this equation are called the characteristic rootMof

It will be useful for our future considerations to introdutte no-
tions of characteristic equation and of characteristiagdor a single
equation of ordem of the form

a\" gy (o)
(2.3) L:(a) +|V|;mav,,-(x,t)(a—x) (&) .
jgm-1

Consider the principal part &f and write it in the form

P m m-1 P 9 i
(24) (E) + jZoaJ (X, t, (9_)() (a)
whereaj(x,t,¢) = Y a,j(X )¢ is a homogeneous polynomial én
V=m-j

of degreem - j. The characteristic equation bfis defined to be

m-1 )
(2.5) M+ ai(x )l =0
j=0
and its roots are called the characteristic rootls.gf 23
We remark here that if we tal{el, % e, (%) u) as a system of
unknown functions, sayg, U, . .., Un), we have
(2.6)
0 1 O0... 0
aul_ 0 0 1 0 Up _tha Up
ot B N h 7 OX
Um 0 0 O.. 1 Um Um
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and det{l —H(x t,£)) = 1™+ X5 aj(x t,€)A). Thus the characteristic
roots ofL are the same as those of the system (2.6).

We now obtain necessary andistient condition for the well posed-
ness of the Cauchy problem for first order systems in the chseanthe
codficients depend only on

2.7) % =3 Ak(t)g—)‘:k + B(t)u.

These conditions depend on the nature of the roots of itactear
istic equation

(2.8) detl —i )" A(t)é — B(D) = 0
In the case wherf, andB are constant matrices, we have the following

proposition.

Proposition 1 (Hadamard) Let the cogicients A and B of M be con-
stants. A necessary condition in order that the forward @guaroblem
for M be well posed in the spac# is that there exist constants ¢ and p
such that

(2.9) Re1j(€) < plog(X+ ) +c (j=1,...,N).

Proof. Assume that the forward Cauchy problem fdris well posed
but the condition[(Z]9) is not satisfied. First of all we olsdihat, if1(£)
is any characteristic root dfl there exists a non-zero vectd() € CN
with |P(£)| = 1 such that

(@1 -1 > Acc—B)PE) =0.

Thenu(x,t) = exgA(E)t + ix - £). P(¢) is a solution ofM[u] = 0.
By assumption for anyp > 0 there exists a vectq}, |£] > 2, and a
characteristic root(¢) such that,

Red(£) > plog(1+ [£]).
For thisA(£) we have
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() M[u] = Mlexp@(&)t +ix.£) - P(&)] = 0;
(i) lu(x ) = exp(ReA&)) - IPE)] = (1 + |€) for t > 0; and

(i) Syal 35 w0 <caa+ e,

The inequalities (ii) and (iii) show that the forward Caugirgblem
is not well posed which contradicts the assumption. Henopdaition
[ is proved. O

For a smooth functiom (for instance a function in.? or .#) the
Fourier transformi with respect ta is defined by

(2.10) U, t) = f u(x, t) exp2rix.£)dx

More precisely ifu belongs to¥” then its Fourier image is denoted
by Uandu belongs tov”.

Let us now assume that the ¢beientsA, andB of M are continu- 25
ous functions ot in [0, h] but do not depend or. Consider the system
of ordinary diferential equations

1) SuEn- [2ni > A + B(t)}ﬁ(g, 0
k

If vé denotes the vector in Rwhose j" component is 1 and the
other companents are 0, M{(¢, t, to) be the fundamental system of so-
lutions of the systeni{Z11) (defined ig,[h]) with the initial conditions
VI(£, 10, t0) = v§. Then we have the

Proposition 2 (Petrowsky) Let the cogicients A and B of M be con-
tinuous functions of t ifi0, h]. A necessary condition in order that the
forward Cauchy problem for M be uniformly well posed in thasgs
% and 7 is that there exist constant ¢ and p, both independeriaf t
[0, h], such that

(2.12) IVIE 1 to)l < e+ [€])P.
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Proof. Necessity in the spacé. Assume that the forward Cauchy prob-
lem is uniformly well posed in the spacg but the condition[[Z12) is
not fulfilled. Then for anyp, one can find™, t*, t; andk such that we
have the inequality

IVEE . 10l = p(L+ IE7)P.
The functionu(x, t,t5) = (U1(X,1,t5), ..., un(X 1, ) with
(2.13) u(x, t, t5) = expx.£”) - (€, 1, t5), t € [to, ]
is a solution ofM[u] = 0 and satisfies the inequalities

(i) Ju(x t*, ) = p(1 + |£*)P wheret; < t* < h, and

a 4
(a—x) u(x, tg, tg)

c(l) being a constant depending only brvhich again show that the
forward Cauchy problem is not uniformly well posed, thusvamg at a
contradiction to the assumption. m|

(i) 2per < o)L+ 1€,

Necessity in the spaceZ;. Again assume that the forward Cauchy
problem is uniformly well posed i, but the condition[[Z12) does
not hold. We can therefore assume that for @nyhere exist”, t*, t;
andk such that we have the inequality

VK@ T, )1 = p(L+ €)P,t > t,

holds for all¢ in a neighbourhood) of & in R". Let f € L2 with its
support contained ity and||f|| = 1. Then the functioru(x,t,t;) =
(W% t,15), ..., un(X. 1, ), with

(2.14) u(x.t, ) = f exHix VK, 1, ) F(£)de for t > 5,

is a solution ofM[u] = 0. By Plancheral’s theorem we have

Jull = (22 f VL )R ()P
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(2.15) > (2m)"2p(L + |E)P

where|&*| = dist (Q supp.f). On the other hand again by applying
Plancheral’'s theorem we have, for any 1, that

Z”(%)V”(X’té’tg)”: 2, (Zﬂ)”/z( | lvak(f,t&té)ﬂf(f)ﬁdf)%

V<1 [v|<€
<c(l)(1+e"|

(2.16)

wherec(l) is a constant depending only on 1. The two inequalitie®
Z719), [Z1I6) together show that the forward Cauchy probie not
uniformly well posed leading to a contradiction to the asgtiom.

Proposition 3 (Petrowsky) Let the cogicients A and B of M be con-
tinuous functions of t. Then the conditi&T2)is syficient in order
that the forward Cauchy problem be uniformly well posed mdpaces
2%, B andé.

L2’
Proof. Sufficiency in the spaceZ;. The inequality [[Z.112)

M (£, 1, o)l < (1 + I¢l)P

shows that there existsaasuch that (I+ [£])7VI (£, 1, to) € %’g and this
depends continuously oh {y). In fact, vi(&, t, to) satisfies[Z111)

GUELI) = (1 €+ BVIE L. AE= Y Ak

consider
t
VIt to) = V(€ to, to) = f (IA(9) - ¢ + BV, s to)ds
fo
This implies that (& £])P~2VI(£, 1, to) is continuous inf( to) in the
space%’g. Hence the inverse Fourier ima@(t, to) of VI(£, t, to) with

respect t@& belongs ta”” and the operathJ((t, to)*(x has the following
properties:
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(1) foranyp € 77, Ri(t. to) *x) ¢ € 2% [to, h] and 28

(2) foranyf e .@LSZ[O, h], the integral

t
f R, 7) 0 F(X 7)dr
to

belongs to@f;‘f[to, h]. Further the linear mappings

t
@17) o - RIL1) xm o — f Ri(t,7) #9 F(x )
to

are continuous. Now givelr = (¢1,...,¢N) With ¢ € 952 and
f = (fy,..., fn) with f; € 2,2[0, h] defineu(x, t, tp) = (uy(Xt,to),
..., UN(X, t,10)) by

t
(2.18) u(x t.to) = > Ri(t,to) =y (9 + f Rt 7) #(x fj(x 7).
] b

Thenu(x,t,tg) is a solution ofM[u] = f with the Cauchy data
u(x,to,to) = ¥(x). In view of (ZIB) we conclude that the forward
Cauchy problem is uniformly well posed in the spaeg.

Sufficiency in the spaceZ. We recall that\{(¢, t, to)) is a fundamental
system of solutions of the system({2.11)

d ,
3V = (@i D A+ BO)V.

Hence eachvi(¢,1,1p) is an entire function of exponential type for
N
complex? € C". In fact, if [v(J,t,10)|* stands for 3 vi(Z,t,to)%, we
j=1

have since®(t) andB(t) are bounded

(219) 127 ) Atk + BOW L to)l < c(L + IZDIVIZ, 1, to)]
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29 with a constant independent of andv, Further
d 5 av! —_— dvi
GMé L) = Z(E(K, L 1) V(¢ L to) + V(¢ 1 fo) 5 (¢ L o))

<2 d%v(é, t, to)IV(Z, t, to)
= 2271 Y AdDE + B t. 1) IVZ, o)
< 20/ (¢, 1, to) A(1 + I£1).

Hencelv(Z, t, to)| < ¢”ef +alit-bl and consequently for large we
have, for each = 1,..., N the inequality

V(2,1 )| < ¢ et

Hence by Paley-Wiener's theoreRi(t, o) is a distribution with
compact support contained §(x, t) € R™||x| < ¢t — to|} and depends
continuousuly ont(tp). By the structure of distribution with compact
supports we can wrte

2200 Rt =Y (DXL =1...N),

VI<s;

Wheregi(x, t,to) € %Y to,t] with support contained ir{1x||x| < ¢z} and
the derivatives are taken in the sense of distributionss iFhplies that

(1) foranyy € % we haveR)j((t, to) *(x ¢ € Blto, hl,
(2) foranyf e #|0, h] the integral

t
f RU(t. 1), T (% 7)dr € Bto, h.
to
30

Further the linear maps

t
(2.21) 0 — Ri(t,tg) o9 0. f — f RI(t, 7) %9 f(x T)dr
to
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are continuous. Now the same argument as in the first pareqdrtipo-
sition shows that the Cauchy problem is uniformly well posedhe
base#.

Sufficiency in the space?’. In the above proof we observe that, since
RL(t, 1) is a distribution with compact support, we have

(1) foranyg e &, Ri(t, to) #9 ¢ € &Tto, 1,
(2) foranyf € &[0, h] the integral

fo

f Rt 7) 0 F(X 7)dr

t

belongs taf’[to, h]. Again the linear maps

t
¢ = Ri(t.1o) #0 & f — f RI(t,7) #g f(x T)dr
fo

are continuous and an argument similar to the one used rearlie
shows that the forward Cauchy problem is uniformly well mgbse
in the spacef’.

This completes the proof of the proposition. m|

3 Cauchy problem for a single equation of ordem

By an argument similar to thye ones used in the previous seetie
shall presently prove a necessary anflisient condition in order that
the forward Cauchy problem for a single equation of onaeoe uni-
formly well posed in the spac£. Let

a)’“ oV (o)
(at M;;m ax) \at
jsm-1

(3.1) L

be alinear diterential operators of ordenwhose cofficientsa, j(t) are
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(m - 1) times continuously dierentiable functions of in an interval
[0, h]. By Fourier transforms in th&space we are lead to the following
oridinary diferential equation of ordan with (m — 1)-times continu-
ously diferentiable coficients int:

oo (d\™ o fd) _
c2  v=(g) e+ 3] a0 () wen-o
jgm-1
Letv(¢, t, to) be a solution of [v] = 0 satifying the initial conditions
on (t = tp).

d d
V(£ to,t0) =0, ..., (d—t)m_zV(f, to, to) = 0, (E[)”HV(E, to,to) = L.
Then we have the

Proposition 1. If the cogficients g j of L are m— 1 times continuously
diffenentiable functions of t in an intervd, h] the forward Cauchy
problem for L is uniformly well posed in the spa€df and only if there
exist constants ¢ and p both independenyaiuch that

(3.3) V&t to)l < (1 + [€])P.

Proof. Suppose the Cauchy problem floiis uniformly well posed for
the future in the spacé& but the condition[{3]3) does not hold. Then for
any givenp > 0 there exist™, tj andt, t > t;, such that we have the
inequality

IVE, t,10)l > p( + 1€7))P.

Then The functioru(x, t, t)) = exp{x.£&")v(£",t, 1) is a solution of
Lu = 0 and has the properties.

(i) u(xt,t5) € &tg, h] and once continuously fierentiable int with

values iné&,
(i) U(x L) = M L1 > p(l+ [€)P, and 32
ay .
i) 3 [(55) )= 2 lerve ) < o e
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The last two inequalities together show that forward Cayutop-
lem is not uniformly well posed in the spaéewhich contradiction the
assumption.

Conversely, assume that the conditibnl(3.3) is satisfied.fditward
Cauchy problem is uniformly well posed in the spateFirst of all we
prove that the conditioi{3.3) implise thdt, t, tg) and all its derivatives
upto order (n— 1) with respect ta are uniformly majorized intp, h] by
polynominals ir¢. For this purpose we rewrite the equatiofv] = 0 in
the form

m-1
@Y (MELD Y AEAGIVELL =0
i=0

whereaj(t,¢) = Y a,;®)@i&)" for j = 0,1,...,(m-1)a(t,¢) are
Vl=m-j

hence polynominals of degree at most € j) in & with codficients

which are (n— 1)-times continuously dierentiable functions dfin the

interval [Q h]. Hence we may assume that there exists a constsinth

that
(35 laté)l<c@l+1E)™!,j=0,1,...,(m-1) for te[0,h]

Integrating [34) once with respect t@ver the interval t, h] we
obtain, after using the initial conditions &£ tg,

m-1 et j
(dgt) V(& tt) — 1= —Zfaj(‘r,g)(%) V(E, 7, to)dr.

=0

Integrating by parts the terms in the right hand side in viéwhe
initial conditions satisfied by(é, t, tp) we obatain

(dgt)m_lv(f, i) - 1=~ El {Ji(—l)p (dﬁt)p (aj(t.¢) (d%)j_l_pv(g, t, to)

j=0 { p=0

H-1) f (&) e omee to)dT}-

o
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By successive integration with respectttover the interval f, h]

(m - 1)-times, using the initial conditions and the inequal®&) we
m-1

show thatdgtv(g, t,t),..., i V(&, 1, 1) are all majorized by poly-
nominals of the fornt;(1+|£))Pi(j = 1,2,...,m), Cj, p; being indepen-
dent oftp.

j
Thus it follows that there existy, . . ., om such that (& |£[)7 (dgt)

V(€. t.10) € Z20to,h] for | = 0,1,....(m- 1). LetRi(t to) denote the

dt

We shall show that eaﬂ(t, to) has compact support in thxespace.
In view of the theorem of Paley-Wiener we have only to show ézah

j
inverse Fourier image t(fg) V(£, 1, tp) in the&-space.

dt
Denoting (1+ |¢]) for £ € C" by K we havela(t, £)| < cK™ for all
j=0,1,...,m- 1. The equatioi{3l4) can now be written in the form

i
(E) V(<. t, o) are of exponential type for complexe C".

d m d m-1 am_» d m-2
(a) V(§? t’ tO) + am—l(t’ g) (a) V(Z;’ t? tO) + T K (a) V(§9 t’ tO)
oo+ %Km‘lv(g, t,t)) =0

Taking for the new set of functiow = (Wg, W, ..., Wm_1) where

Wo(¢, t, to) = K™ (£, 1, o),

,dv
wi(Z,t,tg) = K™ Za@, t, to)

d m-2
Wim-2(¢, t,to) = K (d—t) (¢, 1, to)

d m-1
W26t t0) = (d—t) V.t t0)

the above equation can be written as a system of oridindfgrdntial
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equations in the following way:

(3.6)
Wo 0 1 o ... O 0 Wo
dl W1 . . W
ai ™y 0 0 1 .1
dt . .
R — _8m2 _ami
Win-1 Km Km-1 Km—2 K2 K Wm-1

Denote the matrix of the systefni {B.6) bi{t, ). Sincela;(t, )| <
cK™ I the elements of the matrid(t, ¢) are bounded in modulus by a
constantC; independent of in C" and henceH(t, /) as a linear trans-
formation in anm-dimensional vector space is bounded in norm by a
constaniC, which depends only om but not on¢ in C". Denoting by
IW({, t, to)|? the sumy; [wj(Z, 1, to)|* and byw(Z, t, to) - W' (£, t, to) the sum

i

2 Wj(Z,t, to) - Wi(Z, t, to) we have
j

d > d — d
d—tIW(é’, t,to)l° = d—tW(é“, t, to) - W(Z, t,to) + W({, t, to)d—tW(é, t, to)
= K(H(t,9) + H{t )Wt o)l
on account of the system of equati@n{3.6) satisfiewgiyt, tp). Hence

(d%) W(Z, 1, )2 < 2CKIW(Z, 1, o) 2

which, by integration with respect toover the interval th, t] implies
that

IW(Z, t, to)|% < exp(Z2K|t — to) = exp (1 + |2)It — tol

sincelw(¢, to, to)| = 1 consequently we have, sinke> 1,

i
(&) werw

Hence, by the theorem of Paley-Wiener it follows tﬁé(t, tp) are
distributions with compact support in thespace and depend continu-
ously on €, tp).

< exp[Ca(1 + DIt — to]].
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Let'¥ = (po, ...,om-1) With ; € & andf € &[0, h] be given.

The above argument can be modified a little in order to getaonv
tion operatordRi(t, to) similar to R(t, tp). This we do as follows:

Let vj(¢,t,to) be the solution oﬂ:[vj] = 0 with the initial values
given by

A\ |
(5] wee e, = o

(<5ij are Kronecker’'s symobls). We see thglé, t, t) is connected with
the solutionv(é, t, tp) in the following way.

t—t
Let wj(é,t,t0) = Vj(&,t,t0) — ( = O),
t = to together with derivatives upto orden(- 1). Noww; satisfies the
equation.

t > to. Thenw; vanishes at

(t — to)]
i

LWj+

|-ooritw) =il - 101 4 (6o

1j(é,1,tp) are obviously polynomials i&i and we have
lujé.tto)l < ca(1 + €)™ for O<to<t<h,

herecs is a constant. Hence

t

Wi(E.tto) = f V(Et D)6 T o).

to

This implies that

t
Wi(Z )] < f Mt )l (¢ 7 to)dir
to

< ca(t — to)(1 + 1) explea(1 + IZ1)(t - to)].

Hence the inverse Fourier ima@é(t, to) of vj(&, 1, to) = wj(&,t,to) +
(t-to)’

i has its support ifx| < c)(t - to).
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Then the function

m-1 t

B7)  u(xti)= > Ri(tto)#x @)+ f Ru(t. 7) #(9 (% 7)dr

=0 t

is a solution ofL[u] = f with Cauchy datal ont = tg. (HereR(t, tp))
stand for the inverse Fourier imagew, t, tg)). The linear mappings

t
(38) Yj— R)j((t, to) *x) Pj» f— fRX(t, T) *(x) f(S, T)dT
o

being continuous the forward Cauchy problem is uniformlyl\wesed
in the spacef’. This completes the proof of the proposition. m|

4

Proposition 1. Let the cogicients A and B of a first order system of
differential operators M be continuous functions of tin an iag {0, h].

If the forward Cauchy problem is well posed in the sp&téhen it is
uniformly well posed i&’.

Proof. In view of Prop. of§ @it is suficient to prove that if/l (¢, t, to) is
the fundamental system of solutions of the system of origlidéferen-
tial equations

(@1 Vet 1) = GADE + BOME Lo, AD £ = 3 AdDE

with intial conditionsvi(¢, t, to) = vé thenvi(¢, t,tp) are majorized by
polynominals in&|. (We recall that) denotes the vector in"Rhaving
1 for the j" component and 0 for the others).&t = £ we can write

l€1
the above system as

@) SVEL) = (AW £+ BOME L to).
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The elementy(t, £°) of the matrixA(t) - £° are homogeneous func-
tions of£9 of degree one having for cfigients continuous functions of
tin [0,h]. We remark thaw!(&, t,0) define the columns of the Wron-
skianW(t, &) of the above system of fllerential equations. From the
theory of linear ordinary diierential equations we know that

t t
(4.2) w(t, &) =W(0,&) exp{i|§| Z fajj (7, §O)dT + Z fbjj (r)dr.
i9 i

The forward Cauchy problem being well posed we can assunte tha

t
Y. [ajj(r,&%dr is real for every { £°), £&° real. For otherwise we mays7
i 0

assume, if necessary by changifgo - £° that

t
Rei >’ f ajj(r.&%dr > 0.
1o

By the assumption of the well posedness of the forward Cauchy
problem it follows that

(4.3) M(£,1,0)] < (1 + [¢])P

for suitable constants and p, and soW/(t, £) is majorized by a polyno-
mial in |£]. On the other hand, as— +oo,

t

W8~ WO.Olexplple’ Y Rei [ (). & = pé.
i

0

ThusW(t, &) tends to+co exponentially ap — +oo contradicting
t

the inequality [418). Hence it follows thgt fajj(r, £9dr is real for
10

every ¢, £°) with real£°. We now have

t
W(.&) = WA exp{ Y Re [ byj(re
J 0
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and hence
t
[W(t, &)l > IW(O, f)lexp{— Z flbjj(‘[')ldr} >6>0 forall (t,&).
10

&real. Further we observe that,\slg, t, 0) form a basis for the solutions
of the system of ordinary fierential equations

V(Ett) = D CEVIEL0).

Puttingt = tp solving forcij(g) we see that, since de}(g, to, 0)) is
the WronskianW(tg, £) which I1s minorized by a polynomial if¥| and
sincevi (¢, t, 0) are majorized by polynomials J, c‘j (&) are themselves
majorized by polynomials. Henog(¢,t, o) are majorized by polyno-
mials in |£] independently ot andty which implies that the forward
Cauchy problem is uniformly well posed fof. Hence propositiofl1 is
proved.

Correspondingly we have the following result for a singlffedien-
tial equation of ordem. Let

(o™ PAVEAY
(4.4) Lz(a) +|V|+Zj;may,,-(t)(a—x) (&)
jgm-1

be alinear dierential operator of order m with theffieients depending
only ont in the interval [Qh]. m|

Proposition 2. Let the cogficients g j of L be(m-1) times continuously
differentiable fucntions of t in an interv®, h]. If the forward Cauchy
problem for L is well posed then it is uniformly well posedtfu future

for L.

Proof. Writing the operatot in the form

o S
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whereaj(t,¢) = X a,j(t)(i£)” (j = 0,1,...,m- 1), we are lead to
v|=m-]

the following oridinary differential equation of ordem:

(4.6) (dﬂt)mv@, 0+ :Zjaja, f)(d%)j V) =0,

39
Denoting the Wronskian of the equatidn_{4.6) Wit, &) we have
from the theory of ordinary dierential equations

t
(4.7) W(t. &) = W(0,4) exp{— f am—l(Tyf)dT}-
0

Write ap_1(7, &) = afrlll(r, &)+b(1) whereagzl(r, &) is homogeneous
in £ of degree one with cdicients continuous functions ofin [0, h].
Then
Y\ (r.€) = 1) 1 (7, £%), € = 1¢1€°

and so we can write

t t
W(t, £) = W(0,¢) exp{—m f al) (r,&%r - f b(r)dr}.
0 0

O

Now arguing as in the proof of the propositith 1 one can shaw th
the Cauchy problem is uniformly well posed using again tlepdB6 of
§[2. Finally we shall show that for first order systems with ¢canscoef-
ficients the condition of Hadamard implies the condition efrBwsky.
This will prove that for first order systems with constant ffieents
these two conditons are equivalent. For this we need the

Lemma 1 (Petrowsky) Let a system of ¢ierential equations with con-
stant cogicients

d
(4.8) d—tv(t) = AV(t)
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vi(t)
: ]With laj] < K be given. Then,

()

given any positive numbersuch thate < (N — 1)!12NK we can find a

non-singular matrix C such that

where A= (ak) and \(t) = (

ay 0

(4.9) CA=DC where D= %22
a, 3

where all aTk, k< jsatisfyla’j*k| < &. Moreover

(N - 1)12VK B
(4.10) |detC| = [T]

and the elementsycof C satisfy

(N — 1)12NK [N
& ] '

(4.10) [Cik| < [

For a proof see Petroweskyl[2].

Proposition 3. Let the cogicients A and B of M be constants. Then
the condition 9 of§ @ of Hadamard implies the condition 12 B

Proof. Consider the system of ordinaryfidirential equations

d .
(4.11) FUED = (A + BIVED).

Let us fix£0. Taking (A.£0 + B) as the given matrix in the lemni 1
there exist constants), ¢; such that

(4.12) liaj (%) + bjl < colél® + 1

(co, c1 are independent af%). We takeK = col¢|° + ¢; andé = (N —
1)12NK = (N — 1)12N(col¢l° + ¢1). Then, by the lemm@l 1, we can find
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a matrixC(¢°) such that (detC(¢°)| = 1 and its elementsix(£°) satisfy
lcik(€9)] < 1. So denoting(£%)v by w we have

uE)
@19 gD O e

a, (%) AN(E°)
where1(£9), ..., An(£°) are the roots of the equation 41
(4.14) detl —iA.&°-B)=0

and

a].*k(g)| < (N=1)12N(colé + ¢1). by Hadamard’s condition we have
Rej(¢°) < plog(1 + |£° + logc.

Now sincew(¢9, t, 1) is a solution of the above system it follows that

W(EL, t,to)l < (L + €9 forO<to<t<h

with the constants’, pp independent of, to, £°. Finally sincev(¢°, t, to)
= ¢(£9)~tw(£0, 1, to) we have desired property. O

5 Hyperbolic and strongly hyperbolic systems

The notion of well posedness of the Cauchy problem is closadfted
to the nature of the given system offdrential equations. In this section
we introduce hyperbolic and strongly hyperbolic systemdifiérential
equations. We give criteria, in order that a given systemifieen-
tial operators be of this type, in terms of the characterigipbts of the
system.

A = A% 1), B = B(x,t) will be matrices of ordeN of functions
on R x [0, h] the regularity conditions of which will be prescribed late
in each case. Consider the first order system édintial operators

8 0
(5.1) M=~ Zk:Ak(x, t)a_xk

42
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Definition. A system of diferential operatorM is said to be hyperbolic
if the forward and backward Cauchy problems are well posed.

Definition. A first order system of dierential operator$/ is said to be
strongly hyperbolic if for any choice of the matrB(x, t) the Cauchy
problem (forward as well as backward) is well posed for thatey

(5.2) % - Zk: A(X, t)% — B(x, )

Let 21(x, &,1),..., An(X &, 1) be the roots of the equation
(5.3) det@l — A(x,t)-¢) =0

whereA(x, t) - £ denotes the matri¥, Ax(x, t) - &k.
k

Proposition 1. If the cogficient matrices fof M are constant matrices
then a necessary condition in order that M be strongly hypkchs that

(1) 25 isrealforallrealé #0(j=1,...,N)
(2) the matrix A.£ is diagonalizable for alk.

We shall actually prove a slightly stronger result: If oneted 2;(¢)
is not real for some rea # 0, then for any choice oB (a constant
matrix) the Cauchy problem for

is not well posed.
Proof. If the condition (1) is not satisfied for same r&éal+ O, there ex-

ists a root, sayl1(£*), with non vanishing imaginary part of the equation
det@l — A¢) = 0. Foré = 7&%, A = T’ we can write

detl ~iA¢ - B) = def V1 ~iA£ - 2)
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for any matrixB. Denoting det{’l — iA.£*) by P(1") we have

(5.4) det@l —iA-£-B) =N {P(/l') + %Q(/l’,r)}

where Q(1’, 1) is a polynomial inA’ of degree at mosiN — 1 having
for codficients polynomials i1, Since1(£¥) is not real we may;,
without loss of generality, assume that a{¢*) < 0O (if necessary after
changings* by —£* in the equation). Them(£*) is a root ofP(1") = 0.
o . 1 ,
By continuity of the roots there exists a rootPf1’) + —Q(A’,7) = 0in
T
a neighbourhood df1;(£*) in the complex plane. More precisely there

. . 1
exists a root’ (7) for larger of the equatiorP(1’) + ;Q(/l’, 7) = 0 such
. 1
that A} (r) = i11(£)+ € (=) wheree (1) — 0 ast — +c. Hence Re
T

1 .
(1) 2 5(—Im A1(£9)) for large . In other words there exists a root
A1(7) of the equation

detQll — A& —B) =0

such that Rd;(7) < cr (with a positive constant) , which tends to+co
ast — oo, Hence the forward Cauchy problem is not well posed for the
systemM — B by prop.[2 of§ 2.

