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Chapter 1

This chapter collects some basic facts about proper actibtapolog- 1
ical groups on topological spaces; the existence of inmangetrics is
discussed in§d (Bourbaki [1], PalaisT]1]).

0

Let G ba a topological group, acting continuously on a topoldgipace
X. We shall always suppose that the action is on the left, amad if
G x X — X defines the action, we shall write, fare G and x €

X, m(s, X) = sx

Notation. For A, B c X, we set
G(A/B) = {se G|sBN A # ¢}.

Clearly, we have, for anj, B,C c X,
G(AIB) = G(B|A)™, G(A U BIC) = G(AIC) U G(BIC), G({AN BJIC) c
G(AIC) N G(BIC) and for anys, t, e G,

G(sAtB) = sGAB)t L.

We shall denote the orbit of € X (i. e. the se{s¥s € G}) by Gx,
and the space of all orbits ly/X. We shall denote b¢(x) the isotropy
group atx € X; thusG(x) = G({x}/{x}).

In what follows, we shall suppose thatis locally compact, and that
Xis a Hausddt space.



1 Proper groups of transformations

Definition . A locally compact transformation group G of a Hausffor
topological space X is proper if the following condition #tisfied. (P)

For any xy € X, there exist neighbourhoods U of x and V of y such that
G(U|V) is relatively compact.

Clearly P) implies
(Py) For anyx € X, there exists a neighbourhodd of x such that
G(UJ|V) is relatively compact.

Although (P1) implies (P) in many cases, it is not equivalent t8)(
as the following example shows.

Example. Consider the action & (with the discrete topology) oR? —
{0} defined by

nxy) = (2"x, 27"), (x,y) € R — {0},n € Z.

Clearly (Py) is satisfied, butP) fails to hold, for instance for the
pair of points (10) and (01).

Also, {P1} implies the condition

(P,) Let {s,} be any sequence i@, and suppose that for sonxes
X, {sn X} converges inX, then there exists a compact setGnwhich
contains all thes,.

Again, (P2) implies (P) in many cases.

Remark 1.Let G act on two spaceX andY, and letf : X — Y be
a continuous mapping which commutes with the actioGpof. e. we
have f(sX = sf(x) for everyx € X ands € G. Then it is clear that if
G acts properly orY, it acts properly orX. This applies in particular to
the natural action o6 on a subspac® of Y which is stable under the
action ofG (i. e. for whichGx c X for all x € X).

Remark 2. Itis easy to see thaPg) is equivalent to the condition: every
point of X has aG-stable open neighbourhood, on which the actio® of
is proper. ThusR) is not a local property. On the other hand, it is easy
to see thatl,) implies (P) if the orbit spacds\ X is Hausdoft.
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2 Some properties of proper transformation groups

In this article, it is assumed th&t is a proper transformation group of
the spaceX.

(i) If A, Bc Xare relatively compact (resp. Compa@{(\B) is rela-
tively compact (resp. compact). (Note tl&(tA|B) is closed when-
everAis closed and is compact.) The proof is immediate.

In particular,G(X) = G({x}|{x}) is compact.

(i) The orbit spacé5|X is a Hausddf space.

Proof. Since the equivalence relation defined Xty G is open,
we have only to check that the graph

I'={(xy) € Xx X|x e Gy}

of the relation is closed iX x X. Thus let &, b) € I. Then the
family {G(U|V)|U a neighbourhood dd, V a neighbourhood df}
generates a filter o8. SinceG acts properly, this filter contains a
compact set. Hence there exists @G such that € G(U|V) for 4
all theU, V, and it is easily seen th#lh = a. This proves thal is
closed. O

In particular, each orbit is closed K

(iii) For every x € X, the mappingmy : s ~» sxof G onto Gx is
proper. (Sincésxis closed inX, this is equivalent to saying that
my : G — X is proper.)

[We recall that a continuous mappirfg: X — Y of Hausdoff
spaces isproper if (a) f is closed, andd) for everyy € Y, f~1(y)
is compact.]