(2) Assume again that the systévhis strongly hyperbolic, but that44
for a certain&* the matrix A.£* is not diagonalizable. There exists a
non-singular matrixNp such thatl\lo(A.g*)Nal has the Jordan canonical
form

A2 0... O
(5.5) 1 4... O

*
Consider forB a matrix determined by

010...0
0 0O0..0

NoBN; ! =

00O0..0
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We shall show that the Cauchy problem is not well posed for the
system of diferential operators

Consider the characteristic equation of this system, namel
det@l —iA.£-B) =0.

Taking for £ the vectorré™ (r a real parameters o) this equation
becomes

det@l —itA&* — B) = det@l — itNg(A£")Ngt — NoBNy 1)

A—ity -1 0...0
_ —iT/ll /l—iT/ll 0...0
[ X
............ X

Hence @ —itA1)2—it = 0, the roots of which aré(r) = itA1 + Vit
whose real parRed(r) — o along withr. Hence the Cauchy problem
for the systenM B is not well posed by prdd 2 &f2, which contradicts
the assumption. m|

Proposition 2. A syficient condition in order that the system M be
strongly hyperbolic is that one of the following two conafits is sat-
isfied:
() the characteristic rootg;(¢) are real and distinct for all reak #
0;

(i) Ag are Hermitian.

Proof. Supposing the condition (i) is satisfied. We shall show that t
implies that the Cauchy problem is well posed for the systém B for

any choice oB. Consider the equation dat(-iA.£ — B) = 0. Denoting

the projectioné of £ on the unit sphere bgP andé| by 2'(£) we can

write this equation in the form

B
1-iAL - =) =0.
det@’l —iA.£ |§|) 0
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If 11(£9), ..., An(£0) are the roots of the equation (diét— A.£% =0
we can write

Q. _
€1

N
(5.6) det@l —iA&L— D)= [ ] -i2®) +
€1 Gl
whereQ(’, £) is a polynomiabg(¢)A"N"1+. - -+an_1(£) with codficients
bounded foig| > 1. If Qg is the projection of2 on the unit sphere we
have
inf |2;(€%) - @) >d>0
§0690
j#k
sinced1(£9) ... An(£0) are all distinct.

LetK = sup [2j(£%) andm= sup |Q(,&)I.
£0eQ0 1]
1<j<N M=K +1
N-1

Let C be a positive number such tha > >2mandl’y,...,I'n

be circles in the complex plane of rao% (g g) with centres;(£9),

..., An(€0) respectively. O’k we have

>gﬁw4>@am@W@um
“la\2) T G

‘1‘[(1 ~i25(¢%)
j

Hence by Rouche’s theorem there exists a unique root of

Q.8 _,
€1

[ ] -2 +
j

in the dise enclosed blx. More precisely there exists a rom}(g) of

det’l —iA.£0 - EBI) = 0 such that
<

I%@—M@M<m

46
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or, what is the same, there exists a rEb;(gf) of
det@l —iA£-B)=0

such thaﬂ;lj(g) —i1j(&)l < C. Sinceqj(¢) are real it therefore follows
that
Relié<C(j=1,...,N)

and by prop[1l o & the forward Cauchy problem is well posed for the
systemM — B. This proves thaM is strongly hyperbolic.

Next let us assume that the matricksare Hermitian. By Fourier
transforms in thex-space we obtain the first order system of ordinary
differential equations.

Now consider

d%v(f, P = d%v(g, 0 VED + V(E, t)d%v(f, )
= (IA£ + B\VE 1) - VE D) + V(E DAL + BVE )
Since theAg are Hermitian, we obtairB being bounded,
d%|v(§, O = 2ReBWE 1) - VE 1) < 20v(E, 1),
We obtain therefore
(5.7) V& BI7 < W& 0)7 €.
which shows that the forward Cauchy problem is well posedttier

systemM — B and soM is strongly hyperbolic. This completes the
proof of the proposition. Let us now remark the followingtfac

d »_d —
d—tIIV(f,t)II = dt<V(§,t),V(§,t)>

= <d9tv(§, t), (&, +)V(E, 1), d%v(f, t))
= <(|A‘§: + B)V(é:’ t)? V(é:a t)> + <V(§a t)? (lAf + B)V(‘fv t)>
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SinceAy are Hermitian we obtain

d -
Ve, BI* = 2ReBME, 1), VE, 1)) < 2¢|Iv(E, DI

with a constant independent of. Integrating both sides of the inequal-
ity over [0, t] we obtain
IV, DI? < [Iv(€, 0)|[*€*. Hence

(5.8) Ilull < flu(x, O)lle™.

We remark that the notions of hyperbolicity and strong higpkcity
can be anologously defined for a singléeliential operator of ordem.
Consider a dferential operator of ordan

a\" a\ (o)

(59) L= (a) + Z av’j(X, t) (a) (a) .

[vI+j=m

jsm-1
L is said to be hyperbolic if the Cauchy problem (both the fodhand
the backward) is well posed fdr. It is said to be strongly hyperbolic if
the Cauchy problem (both the forward and the backward) i posied
for L — B for any choice of the lower order operatér Let

(5.10) P(LE ="+ > a,(x el
Vl+j=m

jem-1

O

Proposition 3. A necessary and gicient condition in order that a dif-
ferential operator L of order m with constant gfeients be strongly
hyperbolic is that for every real vect@(# 0) in R all the roots of the
equation 1, &) = 0 are real and distinct.

Proof. The proof of the fact that the roots &(1,£) = 0 for all real
&(# 0) are real runs on the same lines as in Ptbp. 1. We shall now sho
that for all realé # O these roots are all distinct.

It the roots ofP(41, &) = 0 are not distinct for all rea§ # O let us
suppose that for some re&l # 0 at least two roots oP(1,£*) = 0 49
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coincide. WritingP(4, £*) explicitly

m-p+1

P& = (A-uE) [ | @-2N.P=22

=2

whereAx(¢7), ..., Am-ps1 (£7) are real, and dierent froma,(¢*). Take

. 1.
for £ the vectorré* with a real parameter and setl’ = — — i11(£9).
T
Now consider the equation

P(1,ite")+CM™ =0

with a constantC to be chosen later suitably. From this equation we
obtain

m-p
VPT T +ituE) - 4 + %
j=2

C
= VP(@E) + (€D + B pa (€N P+ ™) 4 =0

whereag(¢*) # 0. Expanding this in a Puiseux series in a neighbourhood
of T = co we see that there exigtroots

A7) = eXp(%k) : (ao_(;))_p r o(r‘%) k=1,....,p)

p being at least 2 we can choose the constastich that there exists a
root with positive real part; that is there existkgssuch that

ReA; (r) = Cor /P for large .
(Co being a positive constant). Hence
Redy,(r) > Cor' # for larger.

There exist constanty, suchthaC = Y, b(i£&*)”. Thus it follows

[vl=m-1
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from prop. [2§ [ that the Cauchy problem is not well posed for the

operator
a v
L+ Z bv (E)_x) .
[v]l=m-1
This contradicts the assumption that the operat@s strongly hy-
perbolic.

The suficiency follows as in the proof of the prag. 2(i).
Finally we mention the following fact: Consider the follavg equa-
tion with codficients in&’.

M[u] = %u— ZAk(x,t)ﬁu— B(x,t)u=0.

If, at the origin, for some&* real# 0, one of the characteristic roots
of det@dl — A(0, 0)¢*) = 0 is not real, then the Cauchy problem fdris
never well posed i€’ in any small neighbourhood of the origin. (See
Mizohata [3]). We shall prove this fact later, in a simpleecallere we
add an important remark: Garding has shown in his papedi@a{1]),
that the condition 9 of 2 of Hadmard is equivalent to the following:

ReA;(¢) is bounded from above whefiruns through R for j =
1,...,N.

Next Hormander has systematized such inequalities byguSai-
denberg’s lemma (see Hormande [1]). ]

Proposition 4. Let the cogicients A and B of M be continuous funcs1
tions of t in an intervall0, T]. If the forward Cauchy problem is uni-
formly well posed then the backward Cauchy problem is alsfmumly
well posed.

Proof. As before denotingi;i| by £9 let vi(¢, t, to) be a fundamental sys-
tem of solutions of the system of ordinanfférential equations

Ve = (KIADE + BOME.D.0< t<tg

with initial conditionsvi(£, to, to) = Vi = (V/, .. .,vjN) Wherev} =1 and
vlj( = 0fork # j. First of all we remark that ¥V(t, ¢£) is the Wronskian of
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this system them! (¢, t, to) define its colums. Since the forward Cauchy
problem is uniformly well posed we have

MEtt) <CA+IENP, j=1,...,N.

HenceW(t, &) is also majorized by a polynomial ig|. From the
theory of ordinary dterential equations we know that

T T
WT.9) = Wt expl el Y ( [ ay(s. s+ [ byy(9dst.
I t

.
Now as in Prop[I1 it follows thaF; [ ajj(s £%)dsis real for anyt
it

and&0. Thus we have

t
IW(T,f)IZIW(t,g)IeXp{—Z f bjj(s)ds}.
Y

~ Thatis,|W(T, &)l > 6 > 0 for allt and¢. Further we observe that as
VI(&,1, o) form a basis for solutions of the system of equations we can
write

VE L) = ) GEVELT).
k

Puttingt = tg and solving for(:l’((g) we see thaq‘((f) are majorized
by polynomials in|¢| since the determinant of this system of linear
eqguations is the Wronskiaw/(&, T) which is minorized bys > 0 and
vi(¢, 1, 19) are majorized by polynomials ig|. Hencevi(g, t, to) are ma-
jorized by polynomials iné| independent of andtg in [0, T] which
proves that the backward Cauchy problem is uniformly wedlgzb This
completes the proof of the proposition. m|



Chapter 3

There are obvious analogues of the function spaces inteadat the 53
begining of Chaptdr1 for vector and matrix valued functiové&e shall
use the same notations for these spaces and norms and goalactp

on them. For example, for two vectans= (u;) andv = (vj) in é@LSZ[O, h,

we define

(u(®), V(D) = > (Ui(x 0, Vi )s.
j

1 Energy inequalities for symmetric hyperbolic sys-
tems

Let Ax(x,t) andB(x,t) be matrices (of ordeN) of functions. Consider
the following system of first order equations.

0 0
(1.1) EU—ZAk(x,t)Ru— B(x, tu = f
whereA(x, t) are Hermitian matrices. Suppose that
Ak(x.t) € 220, h], B(x.t) € 2°[0,h] and f € Z5,[0,h].

Proposition 1 (Friedrichs) Let u be a solution off.1) belonging to
25[0,h]. Then we have

t

12) Ul < expit) - JuO)] + f exp/(t — 9)IF(9lds

0

a7
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wherey is a constant depending only on the bounds gfB\

Proof. Differentiating|lu(t)||> = u(t), u(t)) with respect td we have the
identity

gﬁmmﬁ=(%%mum)+ﬁml%%0)

SinceAy are Hermitian matrices and sinaes 9&2[0, h] we obtain
from (L) the relation

du ou
(u, a) = Zk:(uAkR) + (u, Bu+ f)

0
- _ Z (&(Aku), u) +(u, Bu+ f)

k

= — {Z (Akg—;k u) + Zk: (g;':kku u)} + (u, Bu+ f).

k

d > O0A
Hencedtllu(t)ll = - % (8xk - U, u) + 2Ref), Bu+ f)

< 2y|lulf? + 2/julll| |

. . 0
wherey is a constant depending only on the boundsg% and B.
Hence

d
d—tllu(t)ll < ylu®ll + 111l
which on integration with respect tgjields the required inequality
t

Ul < exp6t) - [UO)] + f expty(t — 9)If(9lds

0

The energy inequality involves tHe?-norm of the solutioru of the
system in thex-space. It is possible to derive the energy inequality under
the weaker assumption thate L2(0, h]. For this we use the method of
regularization in thex-space of the function by mollifiers introduced
by Friedrichs. We recall the notion of mollifiers and a fewludit prop-
erties which we need. m|
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Definition . Mollifiers of Friedrichs Let ¢ € & with its support con-
tained in the unit ball|x < 1} such thatp(x) > 0 andfgo(x)dx =1. 55
Then for a5 > 0 define

@s(X) = 5—1ns0(g)-

are called mollifiers. 56

Proposition 2 (Friedrichs) Let ae %' and ue L?. Denote by G the
commutator defined by

ou ou
(3.1) S e ) G
(1.3) = [906*’61(91)(] u.

Than we have
() lICsull < cljull wherec is a constant depending only grand a
(i) Csu—0inL?asé — 0.

Before proving this proposition it will be useful to proveetfollow-
ing
Lemma 1. Ifu € LP thenys = u — uin LP asé — 0. More generally, if
ue Z(m=0,1,...) thengs *u— uin 7.

Proof. Letys = 5 * u— u. Since [ ps(x)dx = 1 we have

ws(x) = f @s(X = y)u(y)dy — u(x) = f @s(X = Y)(u(y) — u(x))dy.

If p’is such tha% + % = 1 by Holder’s inequality we have

Vol < (f #alx= y)dy)l/p, (f es(X— Y)|u(y) — u(¥)| IDdy)l/p
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11
Here we useps = ¢ - ¢}. Now since [ ps(x — y)dy = 1 we have

[ws|Pdx < [[ @s(x —y)uy) — uXPdxdy= [ @s(x— ylu(y) -

[X-V|<6
u(x)|Pdx dy. By a change of variables = x — y we obtain

ez [ eax [ ) - v - wipay

If £(6) denotes sup[  |u(y) — u(y + h)|Pdy then [ |y5(x)[Pdx < £(5)
|hj<6
which tends to 0 ag — 0. The second part is an immediate conse-

quence of this result sinc(e;—x) (s * U) = s * (8%() uforv| < mif
ue 2.
Proof of Proposition[2:

(1.4) Csu(¥) = - f es(X—y)(@a(¥) - a(Y))g—;(y)dy

where the integral on the right is taken in the sense of tigions. Now
we have

(1.5) Coti= f aﬁyj{soé(x—y)(am—a(y»}u(y)dy

where the integral is taken in the usual sense. In fact tiegiat in [L5)
is equal to

- [ S hestx- iy + | @09 - a9 Gx- Yty
we now note that
R o - yioxs
with ¢ independent of. Thus it follows from the Hausdé¥Young

theorem that the function represented by the above integnadjorized
in the L?-norm bycy|a|4//ul. Now we see that the integration by parts
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is justified. In fact, the two integrals are equal toe . Then for any
58 u e L2 the equality is proved by taking a sequenge? having for its
limit uin L2. ThenCsu; tends to the second integral in the senseof
On the other han@;su; — Csuin the sense of distributions. This proves
().
Since a(X) — a(y))es(x — y) considered, for fixed, as a function of
y has compact support we see that

0
f gy, 1800~y dy =0
Hence
Cou(¥) = f gy (000~ a0esc =) ) ~ U9y

__ f y, o (X = 9)(UY) ~uG)dy

f (a(x) - a(y))—(x y)(u(y) — u(x))dy
= ¢2(X) + ¢2(x), say.
Now as in the proof of lemn{d 1, we see that
g ()1l — 0 ass — O = 1,2).

In fact, for instance,

( y)

Ip2(X)] < [al 1 f Xyl 9"‘5 llu(y) — u(x)ldv.

Slncef|x|| |dx < c (independent o) we obtain the desired

property by the same reasioning as earlier. As an immedatses
quence, we have

Corollary 1. If we assume & #™ and ue 9[“2 in proposition2 then

(1) lICsullgm, < clluligm, o
L L
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2 C5u—>0|n@mas6—>o m=12,.

Proposition 3 (Friedrichs) Let u be a solution of(IJ) belonging
L2[0, h] then the inequalityT.2)

t

Il < expoR)u(o)] + f expt(t — 9)IF(9ds

0

holds, wherey is the same constant as in prdp. 1.

Proof. By regularizingu in the x-space by mollifiersps we obtain a
function belonging tc@&z[o, h] to which we can apply the Profl 1. Let
Us = @5 *(x) U. Then

Form the equatiori{1l.1) we obtain the following equationupr

ouy

ou
e Z s *(x) (Aka_xk) + @5 *(x) Bu+ s * f,
K

that is

8u5 ZAK%+BLB+f5+C5u

whereCsu = Z {soa *() (Ak ) Axlps *(x) ::k)}
+ {go(; *(x) Bu— R(gs * U)}

0
= Z [%*(x), Aka—xk

Applying prop.[1 to the equation u we obtain sincels c 2/,0,h]

U+ [@s*(x, Bl u.

1) < expbDlus O] + f exp/(t - ) f 15(9)l + [Ca(lds
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Now it follows from the Friedrichs lemma (Prag. 2) that

I(Csu)(9)ll < cllu(s)ll

wherec is a constant independent &andCsu(s) — 0 asé — 0. By
Lebesgue’s bounded convergence theorem it follows that

t

f exph(t— 9) - (1f(9l + ICsU)(SN) ds

0

t
tends tof expl(t— 9)llf(9)llds Thus passing to the limits as— 0 we
0

obtain
t

(DIl < expeOIUO)] + f exp/(t - I (9lds

0

2 Some remarks on the energy inequalities

In the previous section we obtained estimates for the swistof sym-
metric hyperbolic systems ib?-norm in terms of the.?-norms of the
initial values and of the second member. One can ask wheticéres-
timates can be proved in the maximum norm a&fénorm for p # 2.
Littman [I] has proved that such an energy inequality cahodt in the
LP-norm for p # 2. The existence of such an inequality with the maxi-
mum norms of functions and of their derivatives is relatetht prop-
agation of regularity, a form of Huygens principle forffdrentiablity.
For instance, ifu(0) is m times continuously dierentiable isu(t) also
mtimes continuously dierentiable? In general an energy inequality in
the maximum norm does not hold as we shall show by a counten-exa
ple due to Sobolev. However, when the dimension ob#space is one 61
an inequality for solutions of strongly hyperbolic systemsgalid in the
maximum norm. This result is due . Haar. We indicate his result
briefly.
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Haar’sinequality. Consider the system of equations of the first order

ou ou
(2.1) i A(X, t)a_x -B(x,tu=f
where the matrixA(x, t) is such that detAl — A) has real and distinct

roots. Then we have the inequality

2.2) U@l < c(T{1uO)o + sup IF (Do)
0<t<T
where|u(t)lo = sup|u(x,t)|, D being a neighbourhood of the origin and
xeD,
Do=Dn{t=0}. ’

In fact, let 21(x,1),..., An(X t) be the roots of detyl — A) = 0.
A(x,t) being diagonalizable there exists a non-singular matiix, t)
such that

N(X, )A(X,t) = D(X, t)N(x, 1)

whereD(x, t) is the diagonal matrix

/l]_(X, t) 0

0 /lN(X, t)
and such thatdetN(x, t)| > § > 0. We have the identity

0 oN ou
E(NU) = EU+ NE

Substituting for% from the given system the right hand side be-
comes

N N
ON e NAY o NBur NF= Nyt DN Ut NBu+ Nf
ot 0X ot 0X
|
= D—.(Nu) + Byu+ N.f,
ax( ) + Biu +
N N
whereB; = —Da— + NB+ a_' If B, denotesB;N~1 thenv = Nu

OX ot
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satisfies the system.

%’ = Dg—:/( +Bov+ Nf
which can be reduced to an integral equation of the Voltgne tand
then can be solved by successive approximation. kgtd) by any
point in the &, t)-plane. LetD be the domain enclosed by £ 0), the
characteristic curves passing through, (o) and having the maximum
and minimum slopes. Lddy = D N (t = 0). One can then show from
the integral equation that

lu(Xo, to)| < C{SUpIU(x, O) + sup [f(x, t)I}
xeDg (x,t)eD

with a constant independent ofl.
That the energy inequality with the supremum norms does aidt h
in general in shown by the following counter example due tbdbayv.

Counter example (SobolewWVe consider the wave operator

P P
(2.3) mz?—Z—

D

in R®. We set

au
é)Xj

ou
Ei(t,u) = sgp{‘al + Z

i

We shall show that ify > 0 then an inequality

Ei(to, u) < cE1(O, 1)

does not hold, which proves that thefdrentiability of the solution 63
is not propagated in thedirection. For this purpose, lét(x,t) be a
fundamental solution afi such that

or
I'(x,0) =0, E(X’ 0)=6
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¢ being the Dirac distribution. Let € . For ane> 0 define

©(x) = i‘)
¢ (%) 90( )
ExtendingI'(x, t) to the whole space by setting
I(xt) =T(xt)for t>0
=-T'(x,-t) for t<O.

52
We obtain a distribution solution %% > 6_ in the whole space
j Xj
(o0 <t < o0) x R3. Setting
Ue(x, 1) = (% t — t0) #(x ¢ (X)
we obtain a solution of the homogeneous equation whichfieatis

] or
aue(x, to) = E(X’ to — 10) *(g ¢ 9 (%) = 6 * g (%) = ()

0 ~ 0
- =T — () =
and ax Ue(X, to) = I'(X, 0) *(x) ax? (=0
HenceE(to, Ue) = suple© (x)].
X
On the other hand we first observe thigk, t) can be taken to be

—x-t. Let us choos@y € Z with its support contained in the unit

Y
<

4nt
64  ball in R® such thatp(0) = 1 and|e(X)| < 1. Then|a—x<,o(€)(x)| <
j

Thus fort = 0 we see that

0 or
2iUe(x.0) = +—-(x t0) (9 ¢9(X) =

G [ #9x-nds)

=1 =t

Now since f dg = O(€?) it follows thatguf(x, 0) = O(e).
Be (xo)N(I1=1) t

We also haveg%(x, 0) = O(e) and soE1(0, u.) = O(e) which together

j
with Ex(to, ue) = suple(®(X)| = 1 shows that an energy inequality of the
type E1(to, Ue) < cE1(0, u.) does not hold.
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3 Singular integral operators

In this section we introduce the notion of singular integrpkerators
and recall some of their properties which will be useful ie gtudy
of the existence and uniqueness of solutions of the Cauablyigm.
The following considerations lead us to the notion of siaguhtegral

operators.
Consider the system of equations
ou ou
1 — - — —Bu=
S 7t~ 24 MG, B

whereA, andB are matrices whose entires are constantsfaad 2[0.h].
We assumd(3l1) to be strongly hyperbolic in the sense tkabibts of
the equation. detif — A.£€) = 0 are real and distinct. Let the roots be
A1(8), ..., An(€) for &€ # 0. We have the following.

Lemma 1. There exists a non-singular matrix(&) which is homoge-
neous of degree zero and bounded such that

(1) |detN(¢£)| < 6 > Ofor all ¢.
(2) N(&)(A.E) = D(E)N(&) where 0¢) is the diagonal matrix

A1(¢) 0
D) =
0 An(E)
65

Assume that there exists a solutior L2[0, h]. Then, denoting for
every fixedt, the Fourier transform af in the x-spaceu(¢, t), we obtain
the following system of ordinary ffenential equations:

d : . -
(3.2) aﬂ(f, t) = (2niA.£ + B)U(&, 1) + T(&,1)

Multiplying both sides of this system biy(¢) and using lemmBl 1
we have

d : R -
G (NOE, D = (21D - N(§) + NE)B)U(E, ) + N(E) T(€. ).
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V(£, 1) = N(&)T(4, 1) satisfies the system of equations
d _ ~
(3.3) d—\t/(f, t) = (2riD(€) + B'@IVIE 1) + N() f(£,1), where

B'(£) = N(©)BN() ™. Now

d dv _ dv
GV BI? = f(a RVERVS a]olf
- f {27r(iD(§)V~ V+v- D@V + 2Re@V, V)
+2ReN(¢)f - vide
-2 f Re® (¢)v- T+ N(&)F - (& .

BecauseN(¢) is bounded and condition (1) of lemrh 1 holds. The
operatorsB’ is bounded and hence

d A
GV t)II? < 2yIvI* + 2 Re(N(#)f, V)
< 2yIMI + 2IN(E) fllivI

66 Thus we obtain
t
M| < expft) - IV, O)II + fexp(y(t - 9))IIN() fA(é 9)llds
0

By Plancheral’s formula’s formula we have

IV(E, DIl = INE)U(E, DIl < cllu(®ll.

and again sinc®l(¢) has a bounded inverse by condition (1) we see that

t
(3.4) Ul < o) o) + f I(9ids}
0
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wherec is a constant depending only on

Now we look at this reasoning without explicitly using thetina of
Fourier transforms.

N(£) is homogeneous of degree Q4mand so the convolution opera-
tors.4(x)+ defines a bounded operator in the spagsince

[l (X) = ull = [IN(E)dll < cljul

by Plancherel’'s formula. Heret'(X) is the inverse Fourier image of

N(£). Let Z2(x) be the distribution whose Fourier imageDs(é). De-

l€1
fine the operatora by

(AU) = €l
Then we obtain
d )
d—t(JV(X) *(x) U) = 211 D(X) #() A(A(X) *( U)
+ JV(X) *(x) (BU) + JV(X) *(x) f.

In other wordsy = .4 (5 U satisfies the system

dv .

a =2n9 *(x) AV + Biv+ A *(x) f,
whereB; € .Z(L?, L?) because of condition (1). Integrating with res7
spect tat in the interval [Qt] we have the inequality

t

[l 50 Ull < eXpO)lA (g U(X, O)||+fexp(y(t—s))||,/1/ #x F(x 9)llds
0

wherey is a constant depending only ghand B. But there exists a
constank (depending om\) such that

1
EIIU(X, DIl < 1A %09 u(x DIl < Klju(x, D

which gives an energy inequality far

Now in the case of systems with variable fitments even though
we cannot apply Fourier transforms we may, however, wrigesistem
in a form similar to[[3XR) to which we can apply the above mdttmget
an energy inequality. For this purpose we introduce theusamgntegral
operators.
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4

For a functionf e L%(RY) consider the integral transform defined by

X

i
4.1 g(x) = v.p. f % dt.

M. Riesz [1] has proved that the Cauchy principal value degjigi ex-
ists andg € L?(RY). f — gis a continuous linear mapping &f(R?)
into itself. In the language of the theory of distributionge wan write

g=Vv.p ()}() « f.v.p. ()}() is a tempered distribution whose Fourier im-

age isy(¢) = —ni for £ > 0 andni for £ < 0. We observe tha%( is

homogeneous of degreel and has mean value 0. dfdnd f are the
Fourier images ofj and f respectively themy = dy f and|ig = || f|| by
Plancheral’s formula.

Calderon and Zygmundl[1] generalized this theory to fumstion
R". Let N(x) be a homogeneous function of degree -n SNR1X) =
A7"N(x)) which is smooth in the complement of the origin and has mean
value [ N(x)doy = 0. Then they proved thaf = v.p.N(x) = f € LP

IX=1
if f € LP. In particularf — g is a continuous linear map &f into
itself. This latter fact can be seen observing thatN(Xx) is a tempered
distribution, its Fourier transfornh(¢) is a homogeneous function of
degree 0 and has mean valuﬁ. h(¢)dos = 0. In this paragrapliloy

l¢1=1
anddo; stand for normalized volume element of the unit sphere; viz.

dox = dSx/vol S.

Conversely, given any homogeneous functig#) of degree 0 with
mean value 0, ify(X) is its inverse Fourier image we can define an inte-
gral operatorg by

(v = £)(x) = f exp(2rix - £)n() f (¢)dé.



Now consider the dierential operators

L(x, 6%) = Z aj(x)aﬂxj.

For a functionu € . we can write
(L)) = f exp(2ix€)( | a()&;)(2ri)aE)dé.
j

Denoteh(x, &) = 2i 3 aj(X)é;/I€]. If we define 69
j

(HH)() = f exp(2rix.£)h(x, &) f(£)de
H will be a bounded operator i?. In fact,H can be written
(4.2) Hf =21 > aj()(R; )
whereR; is the inverse Fourier image f/|¢]. It follows that
IHf < 27?2 laj(¥lo II Ry =+ f < (ZﬂZ lajlo)ll f1l.
Now L can be written in the form
Lu=HAu

We introduce the notation used by Calderon-Zygmiind [1], [2]

Let U be an open set in'/R A function u defined onU is said to
satisfy a uniform Holder condition of ordg0 < B8 < 1) if for any x,
X' € U we have

(4.3) lu(x) — u(x)| < cx— xP.

cis called the Holder constant for We shall denote bZs(U), 8 > 0,
the class of complex valued continuous bounded functionl avith
bounded continuous derivatives upto ordef (the integral part of3)
and with the derivatives of ordep] satisfying a Holder condition of
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orders — [B]. &:(R" - {0}) will denote the space consisting of complex
valued functionsh(¢), £ € R", homogeneous of degree 0 and infinitely
differentiable in R — {0} with respect tt. This spaces:(R" — {0}) is 70
topologized by the family of seminorms defined by

6 4
ps(h) = ) SUpI(z5)" )l

v<sl6l=

We say thah(x, &) € C;",,B >0, if

(1) for g = 0 the functionx — h(x, &) € &(R" - {0}) is continuous
and bounded,;

(2) for 0 < B < 1, h(x,§) € C7 and the functionx — h(x,&) €
6¢(R"-{0}) is uniformly Holder continuous of ord@in the sense
that for anyv

g\ a\ .,
w0 sufz) o= () o

< ¢ lx—XP;

3) ifp=>1, (a%) h(x, &) € Cy for v < B and(aix) h(x,£) € C 1y
for |v| = [B].

h(x, £) being a homogeneous functionfotan be expanded as a series in
spherical harmonics. Lé&f(£) be a normalized real spherical harmonic
of degred, that is such that

(4.5) f Yi(€)%dos = 1
=1

and Yn(£) be a complete orthogonal system of normalized spherical
harmonics of degree Then we can write

(4.6) h(x£) = 200 + ), am()Yim(e)

1>1,m



in terms of the spherical harmonics. Then
(@.7) am) = [ hx &¥in(e)dr.
lé1=1

Let Y;m denote the inverse Fourier image¥ah(£) 71

Vin(x) = f LY (£)d
We define

(4.8) H)(X) = a(x) f(x) + Z am(¥)(Yim * )(¥).
I,m
Now we have the following estimates due to Calderon and Zyg-
mund:
(@) [Yim(©)| < 122, ¢ being a positive constant;

(b) the number of distinct spherical harmoniig(¢) of degred is of
the orded"2;

3
© lam() < cMI 2" whereM = sup [()"h(x &).
xeR" J¢1>1 g
[v|<2n

More generally we have the following sharper estimates. LLie¢
the operator defined by

n 2
L(F) = |§|2(A§F) wherea; = Z (ai) .
j=1 ¢

Then

@7 am(®) = (117 (1 +n-2)" f LL(A(X ) Yim(@)dore.
[él=1

From this it follows that
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n

(d) lam() < c(n. Myl - 2

whereMy = sup I(ﬁ)vh(X,f)l
xeR" Je1>1 9

[vl<2r

n-2)+v]

a ., =(
(e) ;‘Z’P(a_g) Yim(é)l < (v, )l 2

These estimate show that the series defimirfgs convergent in the
L?-sense.
In fact,

(4.9) ITHT 1< (20091 + > Tam(lolyim(@lo) Il f 11

From (a), (b) and (c) it follows that

> lamlolYimlo < €M Y 172372402 - oM 3 17 < oo,
| |

Hence
| Hll<cM,M being defined in (c)

A singular integral operator was defined by Calderon and Sygin
by the following equation

(4.10) HU)(X) = a(xu(x) + f k(x, x = y)u(y)dy,

wherek(x, 2) is a complex valued homogeneous function of degree
in z, of class& in R" — {0} in the zvariable for every fixedk and the
functionk(x, z2) has mean value zero in tizespace for every fixed. Let
us expand(x, 2) in terms of spherical harmonics:

n _z
K2 = ) am()¥im@)A ™" 7=

wheream(x) = [ k(X Z)do.
Iz|=1
Then, taking into account the fact th&&[Yim(Z)IZ™"] = y1Yim(é),



v1 being a constant, we define the symb¢H) as

(4.12) o(H) = 80(¥) + ), am()y1Yim().

We start from thiso-(H) in our definition. However the two defini-
tions are identical since there exists a one to one lineapmg- of
the class of singular integral operators of the cﬁg’smto the class of
functionsh(x, &), x, ¢ € R" homogeneous of degree zero with respect to
& and |nC°°. o(H) is called the symbol of the singular integral opera-
tor H. Thus the serlei am(X)Yim(£) represents in a sense the Fourier

transform ofk(x, 2) W|th respect ta@. We recall without proof the fol-
lowing important theorems on these operators, which wd séqiiire
for later use. For proofs see Calderon-Zygmun®]1

Theorem 1(Calderon-Zygmund_[1])If H is a singular integral opera-

tor of type G then its symbol is a homogeneous function of degree zero
and of class g with respect t& in |£] > 1. Conversely every function

of x andé¢ which is homogeneous of degree zero and belongs to the class
C;" in |¢| > 1is the symbol of a unique singular integral operator of type
Cg’. If

M= sup (Yot xo)

Rjep1 06
|v|<2n
then
(4.12) ITHf lp< MA I fllp
where A, depends only on p and n. 74

If h(x, €), ho(x, &) are of clas<Cinjg] > 1 then itis easy to see that
hi(X, &) + ho(x, &) andhy (X, £)ha(x, £) are also of cIas@;" and further if
hy(x £)
ha(x, £)
Theorem 2(Calderon-Zygmund]2])Let h(x, &) = o(H) be of type (/';
homogeneous of degree zerd4irthen

lho(x, €)] = 6 > 0 then is also of classlg’.

(1) forr <B, Hf € 7/, for f € 7/ ,(1 < p < ), and
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(2) if f € LP and Holder continuous of order(e < Bthen Hfe LP
and Holder continuous of order(1 < p < ).

Let H* andH;0H, be singular integral operators whose symbols are
respectivelyo-(H) ando(H1). o(Hy).

Theorem 3 (Calderon-Zygmund) If o-(H;), o(H>) are independent of
x then
HioHy = HiHy = Hy o Hy = HoH;

and if o(H) is independent of x anfd-(H)(¢)] > 6 > 0then H is in-
vertible and its inverse H is also a singular integral operator. We
illustrate by a simple example the motivation for the deénitof the
singular integral operators Ho H, and H*. Consider the gferential
operators

L= Za,(x) M = Zb(x) a,,b,e%’l

Then

b
LM = Zaj(x)bk(x) +Z aj( )Zxkaxk

Therefore, if we define

LoM= Za,(x)bk(x) X

thenLM = L o M modulo first order operators. Next if we define

=->"a() a,(x)—

thenL* = L¥ modulo bounded operators.

These considerations suggest that the product of two singutie-
gral operators and the conjugate operatidrwill be approximated, in
some sense, by the singular integral operaktys H, and H* respec-
tively. More precisely we have the following:
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Theorem 4(Calderon-Zygmund)Let H be a singular integral operator
of type C;"(ﬁ > 1) and M be a bound foo-(H)(x, £) and its derivatives

with respect to the coordinates éfof order 2n, the first derivatives of
these with respect to the coordinates of x and Holder canistaf the

latter. Then for every £ 2/,(1 < p < o) we have

I(HA=AH)f < ApMI|Ele, [T(H* A= AH)f o< ApM | Ie

(4.13) . “ e
I (H* = H)f llLo< ApM || [lue, [ AC(HTHY) [lLo< ApM || £ [lie

where A, depends only on,m, 5. Further if H; and H, are two singular
integral operators of typeg and fe é”l_lp(l < p < o)then H o Hyis
an operator of type § and

| (H1 o Ha — HiH2) A f lLe< ApM1iM2 || £ [le,

(4.14)
Il A(Hz o Hp — HiH2) f [lLe< ApMaM2 || f [ILe

where again A depends only on,m, 8 and M, M» being defined in the 76
same way as M.
We can write diferential operators in the form of singular integral
a\" .
operators as follows: LeA = 3, aa(x)(a—x) be a homogeneous dif-
lal=m
ferential operator of ordem with coedficientsa,(x) in Cz, g > 0. If
ue ‘@an thenA™u is well defined,

(ATU)(E) = M)
andAu = H AMuwhereH is a singular integral operator of ty@" and
(4.15) o(H)=i™ > a(9e k™.
Joc|=m
Similarly any general linear fferential operator of orden
(9 4
A= k;Ak, Ac = |;:]kak,v(x) (a—x)

with ay , (x) of classCs can be written as

(4.16) Au= )" HcAku
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whereHy is a singular integral operator of cIa@g’ and

(4.17) o(HQ) =1 > a (el ™

[vI=k

for everyu e @f‘z.

A matrix of operators is called a singular integral matriitsf ele-
ments are singular integral operators and its symbol is thgixwhose
elements are the symbols of the corresponding elemente aitigular
integral matrix. A system of dlierential operators can be written as a
singular integral matrix.

5 Extension of Grding’s inequality to singular in-
tegral operators

In this section we prove an inequality for the singular inéé@perators
whose symbol satisfies a condition of positivity. This is aalague of
the well know inequality of Garding for elliptic fierential operators.
Before stating the inequality we prove some preliminaryltsseeded
in the proof of this inequality. These results are also okpehdent
interest.

The following lemma corresponds to the local property dfedien-
tial operators, namely, thatfiirential operators decrease supports.

Lemma 1 (Quasi localisation lemma)Let Q be the ball of radiu®y
and of centre a pointxin R". Let H be a singular integral operator
whose symbal-(H)(x, &) € C“§°, withg > 0. Ifu e 9&2 has its support
in the ball of radiusy and of centre kthen

(5.1) Il H A Ull2cqys c(nmM” [l ull

whereM = Y  sup |(£)V0-(H)(x, &)| and n,7) is a constant
[v|<3n+3 XGBn,l.lel a‘f
depending only on n angl

Proof. We decompose the operataras A = Aq + Ap With A1(¢) =
a(&)lE] andAx(é) = (1 - a(€))lé] wherea(é) € 2 such that(€) = 1 on
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I€] < 1,0 < () < 1 and vanishes outsidg < 2. A»(&) is an infinitely
differentiable functionA1(¢) has compact support and hencg is a
bounded operator ih?. So it is enough to prove that

Il H A2 Ull2coy< )M’ Ul .
Let

(5.2) F(H)(%&) = 2009 + D am(¥)Yim(&)
I,m

be the expansion af(H) in terms of a complete system of spherical
harmonicsyYim(¢). LetY, (X) be the singular integral operator such that

Yin(¥) = Yim(&)A2(6)
by Fourier transforms. Then we can write

(5:3)  H AW = a0(x) A2 U + > Am()(Yiry(x) * ).
I,m

First we show that

(5.4) Y (X < IX2Pe(p, )IYim(€)l2p for x € {0} for 2p > n+ 2

0
where[Yim(€)l2p = | |§2p|§|li§)|(a_§)VYlm(§)|

In fact,
Yin() = IX-22{ IXPPY (0}

and|x|2F’Y|’m(x) is the inverse Fourier image of const

AL (Yim@(L — a(@))él.

Hence we have the estimate

’ -2 1 P p
im0 < 28] [ 180 - ot Vim(eNeIce
< IE7%Pe(n, p)Yim(@)lzpfor2p > n+ 2.
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79
This establishes the assertiGn{5.4).
Now we show that for anywe2 with support contained i =

B, (X0)

(5.5) I11X7%P 5 Ul 2cqy < (. pm)Ilul
holds forp satisfying 4 > n.
In fact, forxeCQ, || [X|72P=u|| = |f|xli();/)|2pdy| by Schwarz inequal-
ity,
< |Jull( vol w)¥?( dist. (x, w))~?P
Hencell [X72° « Ull 2cqy < (volw)2liull( [ L)%. The in-

IXI>21 (X - 77)4p
tegral in the right hand side converges fqu 4 n which proves the
assertion[(5]5). Now(9.4) and(b.5) together assert that

IIH A2 Ull 2y < (vol w)2c(p, n, ) [Z |am(x)|omm(§)|2p] lul
I,m

< C'(p,n, p)M’||ull.

This completes the proof of lemriik 1. In the proofs of the foiigy
results we use @ partition of unity in R'.

aié9, a;=0, Zajzzl.
j

To simplify the arguments we take a partition of unity saiisf
the following conditions: LetrygpeZ whose support is contained in the
ball of rediuse, & being a small number to be determined by the sin-
gular integral operatoH. Let {x()} be a sequence of points of'R
1

whose coordinates are multiples &= en 2), aj(x) = ag(x — x),
j=0.1,...,X9 = (0). The support ofo will be denoted byuo and the
ball of centrex) and of radius 2 will be denoted by;. Let

o) = ) sup( 2] o0l

v<p



5. Extension of @rding’s... 71

O

Lemma 2. Let H be a singular integral operator with its symhs{H)
(%, g)sc;", with 8 > 0 and(«j) be a C° partition of unity as constructed

above. Then for anya®2

(5.6) D I(HA)ej = aj(HADUIP < AUl
j

In particular, takingo(H) = 1 this wouls imply

(5.7) DA Ul < ylul.
i

LetBeZ:, 0 < B(¢) < 1 with support contained if| < 1 which
takes the value 1 in a neighbourhood of the origin. DecompoBgo

A = A1+ A2 WhereAs(€) = BE)IEl and Azx(¢) = (1 - B(&))I€l. Clearly
Il A1 ul| < |lul] and hence

IIH Az @jull < IHI] lerjull 2(q;) < Supla (I I1ull 2,
X

81
Hence
D IH Az Ul < e(OPIHIPKIUIP
i
wherek is the maximum number of setey} intersecting at any point
and
D llajH Az ul? = IH Aq Ul < IHIPIul?,
i

So we have only to considét [[[HA2, aj]ull. Consider the term
j

(5.8) @i(X) = [HA2, aj]u(x).
¢i() = am(x) f Fim(x = ¥) Az (x = Y)(@;(y) — @; ())u(y)dy:
I,m
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Let us denote the operata?rm * A2 by Y. First of all we consider
leillzy)- Expandingrj(y) — @j(X) in a Taylor series, we obtain
(5.9)

aW-a09= Y L) a0 Y antenix-yy

1<vigg-1 ° [vl=q
whereq will be determined later. It follows that
1 0
(x) = (WY v @)
?i(% lvgj_l S a,(x)%]m(x)(x Vi + 2%

where
(5.10) &P = Zam() f @ (% Y)(X = Y) Yim(X = Y)U(y)dy.

Now the operatorsi, = 3 am(X)(X"Y,,,) are singular integral opera-
tors which operate ob? as continuous linear operators since [sy(X)|

X
is a rapidly decreasing sequence (more precisely, for asijiyminteger
o we have
Z I‘Tsup|a|m(x)| < ) (see Calderon-Zygmundl[1].
X

1>0

Hence for the first sum,

Dy ) a.,
(5.11) M= > (G a9 H
vl<g-1
and we have
2 2
(5.12) H%0§1)||L2(9,-) < c(q)a(q-1) 1%;_1 HH,,UHLZ(QJ).

To majorize the second suqaﬁz)(x) we begin by considering a typi-
cal term & - Y’) = u. We have

Y) il = | f (X— Y)Y (x—y) - u(y) ]
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< f I(x = y)"Y'(x = y)llu(y)|dy

_ ( f - fc Q}]|(x—y)VY’(X—Y)IIUII(Y)Idy

whereQ} is a sphere of radiuss6aboutx()). The first integral is ma-
jorized by
’ ’ l
suplx"Y’ (X1 lulle; (vol Q)2
X

and the second integral is majorized by

2p vy’ |U(y)|
sup||X“*x" Y’ (X f d
xp|| | ( )| cey X — yi2P

dy where the sum is takens3

lu(y)| dy<y [ u(y)l

Now | = f |x—y|29

cQ

]
is taken over all thevy such thatd(Q;, wk) > 3e,Qj being the support
of aj. Hence

1< 2%Pd(wi. Q) P llull, (vol wo)?.
k
Hence the second integral is majorized by

SUR(XPIX'Y (Y1) (vol wg)?2%P {Z d(wi, 2 j)_Zp”UHwk}
X k

where thewy occuring in the summation are such tllgby, Q) > 3e.
For|v| = g suficiently large it can be shown that

K(v) = > suplam(¥)] - Suplx’Yj ()] < o0
>0 X X
and

K p) = > suplam(¥)] - sup| XX Y, (9] < o0
1>0 X X
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for p suficiently large. So we have

eIl < fg | [Z > lam()l f @), (% Y)(X= Y)Y (X = y)Hu(y)!dy] dx

V=g Im

2
(5.13) < c( Z K(v)||u||fl} + K(v, p) (Z d(wk,Qj)Zp”u”Qi] .
K

=q

But by Schwarz inequality we have

> d(@k Q) Il < [Z d(wk, @ ,-)‘Zp] [Z d(wk, @ ,-)‘anunik]
k k k

and since X d(wk,Qj)ZP) < K, a constant we obtain after summing
over |

Nl

DM, Ak, Q)72 = " i, > d(wk, Q)7
k. k J

2 2
< Kp D IIUlZ, < Kprul
k

whereKp is a constant depending gnandr is the maximum number
of balls wy containing a point of R Substituting in[5.113)

2
D le13, < clul?
k

which together with[[5.32) gives the estimate

(5.14) D llel3, < .
k

It remains to estimatgyyllcq, in order to complete the proof of the
lemma. Forx € €Qy a typical term in the expression fk(x) is of the
form

W) = f Vi (X = V)i (uy)dy
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from which we obtain as before the estimate

u(y)|
X yPP

()l < sup|IXPYi ()| - fg
X i

’ — 1
< sup|IXPY;,(X)] - llulle, d(x, ©j)~2P|(vol wp)?.
X
Hence

’ 1 1 1
Wlleq, < stxjp||x|2PY.m(x)| - [Iullg; (vol wo)2( f docanm
IX|<2.
85
Taking 4p > n and observing tha (v, p) < oo we see that

2 2
llelicq, < c’llull“Q;,
and again, summing ovér

(5.15) > llenliZq, < ¢ il
k

This completes the proof of the lemma.
The following is an extension to singular integral opersitof Gar-
ding’s inequality for elliptic dfferential operators.

Proposition 1. Let H be a singular integral operator such that its sym-
bol o(H) = h(x, &) € Cg’ with 8 > 0 satisfies

(5.16) Ih(x,é)>7>0

for every xe R" and every vectog, § being a positive constant. Then
there exists & > 0 such that

(5.17) IH A Ul? > 6| A ull? = yllull?

for every ue 9&2 wherey is a positive constant.



76 3.

Proof. H being a singular integral operator we know thigtu|| <
AM]||ul| whereA is a constant depending only orand

0
M= > sup [ (H)(x 4.
m=2n xeR", |¢1>1 0¢

86
Given as > 0 there exists a number> 0 such that for everyy € R"
and for everyu € L?

2
(5.18) I(H = HOOUIZ, < Sl

whereH(Xg) is the singular integral operator with constant ffic&ents
such thatr(H(x0))(¢) = o(H)(x0,&). (H(Xo) is the tangential operator
at Xp). € can be chosen independent of the positioxpfConsider the
C® partition of unity introduced earlier,

(020, ajez, Y af()=1

As we have
IH A Ul? =" llajH AUl

it is sufficient to prove the inequality far;H A u.
1
llajH A ull? > SlIHaj A ull® = I(Haj — ajH) A ull?
1
> SllHa;j A ull? = 2IH(A@;j — ajA)UI?
- 2|((HA)aj = aj(HA)UIP.
Now we have

2 2 2 2 2
D H(a; = ajAlP < ) IHIP I(aeg - gl < & IHIP
j j
2
< cyllul

and by lemmal2

D IHA);) = aj(HA)UI < callull®
j



87

5. Extension of @rding’s... 77

wherec; andc, are constants depending only on the norniaindn.
Hence

1
(5.21) IH AP >3 > Haj A Ul - callul?
i

and we have only to considgHaj A ull?.
For this purpose lei (X)) be the singular integral operator whose
symbol ish(x(), &), so that

o(H - HXD)) = h(x, &) - h(xD, &).
So we have
1 . .
IHaj A ull? > §||H(x‘”)aj AU = I(H = HED))aj A .
From the condition thah(x, £)| > § we have
1 , 52
§||H(X(J))ozj AUP > —llerj A ull?.

As in lemma®, leQ2; denote the ball of radiuse2and centrex(),
We decompose the second term into a sum

I(H = HODYaj A Ul = II(H = HOO)a; A vl

+I(H = HO g A ulg,

As mentioned at the begining of the proof, the first term isanagd
2

1)
by leaj A U||2. For the second term we have

IH = HOaj AUy, < 2I(H ~ H))(aj A = A agully,
+2I(H = HOD) A a,-u||§Qj.

By lemmall1)[(H — H(xD)) Aajulld, < c(n,n)M’||le;ull? and since 88
]
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(H — H(x)) is a singular integral operator we obtain from lenftha 2 the
inequality

Z(H _ H(X(J)))(aj A=A aj)ullgQj < C||u||2.
j

Hence

62 7"
IHAUP = > llas AUl = oM ) flajul? ~ clul®
i i

6 2 2
> le A U= =yl

which completes the proof of the inequality. m|

Proposition 2. Let H be a singular integral operator whose symbol
o(H) = h(x, &) € C;’ with 8 > 0. Let h(x, &) satisfy the condition

(5.19) Reh(x, &) < -6, 6 > 0 for every xe R" and every vectok.
Then there exists & > 0 such that
(5.20) (H +H") Au,Au) < =6 AU+ yul® for ue 21,

wherey is a constant depending only on Mand n,é’ (6" < ) can be
chosen as neaf as one wishes.

Proof. One can writeH*A = H? A +(H* - H*)A. By Th. [@ of § @,
(H* — H¥) is a bounded operator i? and hence it is enough to prove
that forP = H + H*, (P A u, AU) satisfies an inequality of the required
kind. The symbob-(P) = h(x, &) +h(x, ¢) is real andk -25. Letaj € 2,

89 «j(X>0,% aJ?(x) = 1 be aC® partition of unity as in lemmBl1. Then

(PAuU AU = Z(CL’J‘P/\U,CL’J‘ AU) = Z(Paj AU, aj A U)

J J

= > ((Paj - @jP) Auaj AU).
j
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For anye’ > 0 we have, by Schwarz’s inequality
(Paj—ajP) Au,aj Au) <[|(Pej - ajP) AUl llaj Aul
< €llaj AUl + 6—1,||(Pa,- —ajP) AUl%
From lemmdR we have
D UlIPa; = aP) AU <2 Plaj A = Al +2 ) (PA)a; - a;(PA)UIP
| < c’||ij||2 |

and we have only to estimatBd; A u, aj A u). Write P = P(xD) + (P -

P(x))) where, as beforeR(x()) is the singular integral operator whose

symbol iso-(P)(x(), &). Sinceo(P(x, &) < —26 we have
(POd))aj Au,aj AU) < —28]laj A Ul%.
Again by Schwarz’s inequality
(P - Pe))aj A uaj Au)| < 1{P-PXD)|aj Aull-llej Aul

4

E
< —llaj A ul® + —||(P PO))aj A uUl?.

Now, as in Prop[]1,

I(P = PO A Ul < n(e)llaj AUl + pli(eg A = A aj)ull? + plle;ul?.

Putting all these inequalities together one sees that
(P A u, AU) <( 26 +e + = +—n(s))Z|laJ AUl

2 2
) @i A= A @)ull? +lull.
i

&’ 77( )

Choosmgs —, nearé and fixinge to have——=

’7

small enough to

90

4 .
make—26 + &’ + 8— + —-n(e) as neav as requwed and using lemrk 2

the desired inequality follows.
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We shall now prove a lemma which we require later. It is analsg
to lemmdX®. We define, for any reglAS by (ASu) = [£]50. o

Lemma 3. Let H be a singular integral operator whose symb¢H) =
h(x, £)eCS, with 8 = 0. Then for any e L2

(5.21)  |I(H AS=ASH) A7 u|| < c]|u]| for s,0- > Owith s+ o < 1.

Proof. Leta € Z¢ be such that 0< «(¢) < 1, (f) = 1onfl < 1
and vanish outsidg| > 2. Writing |£° = |€%a(€) + I£13(1 — a(£)) we
decompose the operator into a sufh= A§ + A] With o(Ag) = [€[%a(¢)
ando(A) = [E5(1 — a(¢)). As[€[Pa(¢) has compact support defines
a continuous linear operator irf and hence it is enough to prove that

I(H AT = A H) A7 ul| < cljull.

Expandingo-(H) in terms of spherical harmoni®4, as in lemma&R2
and taking the inverse Fourier image we have

H = ap(x) + z“alm(x)?lm * .

Let P = a(x) - Y+ be a term in the sum. We consider
(P A3 = AP A7 U= [ (200 - ) S (X Y) A7 ey

whereg(y) = (Y = u)(y). Expanda(x) — a(y) in Taylor series upto order
g, g to be determined later:

a-ap)=- Y (a) aw-g-n7- Y Py
l<v<g-1 " M=q '
This gives

Er-AP AT U= S () a0 (D ()
1<vl<g-1

622) o+ Yo [ 2yt ooy

Iv=q
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We estimate the first sum ii{5]22). We have

< ¢ (L+lehs M.

(RS = ‘(a%) (1 - (@)
Hence

I(X'AS) = (A7)l < C NI + €D Il < gl

sinces+ o < 1 andly| = 1. Summing ovey with |v| < g- 1, we obtain

(_1)|V|+1 0 ! Y AS o
(523) >, I [(a—x) a|[ (A9 + (A7) |1l < c(Allell lalg-a
vl<g-1 ’
|a|p: sup

o\
XvI<p (6_)() a(X)

Sincellgll = llgll = YD < [Ylo. ||ull the right hand side of theo2
inequality [5.2ZB) is less than or equal to

c(a)l@lg-11Ylo - lull.

Now we estimate the second sum. Wi#g as

€17 = &)1 + (1 - a(9) €7 = a@)lel” + E1{(1 - a(®)E1”

wherea(¢) € 2, a(¢) = 1 in a neighbourhood of the origin. Thus
A’ = Bg + AB1 whereBy andB; are bounded operators irf. Hence
we have only to consider the part containing,. Denote byy, the
integral

where

U(x) = f 8, (X Y)(X—Y)” A (X~ ) A Br(y)dy.

Now we can writg¢| = ij% and if R; denote the Riesz operators
defined by R;f) = %fwe can writeA = Z%Rj. Substituting fora
j

in ()

0=z [ E)ixj fa,(x (X - )" A3 (x= V)] - RIBi)()v
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We observe that{ A?) is a bounded function together with its deri-
vatives of the first order fol| > n+ 2. In fact its Fourier image is

ay s
(5% 12~ ateer anc
X A3l < f Al < c, f (1 +1€)°dé < co.

We can write

Yy(X) = f a,(X, Y)(X - y)" AT (X - Y)(AB1g)(y)dy

:_z{f

+fav(X,Y)[a%j((X—Y)v AT (X= )| (RiBg)(y)dy.

Z_?,‘:./(X’ y)] (x—=y)" A (x—Y)(RjB1p)(y)dy

Set

(5.24) Uy(X) = 11 + lo.