Proof. For anyy = sx € Gx m;l(y) = sG(x) is compact by if.
We shall now show thaty is closed. Lef be a closed set i(;
we must show thain(F) = Fxis closed. Ley € Fx, and letU, V
be neighbourhoods of y respectively such thas(V|U) c K,K



compact. TherxnV = (FNK)xNV is closed inv, since FNK)x
is compact. Thugx is closed in a neighbourhood of every point
of Fx, henceFxis closed. o

Thus in the canonical decomposition

f
G- G/gr — Gx— X

f is a closed continuous bijection, hence a homomorphism. In
other words, the orbits (with the topology induced froth are
homogeneous spaces®f

(iv) Let G’ be a locally compact group, afd: G’ — G a continuous
homomorphism. The®’ also acts oiX in a natural way if we set,
for § € G’ andx € X, §'x = h(s)x. We have G’ acts properly on
X if and only if the mappindh is proper.

Proof. We have, forA, B c X,
G'(AB) = h"[G(AB)];

hence ithis proper,G’ acts properly orX. m|

For the converse, we first note that also acts ors by means of
h; we may set, fos' € G’, s € G, s = h(s')s. And the mapping
my : G — X commutes with the actions & on G andX. Hence
if G’ acts properly oiX, it acts properly olis(Remark 11). Hence
by (iii) the mappings ~» h(s')eg = h(s') is proper.

In particular, every closed subgroup®@facts properly orX.

Example. LetG be alocally compact group, aida compact subgroup.
Then the action o6 (by left multiplication) on the spac&/K of left
cosets ofc moduloK is a proper action.

In fact, letq : G — G/K be the natural mapping, and gts), q(t) €
G/K. If U andV are compact neighbourhoods st respectively in
G, q(U), g(V) are neighbourhoods afs), q(t) respectively, and

GW)IA(V)) = {s€ GI(sVK) [ J(UK) # ¢}



3. A characterisation of proper transformation groups 5

= (UK)(VK) ™,
which is compact.

Using (v), we see that every closed subgrougzocts properly on
G/K.

3 A characterisation of proper transformation
groups

Theorem 1. Let G be a locally compact group of transformations ef
the Hausdoff space X. In order that G be proper, it is necessary and
syficient that the mapping f (s, x) ~ (sx X) of G x X into Xx X be
proper.

Proof. Syficiency :Let X,y € X be given. O

Case 1.If x ¢ Gy, then(x,y) ¢ f(G x X). Since f is proper, (G x X)

is closed in Xx X. Hence there exist neighbourhoods U of x and V of y
such that(U x V) n f(G x X) =, i.e.,, GQU|V) =. Hence in this case, the
condition(P) is trivially satisfied.

Case 2.Let xe Gy. Then f1((x,y)) = G(xXly) x y is compact, since f is
proper. Hence Gxly) is compact; let W be a compact neighbourhood of
G(xly). W x X is a neighbourhood of £(x, y); since f is proper, there
exists a neighbourhood W V of (x,y) such that f1(U x V) c W x X.
Then the projection of (U x V) on G is contained in W. But this
projection is precisely @J|V), and W is compact, heng®) is verified

for (x,y).

Necessity.We first prove the

Lemma 1. Let G be a proper transformation group of the space X.
Then, for every x X and every neighbourhood W of G in G, there
exists a neighbourhood U of x such thalGU) c W.



Proof of the lemma .W may be assumed open. Let V be a neigh-
bourhood of x such that (#|V) is relatively compact, and let A=
G(VIV) —= W. ThenAn G(x) = ¢ (note that Gx) c W). Hence, for
every te A, there exist neighbourhoods,\&f t and Vf of x such that
(W Vi) Ny = . SinceA is compact, we have a finite subset FAdfuch

thatAc U W. LetU =V n NV, Then clearly GU|U) c G(V|V)
teF teF

and QUIU) N A C { N G(thvt)} N 1 W = ¢, hence GU|U) c W.
teF teF

We now proceed with the proof of the theorem. SupposeGaatts
properly onX. Then for any k,y) € X x X, f71((x,y)) = G(x y) x y is
compact. Hence we need only prove tlias closed.

LetF c Gx X be closed. sincé(G x X) is the graph of the relation
defined byG, it is closed inX x X (82, (ii)), so thatf(F) c f(G x X).
Let f(sy) = (xy) € f(F). We must show thatxy) € f(F), i.e.,
f=1((x,y)) N F # ¢. Suppose this is false. sinde!(x,y) = sEy) x Y,
andG(y) is compact, we then have neighbourhodd®f G(y) andV of
y such that §Wx V) N F = ¢ (recall thatF is closed). Now, by Lemma
[, there exists a neighbourhoddof y such thatG(U|U) c W; clearly
we may assumb c V. We then have

f1(sUx U) c G(sUIU) x U = sGU U) x U c sWx V.

Hencef(sUxU)NF = ¢. It follows that SUxU) N f(F) = ¢, which
is a contradiction sinceU x U is a neighbourhood ofx(y).

4 Existence of invariant metrics

If G is acompactLie group operating dierentiably on a paracompact
differentiable manifold, it is well-known that there exists a Rieman-
nian metric onX, invariant under the action @’. We shall show now
that similar results hold for proper transformation groaplecally com-
pact spaces.

We begin with the

Lemma 2. Let G be a locally compact group acting properly on a lo-
cally compact space X, and suppose thaXds paracompact. Then
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there exists a closed set A in X, and an open neighbourhoodABuoth
that

(i) GA=X,
(ii) for every compact set K X, G(BJK) is relatively compact.

Proof. Letq: X —g \X be the natural mapping; in the proof we use the
following statement, valid for any open mapping of a localympact
space onto another; for any relatively compact opeWsat G\ X and
any compact sef c W, there exists a relatively compact opendeh

X and a compact sé&t; c U such thag(U) = W andq(K1) = K. O

Sinceg\X is paracompact (and locally compact), we can cover it
by a locally finite family (V)i of relatively compact open sets. Let
(Vi)iel be a covering og;\X such thatv; ¢ W, for everyi € 1. We
now choose, for everiye I, a relatively compact open sef in X and
a compact sey ¢ U; such thatq(U;)) = W, andq(A) = V,. Let
A = UA;, B = UU;. Now (U))i¢ is a locally finite family onX. HenceA
is a closed set iX, and clearlyGA = X. Now, letK be any compact set
in X. SinceG(U;|K) = ¢ impliesW; N q(K) # ¢, and V)ic is locally
finite, G(U;|K) = ¢ for only finitely manyi € |. Since eaclG(U;|K) is
relatively compact, it follows tha®(B|K) is relatively compact.

Remark . Suppose a grouf acts on a locally compact paracompaet
spaceX, such that\ X is Hausdoff. Theng\X is paracompact when-
ever the connected componentsXofire open, oX is countable at in-
finitely, or G is connected.

Theorem 2. Let G be a Lie group acting properly andfirentiably on
a paracompact dgierentiable manifold X. Then X admits a Riemannian
metric invariant under G.

Proof. SinceX is paracompact, there exists a Riemannian metoa
X. Further, ifA andB are as in LemmBl 2, there exists dféientiable
function f > 0 onX, such thatf =1 onAandf = 0onX - B.

Let x € X; let Tx be the tangent space &fat x, ands’ = s] :
Tx — Tsx the diferential atx of the mappingy ~ sy. Then for any
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UV e Tx, s~ f(sXg(s'u,s™v) is a continuous function o6, whose
support is compact sincE(s¥) # 0 impliess € G(B|{x}). Letdsbe a
right-invariant Haar measure @ If we set

g&(u',v):ff(sx)g(sTu, s'v)ds
e

It is easily verified thak > ¢ is a Riemannian metric oK, invariant
under the action o6. m]

Theorem 3. Let G be a locally compact group acting properly on a
locally compact metrisable space X such tgeX is paracompact. Then
X admits a G-invariant metric compatible with its topology.

Proof. Let d be a metric onX, and letB be as in Lemma&l2; thuB is
open,GB = X, and for any compact sé&& c X G(B|K) is relatively
compact inG. Define

r(x) = d(x, X - B),xe X.