We estimatd, andl, separately.

oa,
I < Zj]|f[a—w(x,y)

<llgra Y [ 10630 A2 (- 3) (R IBo)0)dy:
j

(x=¥)" Af (x= Y)(RB1e) (Y)Y

The Fourier image of (% [X27)x" A (x) is

(%)'V' ((%) (1 - a(©)e] + (%)ZW| N (8—‘1) [(1- ()]

and hence

¥ RS (9] < Tlxlzp{(%)u [1(2) 1a-atanence
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2p+vl v
+(%) f mg(a%) [(2 - a(&)il] Idf}

< 171 100+ Calp.)

and similarly we have
'(6)(] A ( ))' |X|2p 1+ |x|2p) (x AL ()

1
S - -
1+ |x2P ||0x

; (XV AL (9)] +
1235 (C2(v) + CL(p. V).

|x|2p( )(x )

}

= To

94
For suficiently large p the quantitiesCy(p, v), C5(p,v) are finite.
Thus we have

(5.25) Iy < |a|Q+lZf|(RJBl¢)(Y)|

1+ |x—y32p

FEDY ’ f 8,6 [y AT (x- )] (R Blso)(y)’ dy
] Y]

< lalgZ f ’aiy,- [Ox=y)" A% (x - y)]‘ (RiB1p)(y)dy

(RiB1p)(y)

5.26 b <M 2| —
(5.26) ol < M(pais | 7

This leads to the inequality

n 1
M2l 2 < |alg+1 JZ:; IRjBall 2 (f 1+ |X|2p)dx)

because of the HausdBiYoung theorem. We have the same kind esti-
mate for|12(X)|| 2.
Hence

Il < Ca(MII(R; Bl - 18lg+1 < Ca(n)lalg+1llell
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< Ca(n)@lg+2lY(E)lo - lull.

95 Now summing up for all, mwe have for any € L?

IHAS = AJH) AT Ul < Z ll(@m AS = AS @m) A7 (Yim = U)|
I,m

< Cs(n) {Z |eum|n+3mm(§)|||o} lul
I,m

< Cs(n, s, o)Mull.
and this completes the proof of the lemma. m|

The following is a generalization of Friedrichs’ lemma togilar
integral operators (see Mizohofa [1]).

Proposition 3. Let H be a singular integral operator such that its sym-
bol o(H) = h(x,&) € C° _, o > 0. Let Gsu denote, for ue L2, the

1+0!

commutatofHA, ¢s+]u whereys is the mollifier of Friedrichs.
Then

(1) IICsull < cM|jull
where M = [ag|gier + X [@mlgr+s|Yimlgo @and ¢ depends only ap
I,m

and n
(2) Csu— Oweaklyinl?asé — O.

Proof. We expandh(x, £) in spherical harmonic¥;_(¢)

h(6 &) = 3009 + ) am(¥)Ym(©)
I,m

gnd hence we can write, denoting the inverse Fourier imagé dby
Yim
HU() = 3609u(x) + > am()(Yim * U)(X).
I,m

To prove (1) it is sfficient to prove it foru € 2. Now

Csu=[HA, psx]Ju=H A (U* ps) — (H A U) * @5
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5.27) = {am)(Fim * AU ©5)) — am()(Vim = AU) = 05}
I,m
96
Consider a typical term of this sum:

am(X)(Yim * AU * ¢5)) = @m(¥)(Yim * AU)) * g5
, 9 ,
and substitutee—R; for A whereR; are the Riesz operators. Put

L 0%
Yim(X) = Yim * Rj = u. We have

A (9(Tim * 7Ry = (1.2 = () # 520y 0) +
= am(X) [—(Y|m * Rj * U) * 905] (alm_(YIm * Rj * U)) * @5
= aIm( )[ lﬁlm(x) * 905] [ maixjwlm] * Qs
= [ 1am(9 - an] [a—ijlmw)] oo~ y)dly

where the integral is taken in the sense of distributions. dBfjnition
this is 5
= [ 55 1m0 = AmOlea( = o)l
j

where the integral is taken in the usual sense.
Now,

f‘ay] [am(X) — am(Y)] ¢s(x - Y)} l/’lm(y)dY{

(X y) Im(Y)d)

() - am(y))i—“;f(x - y)d%

0
< [1¥llim {2|a|m|o 25+ el - ||¢§||L1}

X |lLx
< Wl {2laumloc1(6, ) + [aml1€2(6, N)}
< (8, N)lamlz - [Y'(E)lo - llul

which proves (1). 97
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To prove (2) letv € L2 and consider
[0 [ 315 )~ amMest -y dy
= (900 [ ) { 50 0 - ) - stx- 9 S0 bty o
= [w09 [ 0 {;(xk YOG Z—"y"f(x )+ (% y)Z—‘jj(x -y)

dam
—996(X—Y)6—yj(Y)}dy dx

0am
whereo(x,Y) = am(X) — am(y) — %(Xk - Yk)aiyk(Y)- Let

Y _ 0am '6905 Y _ daym
iy x=) = D0 IO GED - G0~ k=D GEO)
__9 0B -
628 =5 { Do W e estc- )

and (528Y) Ka(y, X —y) > o (X, v)g—?(x —-V)
]

0
Thenlka(y, X = y)| < Clam(Xl1olX = YIH ’a—f(x - y)’-
i
Applying the Hausddf-Young inequality we have

0
||fV(X)k2(y,X—y)dXII < Clamlire (Zf|X—>/|“” 6—‘z(x—y) dx)~||v||
(5.29) = Clamli+o|IVIle(0)
whereg(s) = >, f|x|1+‘7 % dx — 0 ass — 0. On the other hand we
i

observe that

0 z : 0am
k = e e . =
f 1(y, 2)dz fazj{ r . - V) 9052} dz=0,

sinceps has compact support. Now consider

f f ey, X — YVOQUim)dy dx= f Uim)dy f ey, X — YV()dx
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The right hand side can be written after a change of variables
X —yin the form

[ oty [ viy+ Dty ez
Schwarz inequality gives
| [ omndy [ viy-+ 2oty 24 < il | [t 2ty + 2.
since [ ka(y, 2)dz = 0 we can write
| [ koavy + 2d) = | [tk iy + 2 - valed]

We shall now evaluate the right hand side. Let us set

£() = sup(f IV(y + h) — v(y)|2dx)% .

|hj<6
Schwarz inequality shows that
2
] f ey, X — V)W) — v(y))d{
< ( [t y)dx) ( [ kat x =y - v(y)|2dx) .

99
Clearlyf lka(y, X — y)ldX < clam|g Wherec is a constant depending
only ong ands. Hence integrating both sides of this inequality with
respect toy we have

! f Ka(y. X — Y)W — V(y))dXI2

< Clam: f ey, X - VIV — v(y)Pdx dy
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~ s [ oz [ a(x- 22 - v(x- Pax oz
1Z<6
Sincek; (Y, X — y) is a bounded function the right side is less than

(5.30) ¢ [amlge’ (8)*(vol w;).

wheree’(5) —» 0 asé — 0 andw;s is the balllZ < §. Combining the

inequalities [5.29) and{5.B0) we obtain

| f f VO Kay, X — ) + kaly. X — y)idy dy

< [mll(Claiml gz [Vile(0) + ¢”laml1&(6))
< c’||ull(jaml1+oYimlolVI£(6) + [aiml1l Yimlog” (6)),

which tends to 0 a8 — 0. This completes the proof of the proposition.
i

Corollary 1. If we assume & @le in proposition[B then
(1) ICsull o < cllull ya
L2 L2
(2) Csu— Oweakly in7/, asé — 0.

Proof. We remark that

9 _c. (2 (i)
(*) a—Xj(C&U) =GCs (8_X,) + [HY, @sx] u
whereH() denotes the singular integral operator defined by

. : i) 1 j a_
HY = alu+ )" al (Yam = u), &), = ax; o
J

or equivalently

o(HD) = all (%) + Z &) (X)Yim(&) € C2 with o > 0.
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Now, the latter term of the right hand side i ¢ends to 0 inL? as
6 — 0. In fact,

[HDA, g5+ u = HD (g5 A u) - HY)
+HD Au—g;«(HD)and Aue L2

Now applying Propositior{3) toj we have the corollary.

From Prop.[dL it can be easily seen that the following projmsit
holds. This plays the same role as Garding’s inequalitwffierential
operators.

Proposition 4. Let.# be a square matrix whose elementg Hre sin-
gular integral operators (belonging top with their symbolsr(Hjx) =

hik(x,¢) € C“g" withg > 0(j,k=1,...,N). Supposer(s7) is the matrix
whose element are(Hjx)(x, £) and satisfies the hypothesis

(5.31) lo()a| > dla| forevery xé e R, 6 >0

wherea = (a1,...,an) is a complex vector in & Then for every

U= (Ug,...,uUN) € n@l’_z 101
2 & 2 2

(5.32) I A ull” > gll AU = yallull®,

wherey; is a positive constant.

Remark. [|ul?, for u = (us,...,un) € 72}, denoteg|ug® + - - - [lun]|.

The proof runs on the same lines as in the proof of the Fiop. 1.

6 Energy inequalities for regularly hyperbolic sys-
tems

Let Q denote the subset’R [0, h] of R™1.

Definition. A first order system of dierential operators

3 0
(6.1) M=~ ZAk(x, t)a_xk

is said to be regularly hyperbolic @ if
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(1) Ax(x,t) are bounded,

(2) for every k&, t) € Q and¢é € R" the roots of the systems

(6.2) defal - Y Axt)-&) =0
are real and distinct; further ify(x,t,£)--- An(X, 1, £) are these
roots then
- — 1L~k (xLE)>0
(6.3) ()th;{g, gl =1
J#

We write the systeni{8.1) in terms of singular integral ofms by
putting Y, Ax(X, t)& = i7(t)A wheresZ(t) is a matrix of ordemN of
singular integral operators whose symbol is the matrix

&

d%@:%Z&m%r

102

Thus [6.1) is written in the form

6.1y M= % — i) A
If the codficients are such th#% = A¢(x,t) € [0, h] with o > 0
then for each fixed o-(H)(x,1,¢) € C3, .0 > 0. m|

Proposition 1 (Petrowsky) Let M be a regularly hyperbolic system with
A € B0, h]. Suppose Ax,t) are real. Then there exists a matrix
o (M) = c(M)(x, 1, &) except possibly when=a 2 such that

(i) cR®)or (W) = (210 (R() where

(% 1,€) 0
o(2(1) = :
0 AN L, €)
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(i) oOtt) = c(M)(xt,&) is of class G, for every fixed t, has real
elements and further

(6.4) |deto(N(t))| > ¢’ > O for every (x,t)eQ, £sR".

(iii) the mapping t— o((t)) € C7;  is once continuously geren-
tiable

Proof. Since the roots of[{612) defil — Y A« - &) = O are real and
distinct it follows that1;(x,t,¢) are single valued functions déj = 1
for every fixed & t) € Q. This follows by the principle of monodromy103
in the casen > 2 and in the case = 2 by virtue of hyperbolicity.

To see thattj(x,t,¢) € CT°_, o > O for fixedt denoting by

Lo
P(4,xt,8 =0
the characteristic equation
det(al - > Ac-&)=0
we have from the implicit function theorem
O __(2P)5P)
%k 0%k 0 ) 4=,

P .

and furthed (6—) | >dV-Twhered = inf  |2; - Al o
01) - A (x,t)e_QI,(|§|:l

IEd

Construction of o(9i(t)). Supposen > 3. To find o (9t(t)) such that
oN)o (1) = o(2(1))o(N(1)) is the same, if we writer (N = (Njk),
o(MN) = (aj), as finding a matrix solution of

Ajnj = Z Nk k-
k

For a fixed] the vector i1, ..., njn) is an eigenvector of the matrix
A = (aj) corresponding to the eigenvaldg Consider the casg = 1;.
We assert that the space of eigenvectors at the paihtt) can be given
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by explicit expressions (the space of eigenvectors is omeiasional)

in such a way that this vector is continuous xt(¢) is classCy: _and
continuously diferentiable int. In fact, if Mj(t) is the (, k)-cofactor

of (111 — A) then Myj, Myj,...,Mnj) (j = 1,...,N) span the space of104
eigenvectors. As the rank of{]l — A) is (N - 1) everywhere one of these

is not trival.

Remark . In the case where the dieients Ax(x,t) are not real there
will be topological dificulties in the above reasoning which proves the
existence of smooth9i(x,t, £). It should however be observed that the
theorem of local existence of smoai¥i(x,t, &) remains valid. There-
fore it would be better to use a partition of unity to deriveergy in-
equalities for such systems. Moreover this argument carmpplea for
more general hyperbolic systems. (See: Le probleme dehgaumur
les systemes hyperboliques et paraboliques, Mem. Coll, KSoto
Univ,. Ser. A. Math., 1959).

Proposition 2 (Energy inequality) Let

0 0
M=— - E —
ot A t)axk
be a regularly hyperbolic system & with the cogicients A(x,t) sat-
isfying
1+o d 0
A € B*77[0, h], EA" € BY[0, h].

Suppose B BY[0,h], f € L?[0, h] given. Then, if = L2[0,h] is a
solution of

ou ou
(6.5) = > A t)a—Xk ~B(x,t)u= f

we have the inequality

t
(6.6) IOl < C(h){IIU(O)II " f nf(s)nds}.
0
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105 Proof. First we assume this € 9&2[0, h]. The given system is written
in singular-integral-operator form as

(6.7) % —i(t) Au—B(t)u = f.
Multiplying this system by the matrift obtained in Prop.[J1 we

obtain
0 . on
a(ﬂtu) —iNWAZ M) Au—-(NB+ E)u = Nf.

By Prop.[19 o 9t = D o 9 which implies that
NN = PN A (Mmod. bounded operators)
becauseX.7)A = (M) o A (mod bounded operators)
(M)A = (2 o N) A (mod. bounded operators)

Also (29N = 2 A %+ a bounded operator, and hence the new
system becomes

0 . N
a(inu) =12 A (Nu) + (NB + Eu + Nf.

In otherwordsy = 9tu satisfies

%’:i@/\v+ Biu+ Mf

N o
whereB; = (‘JEB + aa—t) is a bounded operator in view of Prdp. 1. Now

%(v,v) =({(Z2 AV,V) + (V,iZ AV) + 2ReBiu + Nf,v)
=i(Z A= AND*)V,V) +2ReBiu + N, V).

But AZ* = A2"+ a bounded operator, and singeis real 2% = 9
andAZ = 2 A + a bounded operator. HenéeA — A 2 is a bounded 106
operator and

0
EIIVII2 < 2y1[IVII? + 2cijull V] + 219 ] v,
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that is 5
aIIVII < yIMI + cllull + [I9Ef]].
By the regular hyperbolicity we have in view of Pr@p. 1
(6.4) ldetr(N(t))| = 6" > 0.

Hence by the generalized Garding inequality applieti there exist
¢ > 0 andB > 0 such that

(6.8) 198 A ull = 67| A ull = Bllull.
Define
(6.9) Uil = [19%ull + Bl (A + 1)~ ul
1. 7 T ,
where A +1)""u — ) 0. Itis clear that||u||| < ¢1]|ul| sinceMt and

(A + 1)~ are bounded. On the other hand
NU=NA A+ u+NA+1)tu
implies

IRull > 19 A (A + 1) ull - [I9t(A + 1)l
> 6"l A (A + 1) Ml = BI(A + 1) Hull = I9(A + 1) ull
> 6" A (A + 1) Ml =B lI(A + 1)l
> 6" |lull = (8" + DA + 1)yl
which proves thaff|ul]] > co||ull consequently the norniiful|] and||u|| are

equivalent. It is therefore flicient to prove the energy inequality for
the norm|||u]||.

0 0 _
StV = = (19ul + Bil(A + 1) tul)

0
(6.10) < YI(U)IT + cliull + 19t ] +,3&|I(A + 1) Mull.
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Considering% =i Au+Bu+ f

(A + 1)-1% =i(A+ 112 Au+ (A + 1)L (Bu+ )

but (A +1) 1A = (A+1) 1 A# + (A +1)"1B, whereBs, is a bounded
operator inL? and hence

0 _ _
rLGREY hull < Sollull + lI(A + 1)L,

Substituting in the inequalitf (6.110) we obtain

0
alllu(t)lll <Y MUl + 11,

which, on integration with respect tpgives

t
IIIU(t)IIIs||IU(0)|||e><|0(y’t)+f0 T (S)llexp¢/(t - s))ds

Since||lu(t)]ll ~ llu(t)]| we obtain the required inequality
t
Ul < o) + [ IF(Sds
0

In the general case in which € L2[0, h] we regularize it by the
the mollifiersys of Friendriche and apply the above argument to the
functionu; = ¢; * (xu and pass to the limits as— 0 in the inequality 108
for us to obtain the energy inquality far. O

Remark. In the above proof the norifju||| depends a priori on the pa-
rametert since it involves the operatdk(t). Whent runs through a

bounded set the constahin the definition ofj||u|| can be chosen to be
independent oft.

In the following proposition we prove that, & and B are difer-
entiable of sfficiently high order, then there exists an energy inequality
for higher order derivatives.
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Proposition 3. Let M be a regularly hyperbolic system with(&t)
RBmXHemo K], 0 < o < 1, %Ak(x, t) € #°[0,h]. Suppose Bt) €

M0, h], and f(x.t) € 3]0, h] are given. If ue 5[0, h] is a solution
of
(M-B)u=f

then

t
(6.11) nu(t)nmscm(h){nu<0)nm+ fo ||f(s)||mds}.

Proof. Itis suficient to prove the proposition for the case= 1 and the
general case will follow by repeated application of the angat. Let

o _ =u®, Then
XJ

aB of
M[u] = — —,i=12...
(W] Z ax; axk Fax U g =2
that isu()) satisfy a regularly hyperbolic system with n@wand f. De-
n .
noting Y. [Ilu®||| by ¢1(t) we obtain
j=1

—2(0 < y1p2(0) + Z |||—||| Z |||—u|||
which on integration yields the required inequality
t
lu@®llL < ca(h) {”U(O)”l + f”f(s)”lds}-
0

In the following we duduce on energy inequality for solusanf a
single regularly hyperbolic éierential equation of orden.
Consider the evolution equation

(6.12) (%)mu + | Z aj,(x 1) (aﬁx)v (%)J u=g.
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The principal part of this is by definition the homogeneoukedén-
tial operator of ordem

m v j
(6.13) (%) + a,-,v(x,t)(aix) (%) =L

which we write in the form

9 m m P 9 m-j
Lz(a) +Zhj(x,t,a—x)(a)

=1

whereh; (x, t, i) = 2 am-jy(X t)(i) . The given operator is said
OX V=] ’ X

to be regularly hyperbolic if the polynomial equation

(6.14) AT+ hj(xt,£)A™ =0
j

3

has real and distinct roots for eveny, (eQ; [£] = 1. h; (x, t, E) can be 110
considered as the symbol of a singular integral operédtoand hence

we can represent

h (x,t,ﬁ) = Hj(in)!

ox
and
P m m "y m-j

— — . 1 J —

(6.15) L_(at) +;Hj(m) (at) .
Setting
g m-1
V]_ = (a) u

m-2
Vo = i(A + 1)(%) u
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. o fo\™!
vj = {i(A + 1))/ (E) u
Vi = {i(A + 1))™1u
We see that i)™t = (iA) (A + 1)U D(i(A + 1)L
= (1+Sjfi(a + 1y

whereo(Sj-1) = (1 lf'lfl

Then the principal part is rewritten as

j-1
) — 1. Sj_1A is a bounded operator i?.

L[u] = (%)mu +i Z Hj A (1+Sj_fi(A + 1)}1'—1(%)rTH u

0 . .
:EVlJr'ZHJ'AVJ'Jr'ZHJASJ"lVJ"

V1
Thenv = | : | satisfies the system of first order equations
Vi
0 .
(6.16) EVZI%/\\H Bv+ f
111 where
1
(6.17) o(H) = 1 :
- —h---—hmy —hy
0
B a bounded operator arfd= O :
g
£\™
Let P(1) = det@l — o(22)) = A™ + 3 h; (x, t, E) . Thus the

given equation is regularly hyperbolic if and only if the asisited first
order system is.
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Proposition 4. Suppose R1) = 0 has real and distinct roots;(x, t, &) <
<< An(X 1, €) such that
(6.18) inf  |4j(xt,&) - A t,&)|=d>0

(xDeQ|51=1
j#k

and further the coficients are such that

aj, e[, n], %aj’vﬁ@o[o, hl for j+[v|=m
aj,€2°[0,h] for j+ v <m-1

Let gel2[0, h] be given. IfueZ 5[0, h] is a solution of [€.1R) then
t
(619  IMOI < Colh) {||v(0)||’ . [ ||f(s)||'ds}

12 _ 8 09\ meiin2
wherelv(DI= = X i)™ ulli_y.

This proposition is proved easily using the energy inegué#dir the
associated first order system. O

7 Uniqueness theorems

112
From the energy inequalities obtained in the previous @ecome re-

sults on the local uniqueness follow immediately. We shiadive that

a solution of a homogeneous regularly hyperbolic systengaftons

vanishes identically in a cone if the cauchy data is zeros Ws first

proved by Holmgren and later made precise by F. John [1].
Consider the first order system of equations

(7.1) M[u] = % - ZAk(x, t);—;k —B(x,tju=0

whereM is regularly hyperbolic if2 = R" x [0, h].
Proposition 1. Let M be regularly hyperbolic i with AeZLt"

Xt 7
Be#),. If uey; satisfies Mu] = 0 and (x,0) = 0 in a neighbour-
hood U of the origin in Rthen u= 0in a neighbourhood of the origin

in Q.
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Proof. Let D, c Q be the set{(x, DeQ : X2 +t<et> 0}. We first
make a change of variables

(7.2) U=t+ Y XX =x(=1...n)

Under this transformation lei(X,t") = u(x,t) then the system of
equations is transformed into the system

(7.3) (|—2le;-Ak)g_g=ZAk§3+Bu
k

D, is transformed into a strictly convex domaiy bounded byt’ =

> x’jz, ' = e. {is defined in the domaif, and we extendi dutside

fi. by 0 and we denote this again by Clearly Ge&* since it vanishes
identically in a neighbourhood af = x]z. Thusu has its support in
D.. It follows from lemmdl that i< is in a small neighbourhood of
the origin (it is siificient to take &'|A), (I — 2 € X Ay) is invertible and
the eigenvalues ofl (- 23, x’kAk)‘l > Ax - & are real and distinct since
those of}) Ay - & are. Thus the transformed system remains regularly
hyperbolic inD,. ExtendingAx(x,t), B(x,t) to the whole ofRY[0, h]

in such a way that the system remains regularly hyperboliobtain
M[u] = 0 in R"x[0, h] (this can be achieved by taking the inverse image
by a suitable dferentiableretractionof R” x [0, h] to D..

(7.4) Z—E =X (1-2)>%- A (Aki?{() +(1-2>" XA Bi.

0 has Cauchy data zero and hence the energy inequality shaws th
{(x',t") = 0 and hencel vanishes omD.. O

Similarly it can be proved that vanishes irD-! = {(x,t) : t < 0,
> xj? + t < € and this completes the proof. We now prove the following
lemma due to H.F. Weinberger (Weinberger [1]).

Lemma 1. Suppose A is a constant matrix such that for all réa 0,
det@l — > A« - &) = 0 has real and distinct rootd1(£) < ... < An().

a1
If Amax denotessup(An(€)) and a = ( : ) is a real vector 0 with
lé1=1 !

aN
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1
o] £ —— thendetuB - > Ax- &) = 0,B=1 - A- a, has real and
distinct roots for any reaf # 0.

Remark. From the choice of it follows thatB is invertible.

Proof. First we assert that all the eigen valugsf B are positive. For,
they are the roots of

det@l — B) = det¢l — (I — A- a))
= (-)Ndet((1-v)l —A-a) = 0.

and hence o
1-w = Ala) = |C¥|/1k(m)

which implies that

(7.5) ve=1- Ial/lk(ﬁ) >0
a

. 1 .
sincey(§) < al on|¢ = 1. Consider
a

detwB — Al — A- &) = (1) det( — p)| + A + ue)) =0
and letp1(u), . .., on(u) be the roots of the equation (with respectijo
det(@ -l + AG +p-a)) =0
for a fixed¢. We can write
det((l — )l + Al + - @) = (1 = pa(w)) - - - (1 — on ().
Now we assert that

(1) ¢j(u) — looasu — +oo

(i) ¢j(u) are strictly increasing functions pf Since we have

k() —p = (=€ —p—a)or
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(7.6) o) =p— AE+p-a)

it follows that for each fixeds, k(1) are real and distinct. To11s
show (i) consider detB — Al — A - ¢) = 0 which implies that det
(B- dI - —'6) = 0. For a fixed, o) tends to the eigen values

H H H
of Basu — o and hence for largeek(u) ~ u - v. Sinceyg are
positive, ¢k (u) behaves likg: for largepu.

As for (ii), suppose on the contrary there existg@ndyu1, u» with
H1 < pz such thatpj,(u1) > ¢j,(u2). Then there existalg such that for
three distinci, u5, u; we have

@iok1) = ¢io(t) = ¢jo(13) = Ao
Since eachy;(u)(j # jo) contributes at least one root of d@t -

Aol — A-¢€) = 0itwill have at leastN + 2 roots. This being an equation
of degreeN we are lead to a contradiction. Now putting

A =0,det@B - A&) = (-1 (u)pa(u) - - n(u)-
Since everypj(u) has only one zero and the zeros are distinct, we
have the lemma. o

Remark. Sincedj(=¢) = —1;(¢) for every j, Amax is positive and equal
to sup |2j(é)l-

Corollary 1. Let M be a regularly hyperbolic systeméh= R"x [0, h],
j(x,t,£) be the roots of defil — A-¢) = 0and let

=L (xDeQ
1<j<N

Suppose S is a hypersurfacefinpassing through a poinfxg, to)
and defined by an equatias(x, t) = 0, pe&? with

2 2
(7.8) (‘Z—f) zaéaXZ(j—)‘:) .

If uis a C! solution of Mu] = 0 with u(x,t) = 0 for (x,t)eS then
u(x,t) = 0in a neighbourhood ofxg, to).
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Proof. By a change of coordinateq = XL <] <nt = ¢(xt) the
systemM is transformed into the system

79 (- T AGE) 5 - DA

whereu'is, as before, the image afby this mappingS is mapped into
= 0. Taking

_(9e
_le

Op Oy |0p
ot” " Oxq| ot
the conditions of the lamnid 1 are satisfied because of thenpsisuns

ona and henc{awl
ot

> A“a—) is invertible. Thuausatisfies
Xk

(7.10) at' = ( - > A ) axk

This is again a regularly hyperbolic system since 117
1
det(/ll (—I - ZAk( ) ZAk'fk}
- det(a‘”| ZAka‘”) det( (a“’l ZAka‘”) A- g)

and by the lemma its roots are real and distinct for

Op | 9¢ 5_90‘5_90

= (9_)(1&”8

Thus by the local uniqueness (Prdp. ulyanishes in a neighbour-
hood of the origin and henagvanishes identically in a neighbourhood

of (xo, to). m|

Proposition 2. Let M be a regularly hyperbolic system & = R x
[0, h], (X0, t0)eQ and C be the backward cone defined{by to = ag|X—

Xol, t < to whereaq =

1 . . .
}. Let D be the interior of this backward cone
max
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belonging taQ. If u is a%¢* solution of Mu] = 0in D, continuous upto
the cone, and vanishing o= D N (t = 0), then u vanishes identically
in D + C in particular u(Xp, tg) = 0.

Proof: (F. John|[[1])we first remark that(x, t) vanishes identically in a
neighbourhood of the hyperplane= 0. LetSy(0 < 6 < tg) be a one
parameter family of hyper-surfacegx, t, 8) = 0 where

(7.11) @(%.t,6) = (t —to)? — adx — Xol* - 8

ThenuSy > D and
(7.12)

(%

Hence, it follows from the lemma thatufvanishes or$,, for some
0o then it vanishes 0%y for 6 in a neighbourhood of,. The set ofy
for which u vanishes or8y is therefore open. It is also closed and non-
empty. Hence it is the whole set. Thussanishes in the whole cone
D+C. O

Z(a¢2)_ (t - t)? _a/(z)lx—xo|2+9> 1 _ 2
I ) adx=x0P  adx-xl T af T

Remark 1. This result holds also for a single equation of ordeand
can be proved by writing it as a system by means of singulagiat
operators and applying the above arguments.

Remark 2. Form Prop[R above it follows that if the Cauchy data has for
support a small set containing the origin then the suppdhesolution

lies in some cone limited by lines whose slope> Amax This is inter-

a
preted as follows: the maximum speed of propagation of tsteidiance
is less thammax.

Remark 3. The above proposition gives a unigue continuation theorem
for solutions of systems of some semi linear equations:

_odu ou
(7.13) M[u] = e ZA(X, t)a - f(x t,u)

whereAy(x, t) satisfy the same conditions as in Prop.1 dé’xﬁ. More
precisely ifu; andu, are two solutions oM[u] = 0 such thati;(x, 0) =
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Uz(x, 0) for xeDg thenu; = uwp in the whole of the con® with Dy as
base. Fory = u; — u, satisfies
ov ov
7.14 — - — —{f — f =0.
(714 Z= ) A Tt - f(xtw)h=0
V(x,0) = 0 for xeDg

By the mean value theoreif(x, t, u;) — f(x t, u2) = B(X t)(ug, —Up) 119
= B(x,t)v, B(x, t) = Z—L(x, t,up + 6(uy — Up). By Prop.[2 we have = 0
in C and henceu; = uy in D.

Finally we apply the method of sweeping a cone by a one pammet
family of surfaces to show that the solutions of second opdeabolic
eguations have no lacuna.

Consider a parabolic equation of the second order

(7.15) (% - L) [u] =0

n i 0 L
wherelL = aik(X, ) =——— + > bi(x, t)— + c(x, t) with infinitel
2 kg + BB + ol Y

differentiable real cdicients andhj satisfy further the condition

(7.16) D Ak DEig = 6(x IR,

jk=1

6(x,t) > 0, for real¢ # 0. It is known that the unique continuation
across time like hyperplanes holds in the sense thaisifaC? solution
of the above parabolic equation with

ou
u(x, 1)), =0, a—xl(x, Oly0 = O
in some neighbourhood of the origin Ky = 0 thenu(x,t) = 0 in
a neighbourhood of the origin in the,{)— space (see Mizohatéll[4],
Memoines of the college of Science, Kyoto University, 1958)

Proposition 3. Suppose M is a parabolic operator of the second ordexo
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defined inQ = R" x [0, h] and suppose a €solution u of Mu] = 0
vanishes on a non-empty open 8atf Q then u= 0 in a horizontal
component T of2 containingé.

By horizontal component T éfin Q we mean the sd{(x,t) € Q}
such that there exists art with (X', t) € 6.

Proof. Supposes is a hypersurface defined by an equation
e(x1) = 0,pe6%;

such that the tangent space $fat the origin is not paralled tb= 0.
0
ThenZl | # 0. Supposea—(’o # 0; then one can solve for in a
Xj
nelghbourhood of the origin as = ¥(Xo,..., X%, t). By a change of
variables

t'=tX =x1—-y¥(X,...,%t), x’J =x(j=2...,n

S will be transformed into X; = 0) and the form of the equation re-
mains unaltered. Hence by the remark above the transfororedién
0 vanishes in a neighbourhood of the origin and heme@nishes in a
neighbourhood of the origin dB. We may assumé’ to be a neighbour-
hood of the origin and consider a one-parameter family gisslodsS,
defined by

go(XtH):ﬁ E—1 0(0< @ < )

T a2 6

with the condition that the tangent space to this is not fetréd ¢ =
0). Again by the argument of connectedness, as before, vanotbte
proposition. m|

8 Existence theorems

In this section we prove some theorems on the existence o of
the Cauchy problem for hyperbolic equation. To begin withreeall
the Hille-Yosida theorem on the infinitesimal generator eémi group
of operators on a Banach space. This is used to assert thermasof
solutions.
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Theorem 1(Hille-Yosida) Let X be a Banach space and A be a linear
operator on X with domain of definitio@a dense in X. Assume that A
has the following property:

(P) there exists a real numbep > 0 such that for every real number
A with |1] < g we have

(1) (I — 2A) is a one to one surjective mapping @ onto X,
(2) there exists a constant> 0 such that
(1 = AA)Ull > (1 =yl
for every ue Za. Then for any givendgie Za there exists in
—oco0 < t < 00 @ once continuously gierentiable solution

(8.1) %m:mmwmmmzm

with values in%a.

Corollary . Let A be a linear operator with domain of definitigzia
dense in X and possessing the property (P) offTh. 14 f(t) € Za

is a continuous function of t such thatt Af(t) € X is a continuous
function of t and a g € %, is given there exists a once continuously
differentiable solution (1) (with values inZ,) of

(8.2) %mzAmpwmwmmmzm
122

We first consider the case of systems whosdimdents do not de-
pend ort.

We remark that for a dierential operator it is not in general possible
to secure the conditio®(2) when we takd.? for the Banach spack
even whenl(8]1) is well posed in the spaéeFor, suppose the condition
P(2) is satisfied.

(1 = AU = [lul? + AZ|AU? = A((A + A")u, u)
> (1 -yl
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As |4| can be taken arbitrarily small this would imply|if| is small
that

((A+ A*)u, u) < yllul|?> for A > 0 and
((A+ A%)u,u) > —y|lull® for 1 < 0
which togeter imply

(A + A%)u,u)] < yllull?

This would mean, when we tak& = ZAk(x)&, Ay € B/, that

6 *
Ac = A Infact, A+ A" = 3 (A - A;)aix - a—i\k and it is easy to see
k

that the above inequality holds if and onlyAk = Ai(k = 1,2,...,n).
We then proceed to study the system

(8.3) %(t) = Z Ak(x)j—;k +B(Xu+ f

We take for the operatdk the diferential operator

0
(8.4) A=> A7+ B(Y)
in .@&2. We take for the domain of definition @éfthe set
(8.5) In={ue 2 Aue 75}

We remark tha@f2 c 92 and consequentl@, is dense in@&z.
A is a closed operator in the sense that its graph is closefhactnlet
Up € Za be a sequence such thgt — ug, Aup, — Vo in .@le. SinceA
is a continuous operator fron@&2 into L2 we haveAu = vp in L2 and
since the injection of7], into L? is bi-uniqueAw = Vo in 7}, that is
Up € Da.

Proposition 1. Let

(8.3) % => Ak(x)g—;k +B(X)u + f
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be a regularly hyperbolic system i = R" x [0, h] with A € B'*7,

B e Bt and f € Z4[0,h]. Then, given g€ Zx there exists a unique
solution ue Z4[0, h], which is a djferentiable function of t in the sense
of L2 with values inZx of @3)for which 1(0) = uo.

Proof. We write the system in the singular integral operator form
d .
(8.6) d—tu=(|,%”/\+B)u+ f

andA = iz# n +B. By the condition of regular hyperbolicity of (8.3)
there exists a bounded singular integral operaitsuch that

N0 = 290
where? is a singular integral matrix whose symbol is 124
A1(%, &) 0
o(2) = .
0 AN(X, €)

and| deto| (M) > 6 > 0.
Define a bilinear form by

(8.7) Lu,v) = R AUNAV)+B(U,V) = (A% = NA + Bl)u, V).

foru, Vs.@&z with ag to be chosen laterL(,, u) defines a norm equivalent
to that of 9&2 for suficiently larges. In fact, sincedt is a bounded
operator inL? we have

(LU, U) < IR0 2l A U+ BIIUIE < MU, .
L
On the other hand by Garding'’s inequality there exisjs> 0 such

that
(Lu,u) > [l A Ull? = yllull? + Bllull?,

then for stficiently largeB(> y) this would imply that

(Lu, ) > clull?,
L2
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which proves the assertion. We provi‘%2 with the norm (u, u). We
proceed to verify conditions 1, 2, of the Hille-Yosida Theor. To prove 125
conditionP(2) we must prove that for redlnear the origin

(8.8) (L(I —2A)u, (I — 2A)U) > (1 - y|A)(Lu,u) for every ue Da.
To do this we assume at first that @fz we have then,

(LI = AA), (I — AA)) = (Lu, u) + 22(LAU, Au) — A((LA + A*L)u, u)
> (Lu,u) — A((LA+ A*'L)u, u).
SinceA = i7ZA + Bwe have
(LA+ A™L) = (ATTRA +BI)([IN A +B) + (i N " + B) (AN N A +B1)

Butf A 27 =D A% mod (\°) whereP; = P, mod (A\°) means
thatP1 — P, is a bounded operator i@&z.
In fact,

RAA =RAN=RoIH)YN—-No I —NA)A
=(o#)A mod (\), (sinceRto # = P oN)
= (2 o MA = INA = Z A Rmod(rP).

Hence

(LA+ A L)uu) =i{(DARAURAU - (N AU D ARAU)
+2ReB1 AU AL,

whereB; is a bounded operator irf. Now
DAN-NDx=DN-AND = (D N-DN)=(2 - D).

SinceZ is a diagonal matrix anat(2) is real, we see tha? = 2.
126 HenceZ A — A 2 = mod(A®). Hence there exists a constantsuch
that
—nuunz% < ((LA+A'Lu,u) < y1||u||2%
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or equivalently we write following Leray [1]
—y1(A +1)? < LA+ AL < y1(A + 1)

and thus, a15;u||§)12 and (Lu, u) are equivalent we obtain
L
(LA = AA)u, (I = 2A)U) > (1 - yala)(Lu, u)

1
for |1] < —.

Y1
Next the inequality[(818) holds for ali € Za also. Supposa € Za.
If @5 are mollifiers of Friedrichs then the functiag = u * @5 belongs
to .@Ez and it follows from [8.B) that there exists a constansuch that
for some real near the origin

(L(I = AA);, (1 = AA)Us) > (1 - y1lA)(Lus, Us).

But
Aus — Auin 27, asé — 0.

In fact, Aus — Au = (Aus — @5 * (AU)) + (¢s * (AU) — Au) in which
the first term tends to O i@&z by Friderich’s lemma and the latter term
tends to 0 inZ], sinceAu € Z/,. Thus conditionP(2) of Hille-yosida
Theorem is verified. To prove conditid?(1) we must prove that ¢ 1A)
is a one-to-one surjective mapping @ onto 9&2 for suficiently small 127

. . 1
A. From [83B) it follows thatl( — 2A) is one-to-one fof1| < —.
Y

1

Next (I — AA)Za is closed inZ},. For, (| — AA)u, — Vo in 27, for
Un € Za means by[(818) that, is a Cauchy sequence for the new norm
hence has a unique limik in .@le. Hence—1Au, — Vo — Ug in .@le. As
Ais a closed mappingp € Za and ( — AA)up = Vp.

Finally we prove thatl(— 1A)Z, is dense in@le. The proof is by
contradiction. Supposé{1A)Za is not dense ir@le. Then there exists
ay € 7, ¢ # 0 such that (- AA)u,¢)1 = Oi.e. (A + 1)(I - 1A,
(A+21y) = Oforallu e Za, that is, { — AA*)(A + 11 = 0 where
A = —i A + B andy = (A + 1)yel?.

Now A*(A + L)1 = (i A"+ B) A+ L1 = (A+ L) (—i A" +
B + Boy1. whereBg = —i A (7 A — A %) + (B* A — A BY).
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FurtherA*(A + 1)y1 = (A + 1)(=i£% A +B* + By)y1 + Boys where
By = (% A+ N)e L (L2, L2).

But B = By + (A +1)"'Bgy+ B* is a bounded operator Ir? and hence
(1-2A*)(A+1)1 = Ois equivalent to saying thatf A(—i.## A+Bly =
0, which in turn is equivalent to saying thatf A(—i.#* A +BJy = 0.
Starting from the equation

0

— 0 ~
_ t _
=- E Ak(x)axku Bu
and using[(818) after observing thate 2 we obtain an inequality

(8.10) (L1(l = A(=i52% A +B)), (I — A(=i(F A +B))y)
> (L- 1) (Lo, )

which implies thafly/|| = 0 and hencg = 0 which is a contradiction to
the assumption.

Now all the conditions of Hille-Yosida theorem fér = i A +B
are verified and hence there exists a solution of the equation

dgtu = (i A +B)u+ f with u(0) = ug

with the required properties. m|

In the above proposition we proved the existence of solatioh
regularly hyperbolic systems whei € Zx in particular whenig € .@Ez
andf € Z4[0, h] and so in particular wheffi € @fz. This result can be
improved as follows.

Proposition 2. Supposd8.3) is a regularly hyperbolic system i@ =
R" x [0, h] with A, € BY*", Be B, up € @le and f e 9&2[0, h]. Then
there exists ue 2,[0,h] (once diferentiable in t in the sense of)
satisfying the system in thé4sense and (@) = uo. Also the following
energy inequality holds:

(Lu(t), u(t)) < expéyt) - (Lu(0), u(0))
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t
(8.12) + f(L(f(s)), f(s) expl(t — 9)ds
0

where(Lu, u) is defined in Prop[]1.

Proof. We regularizeug and f by mollifiers of Friedrichsps to obtain 129

Up * g5 = Uy € D%, T+ s = f5 € 23[0, h]. By prop.[1 applied tag, fs

there exists aj; continuous and with values i satisfying

0

d
(8.12) ol = > Ak(x)a—xkug +Bus + f5

andus(0) = ug. Furtherus(t) — us (t) satisfies the equation

21060 = U (O] = 37 A9 2 [0s) Ui 0]+ BLUs) s (0] + (s — 1)

and hence by the energy inequality
(8.13)

h
llus(t) — us (D)ll2 < c(h) {11us(0) — us (O)llL + fllf(s(s) — fs(9lldst,
0

which shows thatus(t)} is a Cauchy sequence in the space of continues
functions with values ir@le. Henceus(t) — u(t) in the space of contin-
uous functions with values i@&z. On the other hand the equation

t
0
Us(t) - Ug = f (A9 + To(9)ds A= ) Acr—+B
0

holds inL2. Passing to the limits ih? we obtain

t

ut) —up = f{Au(s) + f(9)}ds

0
Differentiating this, we see that the relation

d
FUO = Aut) + £



131

114 3.

holds in the sense d&f* whereu € Z},[0, h, % € L]0, h] respectively. 130
Consider now
d%(Lu(;, Us) = (L%u(;, u5) + (Lu5, dgtu(;) + (L{us, us)
< ((LA+ A"L)ug, us) + 2Relf5, f5) + 7' (Lus, Us)
< y(Lus, Us) + (LTs, f5).
Sinceus(t) and f5(t) converge, uniformly irt, to u(t), f(t) respec-

tively in .@&2 asé — 0 we have[(8112). This completes the proof of the
proposition. m|

Remark. The above equation is a particular case of one involving sin-
gular integral operators. If in fact we consider an equation

dﬂtu(t) =i A u(t) + Bu(t) + f(t)
(8.14) = Au(t) + f(t),
with o(2) € C$3, ., B € Z(L% L2 n L(Z},, 2,), which is regularly

1+0? L2’
hyperbolic, we could prove an analogous proposition in #Hraesway.
We would have to use the Fridrichs’ lemma for singular irdégpera-

tors, namely,
(8.15) 2 A, ps%] — 0 weakly in@fz.

Now we consider the general case of regularly hyperbolitesys
when the cofficients are functions of the variabtealso. We use a
method similar to the one of Cauchy-Peano for ordinarfjedential
equations.

Theorem 2. LetQ = R"x [0, h] and
0 0
(8.16) U= ZAk(X,t)ﬂu+ B(x, t)u + f

be a regularly hyperbolic systeménwith A, € B1*7[0, h], B € B1[0, h],

f e 2L[0,h]. Given a y € 7, there exists a unique solution u of
@18) in the sense of4, which belongs t(@ﬁz[o, h] and is dfferen-
tiable in the sense offor which (0) = up.
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Proof. Consider a subdivision
AZO:t0<t1...<t5=h.

We define a functionu inductively as follows: Fotj_; <t < tj,
ua(t) = uj(t) whereu; satisfies the system
(8.18)

0 0
G = 20 A ) U+ BOCt-Uy + £ Uy(-2) = Upa(t )

for j =1,...,s By Prop.??there exists a unique solutianp € 9&2 for
this system forj = 1, ..., s. Thusu,(t) is uniquely determined. We shall
show thatu, is uniformly bounded for small subdivisions (subdivisions
of small norms), that is,

sup [[ua()llz < M < co.
te[0,h]
It follows from (BI8) using the given conditions on the coigfints
that

sup [ us @Iz < M < co.
tejo,n) dt
Hence{ux(t)} is a bounded set izfl_lz(Q) asA runs through subdi- 132
visions of small norm. Thus by choosing a suitable subsempiefA,
uy — uweakly in&%(Q) andu satisfies

ou ou
(8.18) == DA t)& +B(x,u+ f

OUp ou  9dup ou —
— - —, — — — weakly inL9(Q
ox  ox ot _ at yinLo(Q)
and these derivatives are taken in the sense of distribution

Next we shall show that € 2,0, h] andu(0) = u. For almost all
t, u(x, t), as a function of for each fixedx, is absolutely continuous (see
Sehwartz[[1]). Hence we can write

Uy — U,

t/l
u(x t’) —u(x,t”’) = %(x, t) dt

t/
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the derivative in the right hand side is taken in the distidousense. By
the Schwarz inequality

t//
ou
Ju(x, ') — u(x, t”)% < |t —t”| f 155 0 t)2 dt
t/

which on integration with respect togives
’ 7 ’ 1’ l au
[lu(x t') — U )l o gy < It — |2||E(Xat)||L2(Q)

proving thatu € L2[0, h]. If s denote mollifiers of Friedrichs, the func-
tion u = u ¢, satisfiesu; € 2,0, h] and

0 ou
(8.19) = s() = DA t)&ug + B u+ f + Csu
where
0
(8.20) Cs = Z [Aka,%* +[B, @s+].

By Friedrichs’ lemmd/Csul|1 < cllull1 and||Csully — 0 ass — O for
h
fixedt. Sincef||u(x, t)||1dt < oo, it follows that|Csul|; is integrable, and

0
from Lebesgue’s bounded convergence theorem, we deduce tha
h
fllC(;u(x, t)|l1 dt > 0ass — O.
0

Now from the energy inequality for the systeim {8.19)

h
IOl < o) s + [ (1 + ICu()ds
0
it follows that sup|jus(t)ll1 < M < co. Againus(t) — us (t) satisfies an

te[0,h]
equation

20 - b (0) = I A=) - ()
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+ B(X )(us(t) — us (1)) + Csu(t) — Cy u(t)

and we have the energy inequality

h
1us®) — s @l < /() 411us(0) — Uy (O)l1 + f I(Cs - Co)u(9lds
0

which shows thatjus(t) — us ()l — 0 asd, & — 0. Sof{us(t)} is a
Cauchy sequence i, [0, h] and hence its limit is irZ,[0, h]. By the 134
uniqueness of limits in.?[0, h], u; — uandu € 24[0,h]. Since the
operation of restriction is continuous and the restrictibri, tot = 0,
namelyua(x, 0)), isug we see thati(x, 0) = ug.

Now it only remains to show thdtix(t)} is a bounded set iéale. For
this we proceed as follows. We use the norm defined by

(Lu,u) = (M A U, A U) +B(u, u)

for suitables > 0 (see (8.7)).,@32 is provided with this norm.
By the energy inequalities we have, fpe 1,...,s

(8.21) (L(tj-1)ua. Un) = (L{ti-2)uj (1), uj 1))
< expoy/(t - tj-2))(L{t-2)uj(tj-1). Uj (tj-1))
ly
+ [ expht- 9NLE-)1(9. 19) ds
tj-1
The L(t) depends on th&(t) which form a bounded set of singular

integral operators and hence by the remark ater gopB2yve can use
the same constaptto the new norm irth. Further lettingLk = L(tk)

(Ljua, up) — (Lj—1Ua, Up) = II9%(E) A uall® = I (tj-1) A U2
< Cl(t)) — N(tj-0lloqz,L2)lluallf.

Since (j-1ua,Ur) ~ ||uA||§ we have||uA||§ < K(Lj-1ua, up) and
hence

(Ljua, ua) < (1 + KIZ(t)) — (tj-llo(Lz,2))(Lj-1Ua, Ua)
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= (1 + &(tj-1,tj))(Lj-1Ua, Up).

135
Using this in the above inequality{8]21) we have

(Ls-1Ua, Ua) < exp@t)(Lou(to), u(to))
h

S
+ fexp(y(t - 9)(Lof(9), f(S))ng{l +&(tj-1), tj).

0

But we have, by a will-known inequality,

S 1 S
E{l +&(tj_1. 1)} < (1+ S e (t,-_l,t,-)) <en
where

Yo=sup)_ s(tj1,tj) = SlAkaZ [198(t)) = N(tji—lla(rz.2))

(2) fooxte).

<k f sup sup
XeRN =2n [é>1
Hence{ua(t)} is a bounded set iﬁle, this completes the proof.
If we assume taht that cfiients and the initial dateg and f are
suficiently smooth we can improve Theor€in 2. We indicate thisflyri
We assume

A

A € B[O, h], — o e BY[0, h], B € B?[0,h],up € 22, f € 22,,]0,h]

L2 L2°

From theorenil2, we know that there exists a unique soluti@n
9&2[0, h] of

(8.16) M[u] = f.

. - . .0
136 Differentiating with respect t®) (denotlnga—X by Dj) we have
j
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(8:22) M[Dju] - > (DjAJIDku] = Djf + (OjB)ul (j =1,2,....n)
K

where the second membBx; f + (D;B)[u] € 9&2[0, h] and D;u(0) €
.@le. Now (B22) is a system of equations with unknown functions
(D1u, ..., Dpu) which has the same principal pdwt. We can show,
without any singnificant modification in the previous argumehat
there exists a unique solutio®{u, ..., Dnu) € 9&2[0, h]. On the other
hand, by the energy inequality, we can see that the system:

M[vj] - Zk (DjA)[Vi] = gje L0, h]
has atmost one solutianin L?[0, h]. This shows thati € @fz[o, hl. o

Corollary 1. Let(8.1I8)be a regularly hyperbolic system in the $et
R" % [0, T] with

(Ak(x, 0. 2 Ax t)) e (#70.T], #'[0.T)).
(B(x, t), %B(x, t)) e (#%[0,T], #Y0,T))

and f(x, )¢ 2%[0. T].

Then, given an elemenk < .@Ez there exists a unique solutiane
.@EZ[O, T] of B3) with u(0) = up.

Proof. Defferentiating both sides of the equatidn8.3) with respect to
Xj in the sense of distributions we have

0 0 0 0 0 o of
MU = ——u- — (Z Ak(x,t)—xk) - a_Xj(B(x,t)u) = 9%

0% axj ot O P

which can be rewritten as 137
J [ du 0 (du 0A ou ou
—(=]- D—(—=|- ) —xt)— -Bxt)—
at(axj) QA Vox (ax,-) ax, % Ugx, B U5
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That is,
au of 0B
22 =—+ — .

. du . .
Setting— =v; for j = 1,...,nwe obtain a new system
an

M [VJ] Z —(x tVk = ¢;

and we can take for;(0) the functlongl e 9t L2 (the derivative being
Xj
taken in the sense of distributions) singg 92 If we assumau e

2}, [0,T] it follows then thaty; € 2, [0, T] smcef € 2%[0,T] and
B € %42[0,T]. Then by Th. 2 there exists a unique solutlon 153
V= (vi,...,Vn) With v; € 2, [0, T]. Henceu € 22 [0, T]. O

Corollary 2. Let @@1I8)be regularly hyperbolic in the s& with

- at)mAk)e(@’“[O,T],...,@()[o,T]), Be 2M[0,T]

[T
and fe 25 [0, T]; then given g € 25 there exists a unique solution u
in 2" 2 [0, T] of B3)with u(0) = uo.

ThIS can be proved by successively applying the argumentrol-C
lary .

Taking m= ||+ 2 we obtain, using Sobolev's lemma, the following

Corollary 3. Let (@@1I8)be regularly hyperbolic with

as

2]+2 [2]+1 [2]+1
(Ak, X, ) ( 0,11, 218, ) Be 714" [0,T]

and f 2]+2 [0, T] then, given g € .@[ *2 there exists a solution

ue &tof M)Wlth u(0) = up, unique in I_2
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Corollary 4. Assume tha{8.18) is regularly hyperbolic in an open
neighbourhood U of 0 in R, A, B € £(U) then there exists a neigh-
bourhood U c U such that for any gic &(U n{t = 0}), f € &)
there exists a solution @ &(U’) of @I8), unique in 2.

Remark. If we use a partition of unity the above arguments can be used
to proved results analogous to the above corollaries innbeesg[‘;‘(loc)
in place of@f’z‘.
Finally we have the following result on the existence of tiohs of
a single regularly hyperbolic equation of oraer

Corollary 5. Let

(8.23) L[u]=2mJ+Za- (xt)ivﬁju—
' =l\at) * 4 AU G) &) YT

j+sm

j<m

be a regularly hyperbolic equation of order m in a neighbanot of the 139
origin with infinitely djferentiable cogicients g,. Let g be infinitely
diffrentiable in a neighbourhood U of the origin. Then given thigal
conditions

(Uos U, Uma) € [ [ (U NIt =0}

there exists a solution a £(U’) in a neighbourhood Usuch that

i
(%) u(x,0)=uj(x), j=0,1,...,(m-1).

9 Necessary condition for the well posedness of the
Cauchy problem

In chapte2 we considered necessary condition for well ghosss of
the Cauchy problem when the dheients were inependent of In
ChapteB we considered somdistiency condition for well posedness
e.g, hyperbolicity, when the cfiicients depended ox
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Now we consider some necessary conditions in this later. dase
simplicity we shall consider single, first ordefi#irential opearator,

(9.1) % = > ax, t)aa—)‘:k +b(x t)u

(for a fuller treatement see Mizohaia [3]).

If all ax(xt), b(x,t) are real the classical method of characteristics
establishes the well posedness of the Cauchy problem. Huvifethe
a are complex the question of existence was not settled timy.
The characteristic polynomial of the above equatioly i (27&y) — A.
If this has real eigenvalues i.ay’s are real, the Cauchy problem is well
posed as shown by the results of Chap Ill. We shall prove fhhere
is £9 such that i) ax(0,0)° # 0 (say# 0), the problem is not well
posed. The idea of the proof is as follows: we construct aesscp of
solutionun(x), n = 1, 2 for which, on the hypothesis of well-posedness,
we must have supin(x, t)] = 0(n") while on the other hand by using an
energy inequality for a suitable operator we, must have arization
by expf) for some functions closely related ) above which will give
a contradiction. More precisely we shall prove

Proposition 3. Let

(9.2) % =HAU+b(Xt)u+ f

be an equation in the singular integral form with{(H) = h(x, t, £) sat-
isfying
(9.3) Reh(x,t,&) < Oforall (xt,&) and t— h(xt,&) € C3,

is continuous. Then given any @ 7/, and fe 21,0, h] there exists a
unigue solution

ue 25[0,h of @Z)with u(x,0) = Ug(X).

On the contrary, if there exists& such thatReh(x, t,£°) > O then
the energy inequality cannot be obtained in tifespace. Of course this
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does not immediately imply that the Cauchy problem is not peeled
in D

We see that @, t,—¢) = —a(x,t,£&) which shows that in the case
of a diferential operator(@.1) the conditionRea(x,t,&) = 0 will be
necessary for the existence theorem. We analyse thisisituatore
clearly.

Theorem 1. Suppose there exists a real vectSre R", £° # 0 and ¥
such thaim 3 a,(x°, 0)¢0 < 0. Then the forward Cauchy problem is not
well posed for@1)in & orin 75 orin #.