Clearly, for anyx,y € X, r(X)—r(y) < d(x,y), and hence, forany,y, z €
X,
r(x) +r@ < d(xy) +{r(y) +r@}.

Thus, if we define

h(x,y) = inf{d(x, y),r(x) + r(y)}, x,y € X,

it is clear thath is a pseudo-metric oK; note that ifx € B, h(x,y) > 0
for y # x. Now the functions ~» h(sx sy) is continuous. Its support is
compact, sincé(sx sy) # 0 impliess € G(B|{x, y}). Set

D(xy) = f h(sx syds
G

with dsa right-invariant Haar measure o©i Then clearlyD is a con-
tinuousG-invariant distance function od. We shall now verify that it
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defines the topology oK. SinceGB = X, and sinceD as well as the
topology ofX is G-invariant, we have only to show that, for ever¢ B,
every neighbourhootV of X contains eéD-neighbourhood ok.

We choose an, 0 < r < r(X), such that

B={zeXd(zX) <r}={ze X|h(z, X) <r}

is compact and contained W. It is suficient to find a compact neigh-11
bourhoodV of e in G such that, for any € X h(x,y) > r implies

h(sx sy) > % for everyse V. For then
B > {ze X|D(x, 2 < R}, whereR = %fds In fact, if
%

ze X-%,h(z X) > r, hence

D(x,z):fh(sx s2ds

G
th(sxsz)dsz%fds
\Y% \%

We proceed to find such\A LetU be a compact symmetric neigh-
bourhood ofe in G such that fors € U, h(x,sX < 5 Then, since the
continuous function

(sy) ~ h(sx sy) - h(x,y)

Vanishes on the compact dej x UZ in G x X, we can find a compact
neighbourhood/ c U of e such thath(sx sy) — h(x,y)| < § for (sy) €
V x UZ. We claim that thid/ sufices. In fact suppose for ae V and
y € X thath(sx sy) < 5. Thenh(x, sy) < h(x, sX + h(sx sy) <, so that
sye 4, i.e.y e V12 c UZ. Hencelh(sx sy) — h(x,y)| < §, and so
h(x,y) <r.

Remark 1. If Gis a group of isometric transformations of a metric space
X, the condition P;) and @) of 1 are equivalent. In fact, led be 12
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the metric onX, and supposeR}) is satisfied. Letx,y € X, and let
W = {z € X|d(x,2) < r} be a neighbourhood of such thatG(W|W) is
relatively compact irG. Let

U={zeXdzx < 3LV ={ze Xdzy) < 5}. ThenG(V|U) is
relatively compact. For let s, € (V|U). Then there exist, z, € U such
thatsz s,z € V, and we have

d(s " s020, X) = d(S020, SX)

< d(s020,Y) + d(y, s2 + d(sz sX)

rr r
<-+z-+z=t1

so thats™ts, € G(W|W). ThusG(V|U) c s G(W|W).

Remark 2. Let G be a locally compact group of isometric transforma-
tions of a metric space. Assume tl@ts countable at infinite. Then the
condition P,) of § implies P,), and henceR) by RemarlL. In fact
letG = U7 Kn, Ky compact andKy, Kr(1)+1' Suppose thatR;) fails at

1 . .
X e X. LetU, ={ze X|d(z X) < ﬁ}’ n=12...since noG(U,|Up) is
relatively compact irG, we have, for every, ag, ¢ K, and anx, € U,
such thag,x, € Un. Then

d(gnx, X) < d(gnX, GnXn) + d(GnXn, X)

<=-+-=
n n

so thatg,x converges tx. However, for everyn > 0, g, ¢ K, and every
compact set iis is contained in somK,, so that P,) fails.



Chapter 2

The aim of this chapter is the description of the action of @ugrof 13
transformations in the neighbourhood of an orbit. For pregtions, the
existence of “slices” reduces the general case to the casrafhbour-
hood of a fixed point. For proper andfidirentiable actions, a descrip-
tion can be given in terms of linear representations of cangeoups
(Koszul [1], Mostow [1], Montgomery-Yand [1], Palais [1]) .