Remark. P.D. Lax [1] also proved a similar theorem, by using the char-
acteristic method, that if eigenvalues are simple for thé pasedness
of the Cauchy problem it is necessary that the eigenvaluesdbe

We first prove an energy inequlity for a suitably modified @per
tor and then establish two lemmas for commutators whichthagevill
prove the theorem. Suppose= 0.

First of all we localize the diierential operator given i {d.1). Sup-
poseu is a solution of [T1) of clasg!. LetB(X) € 2 with support
contained in a small neighbourhood of the origin. Now

©4) 560 =Y ac (B + b - Y aciu

Since the support gfu and ofaﬂ(ﬁu) are contained in the support
of B we can modifyax andb outside the support ¢f. We can write

(©4) 568~ 3} A D) - Blx L) = - 3 A D3 -

whered, andb are equal t@y andb respectively on the support sfand 142

() &, be 2y
(9.5)
(i) im " &(x )& < ~6, § > 0 forall (x.t) with x e R"and 0< t < to
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We can assumg?| = 1 if necessary by multiplying by a suitable
constant. There exists a neighbourhdbdf £° such that

(9.6) imz A& < —ofor0<t<ty, eV

Let @ € 2 with the support contained odf anda(¢) = 1in a
neighbourhood of°. Definea), by

©.7) 0(e) = (5. ap(0) = Flan(e)].
Convolving both sides of (8) with a, we obtain

(2= 5B 9] = 0 0]
(9-8) = [aps, L] (8U) ~ ) &clap *ty (Bd) = D [apro. B (Bu).

B

wheregy = —.
Bk %

We rewrite

. 0
Z aka—Xk((lp *(x) V) =HA ((Xp *(x) V)

wherev = guando(H) = 27i 3 ékl% = h(xt,&). Thatis

H A (ap ey V) = f exp(2rix.£) - h(x t, §)Iglap(£)(&)de.

This operator depends only on the value of the synfbmh the set
{AV},0 since the support dE|apV is contained in the s¢fiV}. Hence
we can modify the symbdi to h outside{AV} as follows:

(i) h(xt,&) = h(xt,&) for& e av

(i) Reh(x,t,&) > &,8 > 0.
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Thus we have finally an equation

(9.9) (% —H A =b)(ap *x (BU) = f

whereH is the singular integral operator whose symbgH) is h, f
being the right-hand side df(9.8).

Lemma 1. Suppose Ift) is a singular integral operator of cIass;C
B = oo such that

(9.10) oH)(xt,&) =6 > 0.

Suppose & L?[0, h] is given. If ue 9&2[0, h] satisfies

0
(9.11) a(a/p k) U) = H A (ap *pg U) + (X, t)(ap ) u) + f
then there exists & > 0 such that
d

(9.12) d—tllap () Ull = 6" pllap *g ull = 11l
for syficiently large p.
Proof. Let us denoter, *(y U by v,. Then we have 144

But AH* = H# A (modA®) implies
%(vp, Vp) = ((H+ H*) AVp,Vp) +2 Repvp, vp) + 2Ref, f)+(Bvp, vp),

with B a bounded operator. P denotes the singular integral operator
H + H* theno(P) > 25'. We remark thatR AS — AS P)A“ is a bounded

. . 1
operator ifs,o- > 0 ands+ o < 1. Takings= o = >

PA = AZP AZ (mod A).
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Hence
whereC = P A — A% PAZ is a bounded operator. Thus
d # L 1 2
(9.13) E[(Vp’ Vp) > Re(H + H") A2 Vp, /\ZVp) = y1lIVpll© = 2vpl| [l
on the other hand we have by Garding’s lemma that
# L1 1 ro 3 L1 2
(9.14) Re(H + H") A2 vp, A2vp) > 8" (Af, AZVp) — yallVpll©.

Since the distance of the supportwpf¢, t) = ap(£)a(, t) from the
origin is larger thanrp, o > 0, we have by Plancheral’s formula

(ABvp, Advg) = f (&, D2de
> op f (&, D20 = oIVl
Thus we have

d ,
d—tnvpn2 > ¥ plvpll? = (v1 + ¥2)Ivpll = 2lIvpll 1If]]

which implies
d
d_t”VpH > (6p = YVl = 11l

wheres > 0,y > 0 are constants. Therefore for larp®p — y) > 67,
6’ > 0.
For suchp we have

d 44
d—tllvpll > 6" plivpll = 11Tl
In other words we have
d 44
(9.12) d—tllap ) Ull = 6" pllap *x ull = [l

completing the proof of the lemma. m|
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Lemma?2. Ifae % and ue 9&2 there exists a constant> 0 such that

n [ap*,a(x)aﬂxj] ul < c{ >l O¢ay)<ul

1<|pl<m=-1
IIUII}

V() = f (aly) — a(x))ap(x - Y)g—;()/)dy

(9.15) {Z l=— (Xpa/p)|||_1 + 1 ap)ll 2

lol=m

Proof. Letv = [ap*,a(x)aix] u; then
j

Expandinga(y) — a(x) by mean value theorem upto order to be 146
determine later,

a-a= > Cyam Y -y

1<lol<m-1 lol=m

and hence

9= > ElEyacotan «u

1epem1 P
. -
) [yt yaen o ay
Now ¢(x) = [(x =Yy ap(x-Y)a(X, y)—(y)dy

- aiyj {(x=yPap(x=)a,(x )} uty) dy
=- f {ﬂ |(x= yFap(x-y)] a,(x)

+(X =y ap(x - y) ap(x y)}U(y)dy
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0 .
Hencellp(X)Il < cll [Xap| * |u] + |%(xpap)| * |ull|l. Applying Haus-

i
dorff-Young inequality to the right hand side we obtain the deksire
equality.

Similarly one can prove that & € % andu € L? then

(9.16) ||[ap*,a]u||sc{ > ||(xpap)*u||+(2||xﬂap||u)||u||}

1<lol<m-1 lol=m

wherec is a positive constant.
147 Now we look at the terms appearing in the right hand sid&-dH)0.

First of all aﬂx(xpap) x U has its Fourier image (&’gj)(x%ap)ﬂ =
]
(2ri&;)0. const/y(£) which shows, since the support@j(¢) has diam-
eterg”’ p whereo”’ is a constant depending only enthat,
(9Xj

Next considef|x’ apl| 1 for [p] = m

(9.17) (Cap) * Ul < cpl(Xap) * ull.

sup|¥ap| < const.f|&%’)(§)|d§: const.f|(a%)p&p(§)|d§

= const. %)""_”fl(a%)p&ldéf-

1 lol+n
Similarly |x|2”|xpap| < const(B) f
that

dé which implies

9\ ,n
A’;(a—g)”a
lol-n

(L+ [XMI¥ap < const. (%) :

lol-n lol-n
Hencel¥aplu: < const.f%l):(|2n (%) < c(%) . Inthe

same way one can show that

9 AU
||(9—XJ_(Xpafp)|||_1 < C(B) .
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Thus we have proved the
Corollary of LemmaPl If ae # andu € 9&2 then 148

0 1
(98 lfapr. 2002 Jul < cp Y o¢ay) »ul +O(W)nun.
] 1<lpl<m-1

This follows from [2.IF).
Similarly it follows from {(@.16) that

1
—)llull.

918)  leps,a®ul<c ) 0¢arp) = il + O(5

1<plsm-1

Lemma 3. If L is a differential operator of the first order with its coef-
ficients in%

(9.19) L=> ak(x)ﬁ +b(X)

then for any we 77,

020) lapsLlul<c Y pIO¢ap) = ul + O(=—p)lul.

m_
1<|pl<m=-1 P

This is an immediate consequence of the inequal&%8) and
(9.18). More generally one can prove exactlly in the same way
1
(9.21) [I[(X"ap)*, L]ull < ¢ Z I ap) * ull + O(W)Ilull.

V+1<|pl<m-1

and

0.22) (XLl <cp > [0€ap)ul+O(—— )l

pm+1|v|—n—
v[+1<|pl<m-1

for every ue 71,
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Now we can complete the 149
Proof of Theorem[d: We prove this theorem in the spacés As we
shall see from the method of proof the same will be valid ferspaces
2% and . The proof is by contradiction.

Suppose the Cauchy problem is well posed in the spaces. We con
struct a sequence of initial conditiong(x) and consider the corre-
sponding sequence of solutiopg(x) are defined as follows:

LetV be a small a neighbourhood 8f anda € 2 have its support
in V with &(£) = 1 in neighbourhood/’ of £°, V' c V. Takea ¢ € 2,
¥(£) # 0 with support contained iW’. Denoting

da() = v — &)
we have by taking inverse Fourier transforms

(9.23) Wq(X) = exp(2rigx.£°)y(X)
Yq € & (also in@lf;, A). Further

(9.24) lgllen = O(A).

(We remark that{{9.24) holds for the semi-norm#fy and % also).
By hypothesis of the well posedness, the correspondingisolu
Ug(x, t) of @) havingyq(x) as the initial data is estimated by

(9.25) supug(x 1)l = O(g"
K

for some fixech whereK is a compact set in thex(t)-space. Also we
see that

(9.26) llp * (Bp)ll = € > O.

In fact,

ap * (Byp) = Blap * ¥p) + [ap* Blvp.
18(ap * wp)ll = 118 * (@pdrp)ll = 118 * ¥pll = Bwpll = 18Il > O
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by using Plancheral’s formula and the fact that= 1 on the support
of yp, ¥ being an analytic function angBy|| > 0. On the other hand

. 1 :
it is easy to see thalfap*, Syl = O 5 . Now we prove this leads

to contradiction as follows. Instead of, = (8u) in (@8) we consider
(X'ap) * (B"up) with |v] < m—1, [v| < m+ mhwhich form a system of
M

localisers 8 = ((%) B(X). Then we have
0 ~ 0 =\
(55~ D 8 - B @) « (un)
= [L (Cap)(B"up) = D (X ap) * (B"up))
= > (X arp)s, &J(B"*up)
whereuy = u+ &, tk = (0,...,1,...,0) thekthcomponent is 1.
Applyinginequallity [3.IP) for K ap) * (8“up) and using inequalities

©&21), [3.2R) withm = h+ n + 2, we have

d

d—t”(xyap) * (B up)ll = 6" pll(X ap) * (B up)ll = I flI

> 6" pll(Rap) + (Bup)ll—cp >\ lI0Cap) * (B up)l

V]+1<[p<m-1

—c > l0Cap) = B ul-¢ Y ||(xVap)*(B”’up)||—O(—;)

[v]+1<|o|<m-1 [ |=lkl+1
e [=lua+1
Now consider the functiong,(v, u)u, defined by 151

B, 1)U = pe(lvl—lul)(XV)ap) * (ﬂ(ﬂ)up)

1 . .
where 0< 0 < 1. In fact we take®d = e We have from above inequality

d ” -
a”ep(‘/,ﬂ)up” > 0" pll&p(v, wupll = Cpl o Z 16p(0, () upl|

VI+1<|pl<m-1
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—cp’ D 10l = >0 11plo, 1)l

|ul=ll+1 vI+1|<1p|l<m-1
[’ [=lul+1

1
Now if [1| = m+ mhwe have, by[[9.25)
||9p(V,M)Up|| < CpH(IVI—IMI)HupH <c pO(IVI—I#I)+h.
Butd(jv| — [u)) < (m-1-m-mh-1) = (-mh-2) = -h - 29
sinced = - Thus||6p(v, W)upll < cp~?. Denoting

Sph) = D 16p0m)up(Oll

O<vlsm-1
0<|ulcm+mh

we have from[[2.27) that

d 24 e
Grop(®) = 9" pSp(t) - cp?Sp(t) - O(2)
> y"" pSp(t) — O(1) for largep,r” > 0.

Integrating this with respect to
t

Sp(t) = expy” pt)Sp(0) - f exp” p(t - 9))O(1)ds
0

~expty” pi S0~ O[5

152
But Sp(0) = 2 10p(v, )Up(O)ll > llerp * (BUp)(O)ll > ¢ > O by

o<gvlsm-1
0<|ul<m+mh

(@.286) for largep. Hence for every fixed the functionSy(t) increases
exponentially with respect tpi.e. Sp(t) > ce”P. On the other hand

16p(v, )up(®)ll = PP (X ) = (B up)ll

and [|B“up(t)ll = O(p)". HenceSp(t) > cpt for a largek. In fact
10p(v, )Up(B)ll < O(p™?1) sincedv| < 1). This is a contradiction. This
completes the proof of the theorédin 1.



Chapter 4

In this chapter we briefly discuss the existence of solutaiiise Cauchy 153
problem for parabolic equations.

In section[l we introduce parabolic equations of onagen the x-
variables and prove an existence theorem wheffficoeets do not de-
pend ont. In section[R we obtain an energy inequality for parabolic
eguations which we use to prove the existence of solutiotiteedauchy
problem for parabolic equation with Siciently smooth initial condi-
tions when cofficients depend onas well.

1 Parabolic equations

Consider the dferential equation

(1.1) 2u = Z av(x)(aix)vu+ f= A(x, E%()UJF f

ot [v|<2m

whereA is negative elliptic of orderrin R in the sense that

(1.2) Re > a,()(i&)" < o™

vl=2m
¢ being a positive constant. We assume that théfiopentsa, belong to
B2,

We prove the existence of a solution &I {1.1) in the splateWe
take for the domain of definitiots of Athe space@fg‘.

133
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Proposition 1. For smallA > 0 the operator(l — AA) defines a one-to-
one surjective mapping (@ﬂ“ onto L2
154 Proof. Forue 22" and1 > 0
(1.3)  1I( = AAUP = U = (A + A")u, U) + 2| AU.
SinceA is negatively elliptic we have, from Garding’s lemma, that

() —((A+A%)u,u) > SlIullz, - yallull®

. 52
(i) AU > o1l A2 U2 = yollul?.

wherey, y, are positive constants depending &@nHence it follows
from ([L3) that

52
(1.4) (1 = AAUI? > (1 - y14 = y229)|ul? + EAZH AP )3,

which show that for sficiently smalla, (I — AA) is onet-one from.@f;“

to L2 and that the image is closed.

Next we show that the image ¢ 1A) 72 is dense irL?, for 1 > 0
small. This is done by contradiction. Suppose the imagetislanse in
L2. Then there exists @ € L2, ¢ # 0 such that

(1 = 4A)u,y) = O for allu € 277",
a fortiori for all u € 2. This implies that
(1.6) (| —AA )y =0. Let yg = (1-4),™
Thenys € 27", y1 # 0 and
(I -2A)(1-A)"1=0
155 Hence (- AA")(1~A)"y1, 1) = Walif— AA (1~ A) "1, %1) = 0.
Now the real part of & (1 — A)™1, 1) is

1
E({A*(l - A"+ (1 - A) Ay, y1),
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and sincgA*(1 - A)™+ (1 — A)MA} is an elliptic operator of orderm,
we have by Garding’s lemma,

1 1)
(L.7) SUA" L= A)"+ (1= A)"Aya, ya) < = APy + yallyal 2.
Hence, we have
RefllylZ, — A(A (1 - A)My1, y1))

0
> |yl + Al Ay |1 = yallyalP)

(1.8) > (1= Ay3)lyllz,
This implies thaty; = 0 contrary to the assumption, which proves
that (| — AA) is surjective for sfficiently smallA. O

Corollary 1. Ifu € L? such that Au] € L? then ue 27",

Proof. Since from the Theorem for fiiciently smalla, (I — AA) is sur-
jective it follows that there existe/ € @f;“ such that [ — AA)w =
(I = AA)u. Hence [ - AA)(w — u) = 0. Now in the course of the proof
of the theorem we have shown that(1A)v = 0,v € L2 impliesv = 0.
Henceu = w e 22", O

Proposition 2. Given any initial data y € @f;“ and any second membeus6
fe @fg‘[o, h] then there exists a solution & @f;“[o, h] of (1) such

that u0) = ug where the deriativ%(ztu is taken in the sense of L

Proof. The prop.[l asserts that all the conditions of Hille-Yoside-t
orem are satisfied taking = L?, 9 = .@E;“. Hence we have the
proposition by the application of Hille-Yosida theorem.tlus remark
thatu, Au e L?[0, h] impliesu € 230, h].

We have proved the Propositibh 2 under the assumption fthat
.@55“[0, h]. We shall improve it by proving it assuming only

f € 2000, h].

For this purpose we establish an energy inequality for thekadic
equation[Th). O
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2 Energy inequality for parabolic equations

Consider the parabolic equation

(2.1) %u = Z av(x)(aix)vu+ f= A(x, a%)u+ f

[v|<2m

Proposition 1. Let (Z1) be a parabolic equation with the cfigients
a,(x) of A belonging to%*™ and the second memberef 22[0, h]. If

u e 770, h] satisfies2J) then

t
(2.2) UE)E, < exphDIIUO)IZ, +72(6) f exp/(t - 9)IIf(II2ds
0

wherey,, y» are positive constants.

Proof. Consider

FU0-U0n = (FuO.u0) -+ 0]

= ((A+ A")u, u)om + 2 Re(f, U)om
= (1= A*™A+ A*(1 - A)?*™u, u) + 2 Re(f, U)om.

The first term in the right hand side is by Gardings’s inetiukess
than

0 )
(2.3) = SIATUI + yollullg, < = Sllull5y + yalluls,
since (1- A)2™Ais an elliptic operator of ordema Also

2 )
I(f, Uaml < Il fllmllUllam < gnfn% + §||u||?s,m

by the inequality between the arithmetic and geometric medence

d 0 2 2 2 .0
(U Wan < (5 - 6) 0B+ ol + SITI,
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that is
d ) 2
(2.4) d—tnu(t)n%m < —§||u||§m +yallullz, + gnfn?n
a fortiori
’ d 2 2 4 2
(2.4) U2 < yallu®Iy + 51Ol

and hence we obtain after integrating with respedtito[0, h] the re-
quired inequality[(Z]2). O

Next we obtain the energy inequality of the forln{2.2) under t158
assumption thati € 270, ] instead ofu € "0, h]. In the case
of hyperbolic systems such an improvement could be achieasdy
by using Friedrichs’ lemma. This method will not work in ousse
sinceA is not of the first order. However, as we shall show, by a slight
modification, we can use this method of regularisation bylifrest.

As before we estimate the commutators of convolutions witiim
fiersg, of Friedrichs.

Lemma 1. For a € %°™ and ve L2 denote by @Qv the commutator
(2.5) Cev = [g,. Alv.

Then there exists a constayt such that forjy| < m

6 14
(2.6) ||(a—x) CoMl < yolalgn| Y 10€46e) Vi + el V1L

1<lpl<m

Proof. We have,

Cov= [ [aty) - a9l (x - Yiyay.
Developinga(y) — a(x) by Taylor's theorem

y-xp (oY
o! (_)

ay)-ax= >

1<]pl<m

a) + Y 3Ny - XY,

lol=m

X
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where since € 2"

0\
|(_) (X, Y)‘ <cly— X |agem for /| <m-1

OX
and
(£) a0eyi < cote or v -
In fact,
1
By = Of (1= 0™ {a(x + 6y - X)) - a(x) do
W - (2
a”(x) = (ax) a(x).
Hence
ol
Cov= Z (1|) (—) ax) [P pe) * V]
1<[pl<m P
@7 & YD [ Bnx-yPee-v) dy
lol=m

1) implies the lemma. Obviously the terms of the first sumtlme
right hand side contribute to the terms of the sum of the riggmd
side of [ZB) As far as the second sum is concerned we rerhatk t

f|x||( ) (¥ ¢.)|dx = O(e) for |v| < mand|p| =

By Hausdoff-Young inequality the second sum on the right hand
side of [2F) is less tha®(e)||v|| and this completes the proof of the
lemma. O

More generally we have the

Lemma 2. Let ae 2™ and ve L2, If

(2.8) Clv=[(X¢:)= avforly <m-1
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then there exists a constapd > 0 such that

(29 IICMIm < yolalgan| D 10€we) # Vllm + IV |

[V|+1<]pl<m

The proof is completely analogous to that of lemma 1 and hesmce
do not repeat it here.
As a consequence of lemifila 1 did 2 we have 160

Corollary 1. IfA= X ay(x)(a%)v is a differential operator of order
[v|<2m

2m with g € #°™, then for any Le 22" and for anyiv| < m

(210) A (Kg)dulm<c| > 110€pe) * llam + llullam

[v[+1<p<m
where c= o, supla,(X)|zemyo > 0, is a constant. We remark th@.10)

M
asserts also that, for any| > m,
LA, (X"@)*]ull < c gllullom.

Proposition 2. Let (Z) be a parabolic equation of ordetm in Q with
a, € #°Mand fe 270, h]. If ue 270, ] satisfieZT) then

t
(2.11)  [u(t)ll3, < exply, HIu(O)ay, + C f expo/(t — IF(9I2ds
0

Proof. Consider the functionx{¢;) *(x u = Uy, for 0 < || < m. Clearly
ue .@E;"[O, h] and satisfies the system

(2.12) %u‘; =AU + )+ [(X'¢e) * (X),Alu, O0<[y<m

Then inequality [Z1) of Propld 1 applied to this system githes
system of inequalities

d :
GHIUE Ol < =8I OlI5m + Yallu @l + 2l £ Ol
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(2.13) +Y2ll[(X ¢e)*(x), AlUllZ, for 0 < v] < m.

From the corollany1l after lemmid 2 applied toclg,)*(x, Al we
161 obtain for all 0< |y| < m.

IO e, Alullm < Ca > 110€6e) 9 Ullam + &llullm

[V|+1<]pl<m

(2.14) =C| > Il + elluilam|-

[V|+1<]pl<m

We definev’ = ~Mu’ whered > 0 is small constant. Multiplying
(ZI3) bye M and settingS,(t) = X IVX(1)I3,, we have (after adding

for v over 0< |v| < mfrom (Z13)

S (Su(0) < 0" Y IV + 180 + 7P (0

—-20) 2 2 2
(2.15) +y2 ) &M T I, + U,
v [v[+1<|pl<m
But
—26 2 —20) 26| 2
DR S T e S VAT
0<lvlsm v]+1<|pl<m v v[+1<|plsm

20 2
<ne E E ||\/;||3m.
v op

Thus

d / , v
550 S V1Se) + 72Fe() + (2Can'e” =) D I
0<vl<m

+c 2N u)3,

For smalle > 0, (yo.C1n'e%? — §’) < 0 and hence

d -
3 5e(0 < 71860 + y2F (1) + O™,
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Integrating with respect tb

(2.16) :

S.(0) < exp0105.(0) + 72 [ expa(t - [F.(9 + OG- ™)ds
0
162

But
VN3 = UG 115e 2!
= () UE)(L + ¢)*MPe !

by Plancherel’s formular whemgdenotes the Fourier image gfin the
x-space and

(X?Es)(f):fxp(pse_zmxfdx

:slplf)(’go(x)e_z”iex'fdx

Sincey has its support ifx| < 1. We have

(0¢e) ()] < &V f o(X) dx = gl

Hence
2 2|p|(1-6 2
IV2I2, < e2P13=0y)3

and

Sy < UGy > 60 < Ui, (1+ cs200)

0<[pl<m 0<[pl<m

which tends tdlull3. ase — 0. HenceS,(t) — ||u(t)|l3,, ase — 0. Also
F.(t) — [If (D)%, Hence on taking limits as — 0 we have

U5 < eXPHIDIUO)IE, + 72 | expa(t— 9)If(IIZds

oL__ﬁﬁ

This completes the proof of proposition. O 163
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Finally we consider the case parabolic systems in which tiefie
cients are functions of(t) in Q. Let

(2.17) %u— Z a,(x, t)(aﬁx)m = f

[v|<2m

be a parabolic equation of ordem2That is we assume that

A= 3 Ay

[v|<2m

is uniformaly negatively elliptic i2 (Q = {(x,t))x € R",0 < t < h).
This means that

Re > a(x1)(i&)” < -0l

v=2m
forall (x,t) e Q, £ € R", 6> 0.
Proposition 3. Let ZZI1) be a parabolic system i@ with a, € %?™
[0,h] and f € 27[0,h]. Then, given a g€ 27" there exists ue
920, h] satisfying@LT) with qt_o = W, and which satisfies the en-
ergey inequality@11) B

Proof. Let 0 = tg < t;--- < tx = h be a subdivision of [(h] of equal
length. We definei(t),. .., uk(t) in[to, ta], ..., [tk_1, tk] by the following

conditions
du
d_tl =Alo)ur + f, ug(tg) =ug for tg<t<ty
dw
E = AltDu + f, u(ty) = ui(ty) for tp<t<ty
dug
rm = Altc)uk + f, up(t) = ug(ty) for g <t <ty

164 We denote by®(t) the function which irtj_; <t < t; is equal to

uj(t). Itis easy to see thgu®M(t)} is a uniformly bounded set. More
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precisely it is a bounded set in the Hilbert spaf#*'(Q2), consisting of
all the functionsu € L? such that

ou_ (oY 2

50 eL ’(ax) uelL® for |v| <2m,
where the derivatives are taken in the sense of distribstief}™(Q)
provided with the scalar product

du ov aY ([
(u’V) 2 B (u’V)LZQ ’ (_’ _) ’ ((_) * (_)V)

is a Hilbert space. Henci®(t)} has a weak limit ins3™(Q), say
u(x, t) - u(x, t) satisfies the equation

ou
2.18 — = Au+f
(2.18) 5 = AU+
in the sense of distributions. We shall now show llnat.@f;“[o, h]. We
know thatu € L2[0,h]. If ¢, be mollifiers of Friedrichs consider the
eqguation

%((XV%) *x) U) = A((X'@e)) *9 U) + (X'@s) *x T+ [(X'0e)x(0, Al

for [v] < m. The functionsu) = (X¢¢) *(x) u form a Cauchy sequence as
& — 0. This can be proved by an argument similar to the one in Btop.
It can also be shown that 165

u - u(t) in 27" for v =0,

— 0 in 27" otherwise

uniformly in t. This proves that the energy inequalify(2.11) holds in
this case also.

Recent work by P. Sobolevskii develops the semi-group thémr
the equations of the parabolic type by using fractional pew&qua-
tions of parabolic type in Banach space, Trudy Moscov Matsdb
10(1961), 297 - 350. m]






Chapter 5

In this chapter we study non-linear equations. Much of thiapter is 166
inspired by the recent monograph of S.L. Sobolev: Sur lestians
aux derivees particlles hyperboliques non-lineaires rfiemese, Roma
1961).

1 Preliminaries to the study of semi-linear
equations

In this section we recall, without giving the proofs, a fevsuls of
Sobolev concering the flerentiability properties of functions belonging
to the space@l’_fg. More precisely we give estimates in the norm for
the derivatives of these functions in terms of their normghim space
2,%- We shall also introduce the functions spa&e’s for any aribitrary
real numbers > 0 and obtairl? estimates of some non-linear functions
of derivatives of functions belonging to the spa@'s.

To begin with the state the following important result du§abolev

[l
Proposition 1 (Sobolev’'s lemma)Let p and g be positive numbers with

p>1,and£+}>1. If g € LP and he L9then
o>1 p q

9(9h(y)
@) [ L 0 < ks,

145
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whered = n(2 - lp - %) and K is a constant depending only ongpn.

A 1
Suppose & LP and a numben suchthatD < 1 < n andﬁ >1- _p

are given. Then the above inequality implies that the limaapping
1
(1.2) n— [+ - ho) dy

: . . . L1
is a continuous linear functional on the spac&fbr q > 1 with q =

1 2 1 / .1 1
(2— - - —). Hence ux — € LY where ¢ satisfies— = 1- - =
n | q q

+ —p — 1. This proves the following

Corollary 1. Letue LPfora p > 1 andA be a positive number such

A 1 1 , 1 a4 1
thatO< A1 <nand- >1-—. Thenwk— € LY where— = —+——1.
n x| qg n p

In corollary[d takingp = 2 andA a number such thsg <Ad<nwe
have the following

" n
Corollary 2. If u € L2 then for any positive number such that= <

2
1 1 1
A< nwe have 4« — € LY where= = i—— and
X4 qg n 2
1
(1.3) lusx —IlLa < KlUl|_2

g
where K is a constant depending omn

We shall now introduce the function spa@ = 952(3”) for any
arbitrary real numbes > 0.