1 Slices

Let G be a topological group, arnd a subgroup acting on a apateWe
can then construct in a natural manner a topological spage which
G acts. In fact, we leH operate orG x Y (on the right) by setting

(syt=(sttly);seGyeYteH,

and takeX = (G x Y)/H. If q: Gx Y — Xis the natural mapping, then
the left action ofG on X is defined bys((r,y) = q(s, y).

Note that in the above situation, if we s&t= g(e x Y), we have
(i) G(AIA)A = A (ii) G(AJA) = H,(iii) the mapping §a) ~» saof
G x Aiinto X is open. The propertyii{) follows trivially from the fact
that the mapping ~» q(e,y) of y onto A is a homeomorphism.

Conversely, letG be a transformation group of a spa¥eandA a
subset ofX such thatG(AJA)A = A. Then itis clear thad = G(A/A) is a
subgroup of5. By the above considerationS,acts on G x A)/G(AA).
LetF : Gx A —» X bethe mag-(s,a) = sa andq: Gx A - Gx

11
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A/G(AJA) the natural map. Then there is a mapG x A/G(AIA) — X
such that = fOg. It is easy to verify that the mappinfyis injective,
and commutes with the actions @fon X and G x A)/G(AA).

Definition. Let G be a group of transformations of a space X. A slice is
a subset A of X such thé) G(AIA)A = A, (ii) the mappinds, a) ~ sa
of Gx Ainto X is open.

Condition (ii) means that the mappirfg: (G x A)/gna — X de-
fined above is a homeomorphism onto Gestable open s€BAin X.

Definition. Let G be a transformation group of a space X. A slice A at
a point xe X is a slice such thati)x € A, (i) G(AIA) = G(X).

Note that a slice need not be a slice at any of its points.

Definition. Let G be a transformation group of a space X. A normal
slice is a slice A such that @ = G(AIA) for every ye A. A regular
point of X is a point at which a normal slice exists

A normal slice is characterised by the property that it isieesht
each of its points. It is clear that# is a normal slice, the orbit of each
seA is naturally homeomorphic t6/gx) = G/gaa), and theG-stable
open seGAis naturally homeomorphic tdxG/gaa). Since, for every
seG, sAis also a normal slice, it is clear that the set of regular {sam
aG-stable open subset of

Examples. 1) LetG be atopological group, artd a subgroup acting
on a space, andq the natural mappinGxY — (GxY)/H. Then
g(e x Y) is a slice for the natural action & onG x Y/H. In fact,
this motivated our definition of slices.

2) LetG act without fixed points on a spage Then for anyx € X,
any slice atx is a normal slice. IiX — G/X is a locally trivial
principal fibre space, normal slices ¥hare precisely the images
of open sets i3\ X by continuous sections.
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2 General Lemmas

Lemma 1. Let G be atopological group, and H a subgroup of G acting
continuously on a space Y. Let=X(G x Y)/H; we suppose that G acts
on X in the natural way. Let qG x Y — X be the natural mapping.
Then we have;

(i) forany Bc Y,G(q(ex B)lg(e x B)) = H(B|B),
(i) foranyye Y,G(q(exy)) = H(y)
(i) BcYisasliceinY ifand only if @ x B) is a slice in X.
(iv) Bc Y isanormal slice if and only if(g x B) is a normal slice.
(v) ify € Y is regular, then (e x y) is regular;

(vi) if Gis locally compact and H is closed, and if H acts propeny o
Y, then G acts properly on X.

Proof. It is easy to verify (i), and (ii) is a special case. Also, orfidi¢
is proved, (iv) and (v) follows from (i) and (ii). We shall pre (iii) and
(vi). m|

Proof of (iii). Let B c Y be a slice for the action dfl. We shall prove
that the natural mappin@(x B)/G(B|B) — X, which is clearly one-one
and commutes with the action @&, is actually an open mapping; since
Bis a slice for G x B)/G(B|B), it will follow that g(e x B) is a slice for
X.