Let Q be an open set in'Rand m be a non-negative integer. We
recall thatsz’Q(Q) denotes the space of all square integrable functions

on Q for which all the derivativs(a%) f (in the sense of distributions)
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of orders|y| < mare again square integrable functionsfmnéa[‘;(Q) is
provided with the scalar product
(1.4)

(1.9 (@ = (. On= 3 (( g )) f,( i ) Qo for f.ge ENQ)

ax ax
lal<m

168

a

Here (% denotes a derivation in the sense of distributi@ﬁ_@(Q)

is a Hilbet space for this scalar product. CleatyQ) c é@L”;(Q). The
closure of7(Q) in £73(Q) is deoted by73(Q) - 75(Q), with the scalar
product which is the restriction of that ié’L'Q(Q), is again a Hilbert
space. In genera5(Q) # &73(Q). However wher2 = R" we have
705R" = £5(R"). We write 75(R") = £3(R") = 7}, for abbrevia-
tion. The elements o@f‘z(ﬂ) can be considered as functions vanishing
upto order fn— 1) (in a generalized sense) on the boundar@ of

We observe tha@f‘2 c .£’. Hence by Plancheral’s theorem we have

a\" A
A ||(a—x) fIZ = > lirig)* fie
Y Jal<m lal=m

wheref is the Fourier image of. Now there exist constants, ¢, > 0
such that

G(L+1g)™™ < D I(2rié)" P < (L + 1)

lal<m

Thus, if f € 21 then (1+ ¢)™f € L? and further

CallX + €)™ fll 2 < Ifllm < Call(L + €)™ f]l 2.

Hence.@fz‘ can also be defined as the space of all tempered distritag

tions f such that (& |£)™f € L2 wheref denotes the Fourier image of
f. This motivatives the following.

Definition. For any reals, .@fz is the space of tempered distributiohs
such that (& |¢])Sf € L2.
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952 is provided with the scalar product

(1.5) (f.g)s = (f.9)zs, = (1 + €D, (1 + 14)°0) .2

For this scalar produc?’, is a Hilbert space. Itis clear thatsf> s
thenZ, c .@Li and the inclusion mapping is continuous.

Remarks. (1) The dual space &¥, is 7, (25,) = 25
(2) The mappingi — (;9_)[(1 from 27, into .@f;l is continuous.
i

(3) The mappings defined by
(a(x), u) — a(xju

(i) from 2™ x 77 into 2 and (i) from#™ x 7 ;" into ;" are
continuous fom=20,1,2,...
Lemma 1. Let s be a real number O

1 1
0) Ifue@LszforOss<gthenueLlﬁ’where—p:——ﬁS Oand

N

(1.6) llullLe < (s, N)llulls

where the constant(s, n) depends only on s and n;
(i) Ifu e 75, for s> g then ue #° and

1.7) llullzo < c(s, N)llulls

where the constant(s, n) depends only on, 8.

. , n
More precisely, forany- < 1withO< o < s— > we have

(1.8) lullze < c(s,n,o)llulls

where the constant(s n, o) depends only on, g, o.
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1 . S
Remark . We recall thatW is tempered distribution and we have the
formulae giving its Fourier image.

1 1 I'(5h (1 n
Q(W) = Pt F(%‘) (Ifl”‘m) for > <m<n and

1 1 I'Q) (1 n
ﬁ(|xln_m) - Hm_g F(%ﬁ) (w) for 0<mx< E

For proof of these formulae we refer to L. Schwartz, Theogs d
distributions, Vol. 1l, p. 113.

(1.9)

Proof of Lemmal[ : (i) The assertion (i) is trivial whes = 0. Hence
we may assume that9 s < > Letu € 27,. Writing G as|¢|>(|1°0)
we have

u=c- * (ASU)

|X|n—s
by taking the inverse Fourier images and using the aboverke(na
note that is a positive constant depending onlymrs). It follows now,
from cor.[2 after Profd]1, thate LP and 171

1
llullLe = CHIle # (ASU)llLe < (s N)Il AS U2

1 1
where — = 5~ ﬁs (the constant(s, n) depends only ors,n) . By

Plancheral’'s theorem we have
S _ 2 < (1 Sy _
I A Ullz = I €Tz < 11+ 1€D7Tll2 = llulls.

This proves the inequalit%IIl.G).
(i) Let u € QLSZ for s > > We have, using Cauchy-Schwarz in-
equality

()l < f 01 < [I(L + )L + 1) Sl

which implies thatu(x)] < c(s, n)||ulls wherec(s,n) is a constant de-
pending only ors, n.
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We shall now prove Holder continuity of Consider
) - ux) = [ expai xe - 9O - [ expl@nin e

= f exp(2rix.&){1 — exp(2ri(X — X).£}0(&)dé.
For any real numbet such that O< o~ < 1 let
gt — 1‘

(1.10) M, = sup

—oo<A<00

/lO'

Clearly M, < o0, TakingA’ = 2I1(x — X’) - £ we obtain
11— exp(2ri(X - X) - &)l < M(2n]x = X[ |€]).

172 Hence
UG) —uCA)! _

< @orm, [ e
< (27)7 Mgll(1 + [£€1) %0l M1 (L + €177 S)I 2.

n. . .

We know thato — s < -3 implies||(1 + |£])7 S|,z < o and this
proves the Igolder continuity af. Thusu € BY for anyo < 1 with
O<o<s-— >

" n n a\
Proposition 2. If u 9{51” then, forl < |y| < [5] +1, (a_x) uelp

wherep is a positive number such that

1 M 11 )

(@) o € [F s E] - {0} when niis even,
1 M 11 .

(b) —p € [F - %, E] when n is odd

. ay\ . . 041
Further the mapping u (a_x) u is continuous fron@{%j]+1 into L2

and we have the inequality

6 v
(1.11) I (G_X) ullLe < c(v,n, p)||U||[g]+1-
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The constant @, n, p) depends only on, n, p.
Before proceeding with the proof of this proposition weaddtrce
the following

Definition. The operatorA®. For anyu € 0 with —c0 < 07 < o0 the
operatorAS is defined by the condition thatSu is the inverse Fourier173
image ofl¢[20.

n M4l
Proof. For any reak > 0 such that < [5] +1,ue .@5“1 implies that

. _ . 1 .
u e 75, Since the inverse Fourier image %fm is ¢(n, v)

|x|n=(s-D)
we can write

a\ 1 RN

by taking inverse Fourier image of

/a\ 4 on 1 sy PPN
[[a—x) u)=(2m§) = e K1 @2rig) D)

Hence it follows, from CofJ2 of Profi] 1, that

a\ 3 1 sy 9 v
||((9_)() ulle = c(n, V)”W * A (8_)() uUllLe

4 a '
< c(sn,v)||A% l(a_x) ull 2

1 —(s- 1 1 —
for — = M —_— === S—M On the other hand we know that
p n 2 2
6 4
IAS (a—x) Uz < [lulls < llullpgpe1

which proves that

6 14
||(a_x) Ule < c(s,n, v)lullpg)ea.
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Using the fact thaly| < s< [g] + 1 we have, since

1 [1 [5]+1-M 1
FRRERESE

p |2 n 2
1 11 . o1 11
that— € M - =, —]—{0} whennis even and similarly- € [M - =, =
p n n?2 p n n?2
whenn is odd.
An entirely analogous proof will yield m|

. n a\ .
Proposition 2. If u € QBHN we have(a—x) ue LPwhere pis a

positive number such that

1 | N1 .
@) pe[n - n,2]—{0}whenn|sevenand
1 (v 2N-11 . n
(b) _pe[F_ on ,E]Whennlsodd,whemgNslvls[§]+N.

. ay\ . . NN
Fourther the mapping u (a_x) u is continuous fron@{ﬁHN into

LP and we have the inequality

a v
(1.12) | (8_)() Ullee < c(v, lIn, N, p)liullrsy+n

where the constant(g n, N, p) depends only, n, N, p.

The following result gives estimates in thé morm of some non-
linear functions of the derivatives of functions belongtng@fz. The
proofs are based essentially on the above result and a gkretian of
Holder’s inequality which we recall without proof.

Proposition 3 (Generalized Holder’s inequality). et Ay, ..., Ap be pos-

.. 1 .

itive numbers> 1 such that}; o= 1 If fy,..., fp are functions be-
j

longing to L1, ..., L' respectively then

(2.13) flfl(x) o Fp(IAX < I fellLAg, - - fpllLAp.
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175 Proposition 4. Let | be an arbitrary integee 1 andva, ..., v1 denote

multi-indices
. [0]+1 _ n o\ o\* 5
(i) Ifue @Lﬁ and |vj| < [E] +1then(a—x) u(a—x uel
and satisfies
o\* 2\ |
(1.14) ”(c’)_x) u. (a_x) Uz < c||u||[g]+1
where ¢ depends on n, ..., v1 only.
- [ﬂ]+2 - n a V1 a V| 2
(i) fu e .@Lg and} |vj| < [E] +2then(a—x) u(a—x uel
and satisfies
a\* a\" -1 .
(1.15) ||(a—x) “(a_x) Uil 2 < cllullfgj, 4 Ul .21

the constant ¢ depends only on,.. ., v.

[8]+N+1 ' n o\* a\"
(i) Ifu e 77 and} |vjl < [§]+N+1then i u... I ue

L2 and satisfies

A 9\ _
(1.16) ”(a_x) u...(a—x) UIILzsCIIUII'[§+NIIUII[§]+N+1;

the constant ¢ depend only on n,\N,..., .

Proof. The casd = 1 is trivial. If vj = O for somej one can majorize
u in the maximum norm byull[g]+l. Hence we may assume that 2
andlvj| > 1.

n Vi :
(i) Sinceu e @E]“ it follows, from Prop[2, tha((%) ueLPifor 176
n ,
1<l < [E] + 1 wherep;j is a real number such that

@) 1 € [m - } }] — {0} whenn is even and
P;j n na2
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1 (vl 11 .
(b) E € [7 ~ o 5] whenn is odd.

Further we have

o\ .
||(a—x) Ullei < c(vj, N, pliulipo]ea(i = 1.....1).

1 - o
Let B denote the infimum of;— in this range.
j i

If nis even (a) implies that

1 il 1\ 3+1 1 1 1
DN CEHEE AW AT IF-

and so. One can choogm, ..., p satisfying (a) and such that

Zpi = % Similarly if nis odd (b) implies that
i

n-1
- t1

1 vil 1 1 1 1
R N

. 1 1 .
Again one can choospy, ..., p1 such thaty, — = > and satis-

j
fies (b). Applying the generalized Holder’s inequality vthese
P1,..., P we obtain

A a\T an NP
fl(a_x) u(a—x) u‘ dstJ(f|(a—x) ul 2dx)

n Vi
177 (i) Sinceue @£§]+2 it follows, from Prop[ﬁthat((%) ueLPi(j =
1,....D)and

o\
I (a_x) Ulter < c(va, 0, po)llUll[ 5]+
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a\" .
”(a_x) uleei < c(vi,n, pllullpgjaa(i = 2.....1)

n n
forl<|vq| < [E] +2,1<vjl < [E] + 1 wherepy, ..., p are real
numbers such that

(2) % € % - % %] — {0} whenn s even,
(by) % € % - 2—?;1 %] whennis odd
and _
(&) pi, € % - % %] — {0} whenn s even,
(b)) pi, € % —%,%]Whennisoddﬂ =2,...,10).

We may without loss of generality assume that > |vj| for j =
2,...,1

(1) Supposdvi| = 1. SinceY) lvj < [g] + 1 we have from
lemmall that

a Vi 6 Y| 6 V1 Cr) V2 6 V|
”(a_x) u“‘(a_x) ullessupl(a—X) UI-II(a—X) ”'“(a_x) ull 2
0\"? 0\"
SC(n)IIUII[g]+z-II(a—X) u"'(a_x) ull.2

(i) Supposelvj| > 2(j = 2,...,1) then we have the estimates of the
- 1 1,
type [I.I1). As before we denote the mﬂmumgf by E(] =
i j
1,....1.

If nis even (@), () imply that 178
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. . 1 1 .
and ifnis odd (), (b;) imply that }; B <3 In either of the cases we
i

1 1
can choosgy, ..., p such that), E =5

j
Again applying the generalized Holder’s inequality weaiibt
v

a Vi a Vi (9
||(8_X) u"'“((')_x) UIILZSDII(E)—X) ull e

-1

<o, v Ul
As before we may assume thiai| > |vj| for j = 2,...,1. Letu €
9£§]+N+1. We distinguish the following three flierent cases:

(@1l <N=1, B)vil=N, (»lvjl=N.

Case(a). Sincelvj| < |v1] < N -1 by Sobolev’s lemma we have

o\’
sup|(a—x) u < c||u||[r_£]+N.
Therefore we have
P V1 P Vi 9 V1 | 9 v
”(a_x) u(a—x) ullesll(a—X) ulle-gsupl(a—X) ul
< Cllullyy - Ul 5]

< Cllull g e U o

' n
179 Case(p). [|vil = N implies that}’ |v; < [5] + 1 and we have from
j=2

lemmdl that

P V1 9 V| o V1 0 V2 0 Vi
”(a_x) u(a—x) U||L253UI0|(6—X) ul “(a_x) U(a—x) ulle.
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By Sobolev's lemma we have
o\"*
supl (a—x) ul < o(n, Nova)llullp 3] et
a\" .
and on the other har(d(,)—x) u e LPi with

9\
I5=) ulP < o N, pplul g

rﬂ 2N—1}Lf

forie[w—ﬂ,}]—{O}ifnisevenandie — - ,
P;j n n2 P n n 2
nis odd (from Prop[1).
1 1 1 vil N 1.
Denoting inf— by — we see thaty, — = 3, (— - —) < =ifn
9 Y ) i=2 P n 2

. ' il 2N-1\ 1. .
is even andy, B > ('V—njl - T) < = if nis odd. One can choose
=2 Fj

1. .
= = in both the cases. An application of the

1
,..., psuch thaty, — =
P2 p 2 573
generalized Holder’s inequality with thegpe, ..., p| gives

o\ A SEA%
||(6—X) ”-“”(a_x) u||Lzsg||(a—X) Ul
< (v, P PSS,

(y) If lvjl > Nfor j =2,...,1 we have from ProflT2hat 180

a\*
i (a_x) Ules < (va. pa. N Il yes

o\"
and||(a—x) UllLei < c(vj, pj, N, n)||u||[n]+N where ps,..., p are real
2

numbers such that
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AG[M_ZNH ;]
p1 n 2n 2

1l _an-11
5 e |5 - 22 3] for oddn.

1 A
If — denotes inf— we have
Pi Pi

[ [ [
1 vill N+1 N 1
§ 5 = E (T)_T_g F<§ for evenn and

=2

| |

1 vil\ 2N +1 2N-1 1

— = AL P - = foroddn.
.ZPJ- Z(n) 2n 2= Ton Tz oreddn

[
Once again choosingy, ..., p| such that}’ pi = 1 we obtain the
j=2 Pj
desired inequality after applying the genearlized Hédierequality to

o\" Y . . .
| a_x) u... (a_x) ul| 2 with thesepy, . .., py and using the estimates of

the form [LIL).
181 By an argument completely analogous to the one in the jllope4 o
can establish the following more general result.

Proposition 5. Let | be an arbitrary integer andty, ..., v, be | multi-
indices.

n |
() Ifus,....ue 22 and z|Vj|s[g]+1 then
=1

V1 V|
(aix) ul(a%) u € L2. Further

o\ g\ :
(1.17) ”(a_x) “1"'(a_x) u.||Lzsc1_l||uj||[g]+1
J:

where the constant ¢ depends only onm, . ., v.
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(i) Letpal > v for j = 2.1 ifug € 2Ny uglZIHN
V1 Vi
and ) vj| < [g] + N + 1then(§x) ul((%) u € L2and

g v1 9 V| [
(1.18) ||(6—X) ul...(a—x) ullee < cllvaligjenca | | I0illpggen
j=2

where ¢ depends only onn,...,v1, N.

2 Regularity of some non-linear functions

Here we make a few remarks on the local properties of certampth
non-linear functions of, t, u which will be required for the study of
some quasi-linear fferential equations. L& denote the set

{(x,t)|xe RLO<t< T}.

Let f(x,t,u) be a function belonging té’[g]+2~(£2 x C). For a fixed

functiona € 2(R") we denotea(x)f(x,t,u) by f(x,t,u). « localizes 182
. . (o oY
f(x,t,u) in the x-space. We use the following abbreviati r*és)—( 30

s~tands for a derivation of ordés| with respect tox and u; F(x,t),
F(x 1), G(x,1),... stand respectively for

f(x t, u(x ), f(x, t,u(x, 1), g(x, t,u(x,t))....
Let U be the subset a2 x C defined by

(2.2) U = {(xt,u)|(x,t) € Q, |u] < sup|u(x, t)[}.
Q

Throughout this sectiom(n), cz(n), ... denote constants depending
only onn.

Lemma 1. Ifu € 7210, T] then = F(x 1) € 2121 [0, T] and

(2.2) |||E||[g]+1 < cy (M {II1+ IIUIIEEE}
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h 0 ﬂf~
where M= max sup|{|—, — X, t, u)|.
BI<3+1 Up|(6x au) ( )|

Before proceeding with the proof of the lemifda 1 we make the fol

lowing two remarks. Let € @EE]H[O, T]. Let . be the mollifiers in
the x-space and leti;(x, t) = u(X, t) *(x ¢s(X); then

(i) u, € 290, T] and

(2.3) U (%, 1)l 50 < TU(X, 1)l 0.

This is an immediate consequence of lenidfdIllof Chap[B.
(i) us € Z73,[0,T] and

n
luglls < Ilulls for 0< s< [E] i1

In fact, we observe thap.(¢) = ¢(s£) — ¢(0) = 1 ase — 0.
Consider

e = ulls = lI(1 + IE)°(Q:(&, 1) — UE V)2
= (1 + N0, 1) = (@(6) — D2

which converges to 0 as— 0. Hence
llugl < llull + {lug — ul
implies the assertion.

Proof of the Lemma. Through out the proof the derivatives with respect
to x are taken in the sense of distributions. Denotfifg, t, u.(x, t)) by
F.(x 1) we see thaF.(x,t) — F(x,t) ase — 0. For,

. of
”FS(Xa t) - F(Xa 1:)“Lz = || [m] (Xv t’ U(X, t)) : (u&‘(x’ t) - U(X, t))”L2
which tends to 0 as — 0. Now, for 1< j <n,

0 .0
8_ij(X’ t) = Ig@oa—XjFS(x, t)
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where the limit is taken in the spaté. In fact, we can write

OU,
f)Xj

(% t, ug(x,1)) - (% 1)

f
0Xj ou
in the sense of distributions. This function tends to

af du
%] (%, t,u(x, 1)) - a—xj(x, t).

ilfs(x, t) = [3—):] (X1, Us(x, 1) + 0

af
a_xJ] (X t,u(x b)) +

in the space.?[0, T], becauseu e 9{?”[0, T] implies that g—;] 184
i

(% t,u(x, 1)), [Z—L] (x,t, u(x, 1)) belong to the spac&?[0, T].

For a multi-indexv with |v| < [g] + 1 we have
(2.4)

aY = L9\
(a_x) Fe(xt) = Z Cor.p %1 (X 1, ug(x,t))g(a_x) ug(x, 1)

lojl<vl
1<|v|

whereC,,

ﬁ ~
(aix %) f(x, t,u) of orders|g| < |v|. This identity is again taken in the
sense of distributions in the-space. In view of the propld [, the
function.

(2.5)

I o Pij 1 o Pj
gplmpl(x,t,u(x,t))n(a—x) u(x,t)stlmpl(x,t)n(a—X) u(x t)
=1 j=1

are constants ang,, ,,(x,t,u) is one of the derivatives

belongs ta_?[0, T]. Setting
(2.6)
pi

LoV _y
J:(X) = Gy, ps(X 1) (—) Us(X, 1) = Gy, (X, 1) (—) u(x, 1)
P1--PI D ax P1---P| D ax
we have

| 9 oj
Jl 2 <M . — : — . 2
13012 < {n(u u)(x t)];[(axj) u(x, B,
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+ le; llu(x t) (a%)"' u(x,t)... (a%)pj u(x.t (a%)pm G- 00 ((%)m

US(X, t)”L2
185 The prop[¥ of§ @ implies that
(2.7) 191z < Ca(MMIIUs = Wl g]allulifgiy .o
which tends to 0 as — 0. This proves that
Pi

v |
(2.8) (aix) F((x,t),u(x,t)):Zcpl,,,plepl,,,pl(x,t)g(aix) u(x, 1).

Again applying Prop14 [ to (Z.8) it is easy to see that the estimate
(Z32) holds. The continuity ihof F is proved as before. This completes
the proof of the lemma.

The following results are proved in exactly the same manse¢ha

lemma[l.
Corollary 1. If f(xt,u) € &[2]*N+*1(Qx €) and ue @Ef]mﬂ[o, T]
then

2.9) IF(CDlg]nn < oMMy {1+ (L + UL i)
where M = max su (i 2)ﬁ f(x t,u)
pi[]eN+1 Up ax’ du 7

Corollary 2. If f(x.t,uy.....us) € £1812(Q x €% and y e 2181+
[0,T](1 < j < 95 thena(x) € 2 implies that

()06t uy(x 1), .., us(x 1) € 22 [0, ]
and
la(X) f(x t, u (X t),..., us(X, t))||[g]+1
(2.10) < Ca(MMal+ > lluj(x t)||{§%j
=1
186 where M = max sup|(£ i)ﬁ [a(X) T (X t,up(X 1) us(x, t)]I
p<[3]+1ue \0X AU R S
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HereUs is the subset of2 x C* defined by

(2.11) Us= {(x, t,ug,...,Us)

jujl < supluj(x. I, 1< ] < s}.
Q

Corollary 3. If f(x,t,u) is a vector valued function

fl(X7 ta U)

fn(X, t, 1)

with f € 181°2(@xC)for 1 < k< mand ue 221"[0, T] thena € 2
implies thata(X) fk(x, t, u(x, t)) belong to the spac@{zg]ﬂ[o, T] and

llae(X) (X, t, u(x, t))ll[g]+1 = Z llar(X) fie (X, t, u(X, t))||[g]Jrl
K

2.12) < C(IMs(L+ u(x DIFE D)

o a4\
where M= max sup||—, — X) fi(%, t, U)]|.
W= max Up|( 7 au) [ ()0 t, U]

Similar results hold whem is a vector ¢, ..., us) and whenu; €
D1+N+1
gl ™ 1),
Finally we state a result which is a consequence of these dhioew
of importance.

Corollary 4. Let f(x,t,us,...,Us) € 5[5]”(!2 x C% andvy,...,vsde- 187
note multi-indices. If & 9[5]+m+1[0, T]and|v| +--- + |vgl < mthen

a(X)f (x, t, ((%)Vl (u(x, v)),..., (6%)

and

ik t)) e 7180, 1)

||a(x)f(x,t,...,(aix) u(x,t),...)||[g]+1
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(2.13) < M’¢(n, m){1+ ke }

[3+ma

o B
where M = max sup|l—,—,...,— X)f(xt,u,. .., U]l
IBI<[5]+2 ng(ax ouy aus) [a(x)f( 1 Sl

Here again
(2.14)

Ug:{(x,t,ul,...,uz)

v
(x,t) € Q,ujl < sup|(aﬁx) uxt),l<j< s}.

Proof. From Prop[ [ we have that, ifi;,...,us € 9{?”[0, T] and

. L . n
if v1,...,vs are multi-indices with |v;| < [5] + 1 then

S Vi S
a ]
@15 ] (a—x) e =0 w9 [l
j= j=
Vi
Takingu; = a_x) u we apply this inequality and the rest of the
proof is the same as in the previous corollaries. m|

3 An example of a semi-linear equation

In this section we consider an example of a semi-linear gadiifer-
ential equation of the second order and we recall a theoretheoex-
istence of solutions of the Cauchy problem for such an eguaff his
result is due to K. Jorgens (see: Das Anfangswertproble@rossen
fur eine Klasse nichtlinearer Wellengleichungen, Matit.Zé7 (1961),
295-308). This theorem will be proved $&.

Letu — f(u) be a real valued infinitely dierentiable function de-
fined in—c0 < U < co. We consider the following semi-linear wave
eqguation

2
(3.2) (%) u—Au+ f(u) =0.



3. An example of a semi-linear equation 165

We assume that(0) = 0. We shall show that, under certain condi-
tions on the functionf, for a given smooth initial dataug, U1) on the
hyperplane = 0 there exists a unique solutienof 3) int > 0 with

u(x,0) = up(x), 0 u(x 0) = ui(x). For instance, we shall show that if

Up € 9{22] N é"l, Up € 9{3] N &* then there exists a unique solution
u of (3.1) such that

]+2 ]+1

né&’, .@[ n&’

[5
ue.@ 6

both depnding continuously drin 0 < t < o and such that
u(x, 0) = Uo(X) (X 0) = uy(x).

Under the assumptiofi(0) = 0 one can also show that if the sup-

ports ofug andu; are contained if|x| < Ry} then the supports af, %
are contained if|x| < Ry + t}.

Letug € @E§]+3m§’, up € QE]QO(D@’ be given with their supports189
contained inf|x| < Rp}. Assume that a solution of(3.1) with the initial
data (lp,u;) ont = O exists locally. More precisely we assume that
there exists & > 0 such that there exists a solutiarof 31) defined
in {xe R",0 <t < to} with the property that

2]+3 2]+2

(1) ue (2187 n e, to]a e (727 evo.,

2
(%) ue (71 1 &[0, t]) and

1. u(x,0) = uo(x) (x 0) = ur(x).

We say that ara priori estimate in thel?-sense for the solution
of the Cauchy problem fof(3.1) of ord%g] + 1 holds if the follow-
ing conditions is satisfied: for any given initial dat&,(u;) with ug €
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.@£§]+3 né&tu e QE]Q N & and a numbel > O there exists a

constantt = ¢(T, Ug, Up) such that

Iu(®)llfay+1 < C

forall 0 <t < T. whereu exists anu(x, 0) = up, %(x, 0) = i (x). cis
called an a priori bound.

The following is a special case of a theorem that will be pdoive§
B. We state it here to motivate Prdp. 1.

Theorem 1. Let f be an infinitely giferentiable function in-co < u <
oo with f(0) = 0. Assume that a priori estimate in thé-kense for the

solution of the Cauchy problem f@.1) of order[g]+1 holds. Then, for

. . n
any intial data(uo, us) with ip € 73N &*, u € DY NEH (M > [§]+3)
there exists a unique solution u @) such that

au 0\ ) .
) ueghnét, 5 € 75N &, (E) ue 75%n¢ all depending
continuously on t,

(2) X 0) = (¥, 5 (x.0) = (¥

Proposition 1. Let f be an infinitely dgierentiable function in-co0 <
u < co with f(0) = 0. Then

() for n=1an a priori estimate of order one for the solutions of the
Cauchy problem fo3) holds when

u
(@) [ f(v)dv= F(u) > —Lo (Lo a positive constant),
0
(i) assume further that(fi) satisfies the condition

(b) if n = 2 there existr and k such that

df(u)
du

| < a1+ |upX
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and if n= 3 there exists am such that

4

au | S o(L1+ ).

Then an a priori estimate of order 2 for solutions of the Cauch
problem for(@@) holds.

Proof. Assume thatip € 23 N el,u e .@f;l Nn&i(m> [g] +3)are 191
given and also that there exists a solutionf the Cauchy problem for
@) with initial data (o, u1) such that

au a\
ue (25 né&N0,T], o € (25 tn &0, T, (&) ue (Z5°n&N0,TI.