To prove that the mappin@s(x B)/G(B|B) — X is open, itis plainly
suficient to prove that for any neighbourho®&lof e in G, and any
neighbourhoodV in B of anyb € B, the saturation byH of V. x Wisa 16
neighbourhood ofxbin GxY. Now, if U is a symmetric neighbourhood
of ein G such thatU? c V, it is clear that ¥ x W)H contains the
neighbourhoodJ X{(H N U)W}.

The converse assertion in (iii) is easy to verify.

Proof of (vi). Suppose thaltl acts properly orY. Letq(s,y),q(s,Y) €
X. Let V,V’ be neighbourhoods of,y respectively inY such that
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H(V|V’) is relatively compact. For any compact neighbourhodgds’
of s, 8 respectively inG, g(U x V), q(U’ x V') are neighbourhoods of
a(s y) g(s,y) in X. We assert thab(q(U x V) | (U’ x V")) is relatively
compact inG. In fact, itis easily verified thaB(q(U x V) | q(U’ xV")) <
U’ HV |V)UL,

Lemma 2. Let the topological topological group G act on two spaces
Xand Y, and let £ X — Y be a continuous mapping commuting with
the actions of G. Then for any slice B infy}(B) is a slice in X.

Proof. We may assume th&t*(B) is non- empty. Sincd commutes
with the actions of5, we have

G(f1(B) | (f(B)) = G(B| B),G(B| B)f *(B) = f*(B),

hence we need only prove that the mapp@g f~1(B) — X is open.
For this it is sdficient to prove that for anx € f~1(B), and for any
neighbourhood$) of ein G andV of xin X, U(V n f~1(B)) is a neigh-
bourhood ofx in X. To do this, we choose a neighbourhddd of e in
G, and neighbourhood’ of x in X, such thatU’V’ c V. SinceB is
slice inY,U’B is a neighbourhood of (X). Sincef commutes with the
action of G, U’ f~1(B) o f~1(U’B) and hence is neighbourhood »in
X. Itis easily verified that) (V n f~1(B)) contains the neighbourhood
V' n (U’ f-4(B)). O

Remark. If Bis a slice aty = f(x) € X, f~1(B) need not be a slice at

3 Lie groups acting with compact isotropy groups

We now consider the case ofL#& group Gacting on a spac& such
thatthe isotropy groups are all compadiVe wish to study the function
associating to any € X the conjugacy class @(x).

We denote by = %'(G) the set of all conjugacy classes of compact
subgroups of5. ForT,T’ € &, we writeT < T’ if there existH €
T,H’ € T’ such thatH c H’. Since a compact Lie group cannot have
proper Lie subgroups isomorphic to it, we see fhat T’ < T implies
T = T’. For anyx € X, we denote by(X) the conjugacy class @(x).
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Since, for anyx € X ands € G, G(sX = sGX)s ™%, 7 can in fact be
regarded as a mapping 6f* into €(G).

Lemma 3. Let G be a Lie group acting on a topological space X such
that all the isotropy groups are compact. LeeExXX, and suppose there
exists a slice at x. Theifl) there exists a neighbourhood V of x such
thatr(y) < 7(X) for every ye V; (2)x is regular if and only ifr is constant

in a neighbourhood of x.

Proof. Let A be a slice (resp. normal slice) at Then for anyy € A,
G(y) c G(A | A) = G(X)(respG(y) = G(x)). Hence it is clear that
7(y) < 7(X)(respr(y) = (X)) for all y belonging to the neighbourhoodis
GAof x. O

Now suppose that is constant in an open neighbourhodgdof x.
If Ais any slice atx, we have, for any € V n A, G(y) ¢ G(X) and
7(y) = 7(X), which impliesG(y) = G(x). ThusV n Aiis a normal slice at
X, hencex is regular.

Remark . We have also proved that ¥ € X is regular, there exists a
neighbourhood/ of x such thakvery slice at xontained irVV is normal.

4 Proper differentiable action

In this article, we study the case of a Lie GroBacting diferentiably
and properly on a paracompacftidrentiable manifoldX of dimension
n. Note that, in this case the orbi@&x are closed submanifolds of,
naturally difeomorphic with theés/g(x).

Lemma 4. Let G be a Lie group acting properly and/fdirentiably on

a paracompact dferentiable manifold of dimension n. Then for any
x € X, there exist a representation oG in a finite-dimensional real
vector space N, and affierentiable mapping f of a (X) -stable neigh-
bourhood B oD € N in to X such that

() f(0)= x

(i) f commutes with the actions of(8§.
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(i) dimN + dimGx = dim X

(iv) Gf(B)is open in X, and the mapping:Hs,b) ~ sf(b) of Gx B
into X passes down to af#omorphismy of (G x B),g(x onto
Gf(B).

Proof. By TheoreniR, Chapté&l 1, we can chooge-mvariant Rieman-
nian metric onX. Let T(X) be the tangent bundle &, and letQ be an
open neighbourhood of the zero sectiorT@k) on which the exponen-
tial mapping exp Q — X is defined (Nomizul]l]). Sinc& acts iso-
metrically onX, we may assume th&t is stable for the induced action
of G on T(X); we denote this action bys(u) ~ s'u, s€ G,u e T(X).
We have the relations

sexpu = exp@s'u); s< G,ue T(X)

and
d(x, expu) < u; xe X, u e Tx(X),

whered is the distance oX induced by the Riemannian metric, ad
is the length ofu. m|

Now let x € X, and letT4(GX) denote the subspace d§(X) tan-
gential toGx. G(X) leavesTy(X) invariant, and clearif«(GX) is stable
under this action. Sinc@ acts isometrically orX, the orthogonal com-
plementN of Ty (GX) in Tx(X) is also stable undesy:

N={ueTy(X)|<uv> =0forallve Ty (Gy)}.

Clearly thisN has propertyi{i). Now for anyr > O, letB; = {u €
N|||u|| < r}. ThenB; is G(x)-stable, and is contained @ if r is small.
We setf = exp|Br. Clearly f has the properties)(and {i) of the
lemma. We shall now show thatiifis small enough,i¥) is also valid
with B = B;.

We have as usual the commutative diagram

Gx B X

S A

(G xB)/G(X)




4. Proper diferentiable action 17

Here, Gx By, 0, (GxBr)/x) is a (locally trivial) diferentiable principal
bundle, so thay is differentiable. Sincé is obviously of maximal rank
at (e 0), v is of maximal rank atj(e, 0). Since dimGxBy)/gx = dimX,
it follows that ty is a difeomorphism in a neighbourhood gfe, 0).
Hence ifW is a suitable neighbourhood &(x) in G, andr is small
enough, we have thdgt is a difeomorphism ofy(W x B;) onto an open
setinX and, ifU = {z € X|d(z x) < 2r}, G(U | U) ¢ W (Lemmall,
Chaptefdl). We seB, = B, and assert that is a difeomorphism of
(Gx B)/g(x onto an open subset & First, sincey commutes with the
actions ofG, andG(q(WxB)) = q(GxB), itis clear thaty is everywhere
of maximal rank. We shall now show that it is injective. Ecently
we shall show that fos, § € G andu, U’ € B, h(s,u) = h(s, u’) implies
d(s u) = g(s,u). In fact, leth(s u) = h(s,u’), i.e.,s expu = s expu/,
orsls expu’ = expu.
Then

d(x, s1s'x) < d(x, expu) + d(s1s x, expu)
< 2r,

sinced(s™ts'x, expu) = d(s 1'%, 6715 expu’) = d(x, expu).

Hences™'s e W. Sincey is one - one om(W x B), it follows easily 21
thatg(s u) = q(s, ).

In what follows, the hypothesis and notation of Lembha 4 are re
tained.

Theorem 1. For every xe X, there exists a slice at x.

Proof. With the notation of LemmEBl4f(B) is a slice atx. In facty :
(G x B)/gy — Gf(B) is a diteomorphism of G x B)/g(x onto the
G- stable open sd& f(B) in X, commuting with the action d&. Since
g(e x B) is a slice in G x B)/g(x, it follows thath(e x B) = f(B) is a
slice inX. O

Theorem 2. A point xe X is regular if and only the action of &) in
Tx(X) /14y is trivial.