Let Rbe a number such th& +t < Rfort < T.

() SetEq(t) = f[ { 2, (;;J)}+F(u)+c

[X<R

wherec is a constant to be chosen laterfidientiating with respect tb

d au(a)\? ou (ou\(d
a0 | {a(a) o X&) ”“’—}dx

IX<R

ou 0
Si
mcea (a X,

the right hand side becomes after integration by parts

ou
AY. —d
f at o

El(t)— f(mu+f(u))— dx=0

IX<R

0
(at) u have compact supports the second term in
and so we have

2
(whereo = (%) — A) sinceou + f(u) = 0. HenceE;(t) is a constant

= E;0. o
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Takingc > Lo we haveF(u) + ¢ > 0 and so

1 |{6u)? au
(3.2) fé{(ﬁ) +zj:(ax,) }dx< Ea(t) = E1(0).

Since the support af is compact there existg such that

ou
(3-3) lullz <c1 ) ll=—ll.2.

Infact,ue 7 c @E;3 implies thatu is in &1. We can hence write

ux b = f—(y,t)dy,-,j=1,...,n.

Using Cauchy-Schwarz inequality and calculating the nofm io
L2 we obtain [ZB). The estimatds (8.4}, {3.3) together shaw dh a

priori estimate of order one holds thus proving (i).
(ii) Differentiating [311) with respect tq we have

df
(3.4) Ouj + Uy = 0 whereu; = _xJ

Denotlng%aﬂu by uj and aa gtu by uj; we define

n n
1
Ea(t) = Zfﬁ [ujzt + Z uJ?kJ dx
=1 k=1
DifferentiatingE(t) with respect td
dE
Z(t) = Zf[ jt - Ujtt +Zujk Ujkt}
- Zf(DUj)'thdX
j
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193 sincey, [uj - ujedx = — ¥ [ Uju - ujr dx by integration by parts. using
K K
the equation[{3]4) we obtain

dE df
d_tZ(t) = —Zf% 'UjthdX.
j

From the generalized Holder’s inequality it follows that

df df
[ G et < et o
If n =2 by Prop[%§ [ we see that

llujllLe < ca(n)llull2

wherec;(n) is a constant depending only anFrom (b) we have, with
a suitable constant’ depending onr, sinceu has compact support in
IXl < R

df
f mﬁdx <a? f(uG + 1)dx < o”|lull’s + Co(e’, R, )
IXI<R
< Ca(n, o, R)(L + [ullp).
These estimates together show that

dEy
— Ex(t).
20 < 7Ea)

Multiplying by e1' and integrating with respect tave obtain
(3.5) E,(t) < E»(0) - e,

This proves that there is an a priori bound of order 2. A simila
argument holds for the case= 3. This completes the proof of the
proposition.

Exercise. Consider the semi-linear hyperbolic equation 194

(3.6) M[u] + f(u) = 0
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where

8\ 52 3 0
M = (a) - Z ajk(X, t)(')xj—axk - Z aj(x, t)(')_xj - ao(X, t)a
with (1°) aj € B0, T], %ajk e B°[0, T], a0a; € B[O, T],

(2°) Z aj(x Y& = 0l¢1%, 6 > 0 is a constant.

Prove, under the same hypothesisfaas in Prop[1L, that an a priori
estimate of order 2 holds and consequently there existdoalgdolution

of (2.8).

4 Existence theorems for first order systems of
semi-linear equations

In this section we establish theorems on the existence af o global
solutions of the Cauchy problem for semi-linear regulanyérbolic
first order systems of flierential equations.

Let Q be the sef(x.t)]x € R",0 < t < T}. Consider the semi-linear
first order system of equations

U < Au
4.1) MUl = — - > AXt)— = f(x t,u),
ot I; OXk

where we assume that the @@eientsAx of M and f satisfy the follow-
ing regularity conditions:

(@) A € B21+2[0, T], % e 290, T] and

(b) fe&lBBinQxC.

195 We also assume thadl is regularly hyperbolic. As we shall show
later that under stronger fierentiabililty conditions on the cdigcients
A¢ and f the Cauchy problem has more regular solutions: For instance
we assume
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(@) A€ BMO,T], % e BY[0, T] and

() fe&™linQxC,

n
wherem> [= [+ 2.

Although we are interested here mainly in the local exisetheo-
rem we consider the following equation.1¥ instead of [411) in order
to elucidate our construction. We decompdseto two parts

f(x,t,u) = f(xt,0)+ (f(x,t,u) - f(x,1,0)) = f(xt,0)+ g(x t,u)
where
(4.2) g(x,t,u) = f(xt,u) — f(xt,0).

We remark thaty(x,t,0) = 0. Define the functionf e &[2]+3 in
Q x C by setting

f(x t,u) = a(X)g(x t, u) + B(X) f(x, t, 0)

wherea,8 € &, and consider the first order system of semi-linear
equaions

4.1y M[u] = f.

Clearly f = f whereever(x) = 1 = B(x). If the initial dataug € &’ 196
has compact support then, simg{e) f(x, t, u) has compact support in the
x-space, the solutiomalso has a fixed compact support foraf@ < T.

Now we find a sequence of fucntiofis;} which will converge to a
limits u giving the solution. Let be the solution of Cauchy problem

(4.3) M[¥] = B(X) (% t, 0) with ¢(0) = uo.

Hence by the theory of linear equations, there exists a anhgg
depending ol such that

(Ol 37+2 < Yollluoll g]+2 + Sup Bs (% t,0)ll5 +2
<t<
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(44) WOz < yollvolllfz]er + SUPIBTXL O]

The Cauchy problem for (&) is therefore reduced to the following
problem: to find a solution € @£§]+2[O, T] of

M[u] = §(x. t, ¥ + u)
with the initial dataug. Here
gty +U) = a(X(f(X t,u+y) — f(xt,0).

Our main interest here is to determine how does the domaixisf e
tenceR" x {0 < t < h} of the solution depend on the initial daig after
fixing a, 8 € 2. The functionay; are defined inductively as solutions of
the Cauchy problem for the first order system of equations:

M[u] = §(x, t,4), u(0) = O,
M[ug] = §(x.t,us + ), ux(0) =0,

Now sincey ¢ 7L£1°[0,T] we havegix t,u(t) € 2L317[0,T]
and hence by the theory of linear equations there existsuiaol; of
the Cauchy problem

M[U]_] = g(X, t, 1/1)7 U]_(O) =0,
andu; € .@EE]Q[O, T]. Again we haveg(x,t, (¥ + u1)(xt)) € .@E‘}]ﬂ
[0, T] and hence there exists a solutionof

M[up] = §(x,t,uy + ), ux(0)=0
andu; € @E§]+2[O, T]. This proceedure can be used to obtajrinduc-
tively.
Now we have the
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Proposition 1. There exists a positive, non-increasing functigig) of
& > O such that

h=¢(luollfg1+1) > O
and the se{ sup ||Uj(t)||[ﬂ]+l} is bounded. 198
o<t<h 2
Proof. Lety denote the supy(x,t)|. In view of (Z3)y is less than or

(xeQ
equal tocg + Cy||ugl| 1141 wherecy, ¢; are constants depending on If

b is a positive number Igt be the set

F={xtuwl(xt) eQ,u <b+vy}

and put

a o0\"
(4.5) M= sup |(—,—) a(x t,u)
Flol<[1]+2 \OX dU

where 6% % denotes a derivation of order| with respect tax and
u M = M(b+ y) is an increasing function of the parameter.uli
.@EE]H[O, T] with Ju(x, t)] < b for (x,t) € Q then we have

(4.6) 110t (u+ )% D)l 372 < MO(L+ U g1,

k= [g] + 1. Now, sinceu;(0) = 0, we have by the energy inequality

.
U (Ol 3]+1 < (T) fIICJ(X, S (Uj-1 + ¥)(% 9)ll[5]+2d8
0

Hence from[(416) we obtain

]
@7 IOl < ModT) [ L+ u-a(ly)ds
0
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We recall that this was derived with the assumption filsag (x, t)| <

b which, we shall show, holds whédmnis small and (< t < h. Put 199
Co = Mc-¢(T)
(4.8) yr=1+2° sup [y Oy,
O<t<T 2

Sincell(y+uj-1) gy, < 2 {||u,-_1(t)||[kg]+1 + ||w(t)||§+l} @) can
be written as

t
I Oltgrea < 242 [ s+ uy-a(9lly 10
0
whereug(t) = 0. Putting again &, = c3 we have

t
(4.9) Iluj (Ol 5]+1 < Ca f{yl + ||Uj—1(3)”|[(g]+l}d5
0

Let c5(n) denote the Sobolev's constant, namely the constant in the
inequality
suple(X)| < Cs(n)||90||[g]+1-
Defineb’ by

b
 cs(n)

(4.10) b

and denotes(y; + b’¥) by M. Take
of b’

4.11 he2__ ¥
(*.11) M ca(ys + br¥)

Consider the sequengg(t) defined by the sequence of integral equa-
tions

t

yj(t) = Cgf{’yl +yj-1(9}ds for t >0, yo(t) = 0.
0



4. Existence theorems for first order systems of..... 175

Then we assert that
O<yjit)<b forO<t<h j=12...
In fact, y1(t) < czyst < Mt < Mh =10,
ya(t) < Mt < Mh=b’' and so on
Evidently||uj(t)||[r_21]+1 <y;j(t) and
(4.12) ||Uj(t)||[r_21]+1 <b forO<t<h
which, a fortiori, implies (by using Sobolev’'s lemma) that
supluj(x, t)l < b'cs(n) = b (see [4.10))

From [4.11) we obtain

1 calya+b® ¥+,
"= o =2c- ¢(T) ™ M
o+ Co(m) + g IO,
<co(n,T) T M

b b
whereM = M(y + b). M(¢) > 0 is an increasing function af > 0.
So, if ||uo||[g 41 runs through a bounded set, fixibgh has a positive

infimum (M Is taken to be a fixed positive number). This completes thx
proof. O

Remark . Instead of taking hte initial data to be giventae 0 we
can take the initial data to be given at an arbittgf0 < to < T).
We definey(t, tp) corresponding t@(t) in the above arguments. Here
[l (t, t0)||[g]+1 is majorized byCy + C1||uo||[r_21]+1, Co, C1 can be taken

. ! e
independently. The expression fershows thath has a positive infi-
mum independent dj if the initial dataup runs through a bouded set in
9[%]+1_

L2
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Next we prove that the sequenfg(t)} is a Cauchy sequence in
0]+2

@[

ded. In fact, we have

[0, h]. First of all we shall show thatsup ||u; (t)||[ ]+2 is boun-

O<t<h

t
Iuj(®ll 3742 < o(T) fll@(x, S(Uj-1 + ¥)(% 9)ll[ 31420
0

t

< oM’ (L4 @+ 10+ uy-)(My uy-s + UM,
0

k= [g] ‘1
[luz(t) — ur()llfg142 < Kc't,
c't)?
llus(t) — Ua()llg142 < K( 2')
(C t)

||Uj+l - uj(t)||[2]+2 <K

Hence{u;(t)} is a Cauchy sequence '@EHZ[O, h] and therefore
202 converges to a limiti(t) in 9[2]+2[O h.

fm>[= ] + 3 we now assume tha € 2™0, T], % e #°0,T]

andf € éam”(Q x C). Letuy € 7 be given. Then the limiti(t)
in 9{%“2[0, h] of the sequencdu;(t)} obtianed above itself belongs

to Z5[0,h]. In fact, it is enough to prove thgup.p IIuj()lim} is
bounded andu;(t)} is a Cauchy sequence @L";[o, h]. For this we have
only to use the following lemma which results by argumemntsilar to
those used iga.

Lemma 1. Let ue 35[0, T] and fe ¥™(Q x C) for an m> [;] +2.
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Then there exists constants, Vi, such that

{5 08 U OV G+ 0+ QD

Thus we have proved the following:

Theorem 1 (local existence theorem)Given any intial data gl € @f‘z,

n s . .
m > | =| + 2 and any initial time ¢, 0 < to < T there exists a unique
solution yt) € .@C}[to,to + h] of the equation

41y M[u] = f(xt,u) = B F(xt,0) + a(X){f(x t,u) — f(xt,0)}

with u(tp) = ug. Moreover h can be chosen to be independeng of t
[0,T] when||u0||[r_2;]+2 runs through a bounded set.

Now we obtain a global existence theorem for solutions of@ha- 203
chy problem for regularly hyperbolic first order systems e linear
equations. For this we assume that ariari estimateof the following
type holds.

If B € 2 consider the regularly hyperbolic first order system of
eqguations

(4.13) M[u] = Bf(xt,0) + (f(x t,u) — f(xt,0)).
By A priori estimatewe mean the following: For any initial datg

in @E]ﬂm@@, and anytg(0 < tg < T) the solutionu(t) € ‘@E]+2[t°’ T] of

[E13) satisfies the following condition: there exists astantc = ¢(T)
such that

(4.14) lu(®llf 5142 < cforallto <t <T.

Theorem 2(global existence theorempuppose an a priori estimate of
the typef@.I4)holds for solutions of.13) Then, given any initial data

n . . .
Up € &M m> [E] + 2 there exists a unique solutiorftyof

L2(loc)’
4.1) M[u] = f with f € £™}(Q x C)
ou
for 0 < t < T such that (0) = up, U € é"L’Q(IOC)[O,T] and y €
-1
&3 0: T1.
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Proof. As we have seen in the section on dependence domain there ex-
ists a retrograde con€ such that the value of a solutianof M[u] = f

at a point &, tg) € Q depends only on the second member in the set
(X0, to) + K and on the value of the initial data in the intersection o thi
translated cone witht & 0). LetD be the subset @b swept by & T)+K
asxruns through a bal|k| < RandDg be the seD N {t =0}. LetBe &

such thaB(x) = 1 for x € Do. Given any initial datayy € @@L”Q(IOC) we
consider the Cauchy problem

M[ui1] = B(X) f(x t,0) + (f(x t,u) — f(xt,0))
(4.15) with  ug(x,0) = B(X)uo(X) € 2%.

This solutionuy (X, t) has an a priori estimaﬂml(t)ll[g]+l < C. On
the other hand this solutiam has compact support as far as the solution
exists. Hence, if we take € 2 such thair(x) = 1 for [x| < R, (@I3) is
equivalent to

4.1y M[u1] = BT (x t,0) + a(X)(F(x.t,u) — f(xt,0)).

Now sinceu; has an a priori estimaﬂml(t)ll[g]ﬂ < C, it follows,
by using theorerfl1 to continue the solution step by stepfltiea¢ exists
a solutionuy(x,t) for 0 < t < T. Clearlyu(x,t) = uy(x,t) for (x,t) € D
and this completes the proof of theorEm 2. m|

5 Existence theorems for a single semi-linear equa-
tion of higher order

In this section we obtain theorems on existence of solutimtsl and
global, of the Cauchy problem for a single semi-linear eiguatf order
m.

As beforeQ be the set(x,t))xe R",0<t< T and

a\™ (oY
&Y w=(z) + 3 a5 (5]

j+vIgm
j<m
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be a regularly hyperbolic operatorén Consider the quasi-linear equa-
tion

g j1 9\ 9 is 9\
(5.2) M[u]=f(x,t,(a) (a—x) u(a) (a) u]

wherejk + lax < m-1(k = 1,...,s). We make the following assump-
tions on the coéicients ofM and f:

aj, € #1320, 7], %a,-,v e 2°0,T]and f € £21+3(Q x C9).

When we coHsider the regularity properties of higher degrage
assume folN > [E] +3

aj, € "0, T, %aj,y e #%0,T] and f € &N*H(Q x C5).

The reasoning used in the case of the first order systers @pean
be applied to this case without any significant change. Weindicate
the necessary modifications very briefly.

The space of all functiong such that

k ou k a\"* k
ue 25™10,Tl, o € 25™0,T],..., (E) ue 2500, T]

is denoted byZ,[0, T]. We introduce a topology o/,[0, T] by a
norm|ju(t)||lx defined by

m-1
(5.3) UllE = Iu@NZ, g + - + (%) u(t)Ilz.

Now we recall the result in the linear case. Given the eqoatio 206

(5.4 M[u] = f
with 1,212 [0, T] (resp. f e 21210, T]) and the initial datai(0) e

jLZ[%]+l (resp.u(0) € @Eﬁ]ﬁ) the solutionu(t) of the Cauchy problem
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belongs to@E]”[O, T] (resp. to@£§]+2[0, T]) and further we have the
energy inequality

t
U742 < S(T) {llu(0)||[g]+1 + f ||f(3)||[g]+1ds}
0

t
(resp.|||u(t)|||[r_£]+2 < o(T) {||U(0)||[3]+2 + fo ||f(S)||[g+2]dS})

forO<t<T.

In the semi-linear case we use the following
Lemma 1. If u(t) € @E‘}]”[O, T] then for anya € 2 the function
f = of satisfies

- Cf) j1 6 al a js a as n
f(x,t,(a) (a_x) u(x,t),...,(a) (8_x) u(x,t))e_@{zz][o,T]

and
- o i1 0 [¢58 o is o as
||f(X,t,(a) (6_)() U(X,t) ..... (a) ((9_)() U(X,t))||%+1
(5.5) <C M{l+ |||u(t)|||{§}:i}.

i ax .
Proof. Wewritevk(t)for(%) (a_x) u(x,t) and f(x, t, ve(t), ..., vs(t)

- a jl a [¢41
for f(x,t,(a) (a_x) u(x,t),...]. Now we see thanvk(t)ll[g]+l <
CIIIU(t)III[g]+1(k =1,...,9. Infact,

ik

Jk ax
||Vk(t)||[g]+1 =l (%) ((’%() U(t)||[g]+1 < (%) U(t)||[g]+|ak|+1-

. . n n .
Sincejy+|ax] < m—1we have{§]+|ak|+l < [§]+1+(m—1— i)
and hence

jku
Ikl g+ < cll (a) lEg1+1+(m-1-j) < clliulllgy+a-
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The assertion follows from this by an application of Chl. &af
lemmall of§ .
The following lemma is proved on the same lines and we omit the

proof. O
Lemma 2. Ifu € @£§]+1+N[O, T] for an integer N> 1 then for any
€YD

- A A o\l o)\ ~[5]+14N
f(x,t,(a) (8_x) u(x,t),...,(a) (a_x) u(x,t)]e_@L2 [0,T]

and

- a j1 a a1 a is a s
||f[X,t,(a) (E)_X) U(X,t),---(a) (a_x) U(X,t))ll[g]+1+N

56 <cMy{L+ (1 IUOIEE ) IO ggn.n

As in the local existence theorem for the first order systemsles 208
fine

fix,t,vi,...,vs) = B f(xt,0,...,0)
+a({f(X,t,ve,...,Vvs) — F(X1,0,...,0)}

wherea, 8 € . Then the same arguments as in the first order systems
prove the following

Theorem 1(local existence theoremJor fixeda,B € Z and T let

6 jl a 1
(5.7) M[u] = f(x,t,(a) (a) u(x,t),...)

be a semi-linear regularly hyperbolic equation of order mivéh any

o n . .
initial data U9 € 2%, N > [E] + 2 (more precisely, given
(u07 u17 sy Um—l)

with u; € .@LN;”H) and the initial time §(0 < to < T) there exists a
unique solution (x,t) = u(t) for tp < t < to + h of (&) such that ue
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~ ou  ~ . I
7Nto, to+h, o € 2% to, to+ ] taking the initial value § at t = to.

h can be taken to be a fixed number independerathEn{|||u(°)|||[g]+1}
is a bounded set. More precisely, there exists a non-inargasinction
a(£) > 0 of £ > O such that

h= ¢ (IIUlipg).1) -

Now we state a global existence theorem for a single semadin
regularly hyperbolic equation of orden. We assume an jariori esti-
mateof the following type holds:

For any initial datau© e @IEILZ]]Q N &', B € 2 the solutionu(t) of

(5.8) M[u] = Bf(xt,0,...,0)+a(f, X, t,v1,...,Vg) — f(X1,0,...,0)

AL
(wherevk:(a) (E) u) satisfies

g P m-1
(5-9) ”U(t)”[%]+m + ||au(t)||[g]+m—1 +o | (a) u(t)||[%]+1 <llc

Theorem 2(global existence theoremyinder the assumption that there
exists an a priori estimate of the above type, given anyainiata

. n . .
(Uo, U1, ..., Um_1) With Uy € £LN2(+|2(‘5"‘1, N> |5 |+2, there exists a unique

solution yt) = u(x,t) for 0 <t < T of (&3)such that

ue s 7], My e ghem2po 1) W) e [0,T]
L2(loc) Y " 5t L2(loc) 1> "m0 g L2(loc)t™> " 1+

Remark 1. As a particular case of the Theorem we have Thediem 1 of
§Q.

Remark 2. We assumed an a priori estimdfe[5.9) for the theorem of exs-

k1 gk
tence of global solutions. If if(x,t,vq,...,Vs) (vk = (a) (a_x) u)
the ordersjk + |ak| are less thannf — 1) the following remark will be
useful. If we have an estimate of derivativesuadf the form

ANk 9\
”(a) (a—x) WOz <ck=1....9
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210 then we have an a priori estimate of the fofm¥5.9). In facs fif all
we have, ifg(x,t,v1,...,Vs) denotesf(x,t,vq,...,Vs) — f(X1,0,...,0)
then for anya € 2 the functiong'= ag satisfies the inequality

3 a\" g\ (9| ,

with a constant’. Now as in the case of first order systems this in-
equality, together with the energy inequality in the linease, implies

E9).

We illustrate this by the following simple example. Take fdrthe
2

0 . - .
operatomo = 3 A and consider the semi-linear equation
ou+ f(u) =0.

We assumd (0) = 0. We show that it is enough to obtain an esti-
mate of||u(t)||[%]+1. in order to get an a priori estimate Hlf(t)ll[g]+2 +

||%(t)|| 1]+1- First we obeserve that the conditd(0) = O can be re-
move(}. In fact, ifCy = f(0) we consider the equation

ou + (f(u) - £(0)) +B(x)f(0)f(0) = O;

that is,
ou + CoB(X) + (f(u) — Cp) =0,

whereg € 2.

It is enough to obtain an a priori estimate for solutions i #yua-
tion. If up, u, € &’ then we know that for & t < T the solutionu(t) 211
has its support contained in some compact set: shy nR.

Define

2 2
Ei(t) = f [% {(%) £ (aa—)‘:j) } + F(U) — cou + y(U? + 1)| dx

IN<R j

u
whereF(u) = f f(r)dr andy is chosen so large th&tu) — cou + y(U? +

0
1) > 0 for anyu. This is always possible if we assurk€u) > —L.
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DifferentiatingE; (t) with respect td and using integration by parts we
have

d ou ou au
gier = f{g-DU+(f(U)—Co)E+2yuﬁ}dx

_ f oy coﬁ(x)%dxsincemu + f(U) - ¢ = —B()Co.

HenceE(t) < e < €T = ¢'. This, together with the expression for
E1(t), shows that we have the assertion.

By considering the equation obtained byfdrentiating the equation
Ou + CeB(X) + (f(u) — co) = 0 with respect tx;

ou ou B
— +f -/
m| + f'(u) +Co %

A —0(j=12...
ox, %, U=12...n.

we can obtain an estimate fBb(t) in an analogous way. Thus we have
the following result:
212 Suppose the functiof satisfies the conditions

(1) F(u) > -L,
) 1F/(U)] < (W + 1) forn = 3

< apolynomial fom = 2.
) For any initial data o, u1) with up € é"L'Q(IOC), U € gl_’%(l)c), m >
[E] + 3, there exists a unique solutiot) = u(x,t) for 0 <t < oo such
that

au 1 a\? 5
ue @@L’Q(Ioc)[o, ), e é”&‘aoc)[o, 0), (a) ue é”&‘aoc)[o, o).



Bibliography

[1] A.P. Calderon [1]: Unigueness in the Cauchy problem fartipl 213
differential equations, Amer. J. of Math. Vol. 80, 1958, p. 16-35

[2] A.P. Calderon and A. Zygmund :

1. On singular integrals, Amer. J. of Math. Vol. 78, 1956, p.
289-309.

2. Singular integral operators andidrential equations, Amer.
J. of Math. Vol. 79, 1957, p. 901-921.

[3] K. O. Friedrichs [1] : Symmetric hyperbolic linear fthrential
equations, Comm. Pure Appl. Math. Vol.7, 1954, pp. 345-392.

[4] L. Garding [1] : Linear hyperbolic partial ffierential equations
with constant coicients, Acta Math. Vol. 85, 1951, p. 1- 62.

[2]: Hyperbolic equations Lecture Notes. University of €dgo,
1957.

[5] J. Hadamard[1] : Lectures on Cauchy’s problem, Dover.

[6] L. Hormander[1]: Linear partial dierential operators, Springer
Verlag, Berlin, 1963.

[7] F. John [1] : On linear partial elierential equations with analytic

codficients-unique continuation of deta- comm Pure and Appl.
Math. Vol. 2(1949) pp. 209-253.

185



215

186

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

BIBLIOGRAPHY

K. Jorgens [1] : Das Anfangswertproblem in grossen fimee 214
klasse nichtlineare Wellengleichungen, Math. Zeit. 7809 pp.
295-308.

P. Lax [1] : Assymptotic solution of oscillatory initialalue prob-
lems, Duke Math. Jour. Vol. 24 1957, pp. 627-646.

J. Leray [1] : Hyperbolic diferential equations. Lecture Notes,
Institute for Advanced Study, Princeton, 1952.

W. Littmann [1] : The wave operator arid, norms - jour. Math.
Mech. Vol 12 (1963) pp. 55-68.

S. Mizohata [1] : Systemes hyperboliques. J. Math. Sapan,
11,(1959), pp. 205-233.

[2] : Le probleme de Cauchy pour la systemes hyper-boligties e
paraboliques, Memaoirs of the College of Science, Universit
Kyoto, Vol. 32, (1959), pp. 181-212.

[3] : Some remarks on the Cauchy problem, Jour. of Math. of Ky-
oto Univ. Vol. 1(1961), pp. 110-112).

[4] : Unicte du prolongement des solutions pour quelques-ope
ateurs diferentiels paraboliques. Memoirs of the College of Sci-
ence, Univ. of Kyoto, 1958, pp. 219-239.

I. Petrowsky [1] : Lectures on partial féierential equations, Inter-
science Publ. 1954.

[2] : Uber des Cauchysche Problem .. Bull. I'Univ de Moscow,
1938, p. 1-74.

L. Schwartz [1] : Theorie des distributions, Vols. 1 ghdHermann
et cie Paris, 1950-51.

S. Sobolev [1] : Sur un Theoreme d’'analye fonctionneMat.
Sbornik, 4 (46), 1938, p 471-497.

[2] : Sur les equations aux derives partielles hyperbokguen-
lineaires Cremonese, Roma 1961.



BIBLIOGRAPHY 187

[16] H. F. Weinberger [1] : Remarks on the preceding paper af,L
Comm Pure and Applied Math. Vol. 11 (1958) p. 195-196.



	
	Preliminaries and function spaces
	Cauchy Problem
	Cauchy - Kowalevsky theorem and Holmgren's theorem
	Solvability of the Cauchy problem in the class Em

	
	
	Well-posedness and uniform-well posedness.....
	Cauchy problem for a single equation of order m
	
	Hyperbolic and strongly hyperbolic systems

	
	Energy inequalities for symmetric hyperbolic systems
	Some remarks on the energy inequalities
	Singular integral operators
	
	Extension of G"7017 arding's...
	Energy inequalities for regularly hyperbolic systems
	Uniqueness theorems
	Existence theorems
	Necessary condition for the well posedness.....

	
	Parabolic equations
	Energy inequality for parabolic equations

	
	Preliminaries to the study of semi-linear equations
	Regularity of some non-linear functions
	An example of a semi-linear equation
	Existence theorems for first order systems of.....
	Existence theorems for a single semi-linear.....