Proof. If we choose &G-invariant Riemann metric oiX, and use the
notation of Lemm&l4, we have to prove thais regular if and only if
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the action ofG(x) on N is trivial. Now we know, by ¢) of Lemma[l,
and the remark after Lemni& 3, thais a regular point oK if and only
if, for sufficiently smallp, B, = {u € B|||u|| < p} is a normal slice for the
action of G(X) in N, i.e. if and only if G(X) acts trivially onN. m|

Theorem 3. The set of regular points is dense in X.

Proof. We proceed by induction on didt If dim X = 0, every point of
Xis regular. Now let dinX = n > 0, and assume the theorem proved
for all manifolds of dimensior: n. Take anyx € X. Since the theorem
is of a local nature, we may assume, with the notation of Le@ntlaat

X = (G x B)/gn- Then, by ¢) of Lemmal, it is sfficient to prove that
the set of regular points iB for the action ofH = G(x) on B is dense at
OeB. O

For anyp,0 < p < r(= radius ofB), let S, be the spher¢v ¢
BIIVIl = p}. ClearlyS, is H-stable. Itis clear from Theorefd 2 that a
V € S, is regular for the action dfi on B if and only if it is regular for
the action ofH onS,,. Since din5, < dimB < dim X, it follows by the
induction hypothesis that the set |f regular points oB is dense in
S,. Since this is true for ajp > 0, our assertion follows. (We also note
that if av € N is regular for the action dfl, so isAv, for everya > 0.)

Theorem 4. Let G be a Lie group acting properly andfirentiably on a
paracompact dferentiable manifold of dimension n. Let X — %€(G)
be the function assigning to any x in X the conjugacy clasggfi@ G,
and letR be the set of regular points of X. Then,

() every xe X has a neighbourhood V such thdqV) is a finite set;
(i) if g\*is connectedg\X is connected;
(iii) if g\*X is connectedr is constant orR;

(iv) if g\X is connected, a point ® X is regular if and only ifr(x) is
minimal (i.e.7(X) < 7(y) for every ye X.
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Proof of (i). We use induction on dirX; if dim X = 0, the statement is
trivial. Let dim X > 0, and assume that (i) is proved for all manifolds of
dimension< n. On account of the local nature of (i), we may assume,
with the notation of LemmE&l4, that = (G x B)/g(x. We assert now
that r(X) is a finite set. In fact let & p < r (= radius ofB), and let
S=1{ue B|||u|| = p}. S is stable for the action o6(x) on B, and
dimS < dimX. By the induction hypothesis and the compactness of
S, we conclude that(S) is a finite set. However, sind8(x) operates
linearly onN, we have, for anyi € N and any € R — {0}, 7(u) = 7(Au).
Hencer(B) = {z(0)} U 7(S). Thust(B) is finite. By (i) of Lemmall,
7(q(e x B)) = 7(B). Finally, sinceGg(e x B) = X, 7(X) = 7(q(e x B)),
hencer(X) is finite as asserted.

Proof of (ii). Again, we use induction on did; if dim = 0, R =
X, and (ii) holds trivially. Let dimX > 0, and assume (ii) proved for
manifolds of dimensior: n. We shall prove that every point gf* has
a neighbourhoo® such thatv ng \® is connected. Since\® is dense
in g\, it follows easily that if5\X is connecte\® is also connected.
Again, we may assume, with the notation of Lemtha 4, that (G x
B)\c(x; and we shall prove thaf\® is connected.

Let R be the set of regular points & for the action ofH = G(x).
We assert tha\R’ is connected. If dinB = 1, or if X is a regular point,
this is trivially verified. Thus let dinB > 1, andx be not regular. Let
r be the radius oB, and letS = {u € B|||u|| =r/2}. Sis H- stable and
connected. Hence, by induction\R” is connected, wher®” is the set

of regular points 0. SinceR’ = |J AR”, it follows easily thaty\R' 24
0<1<2
is connected.

Now, g(e x R’) is a dense set of regular points in the slife x
B),hence its in;\X is dense ins\®. On the other hand, sinagex®)’ is
contained in the slicg(e x B)’ atx, it is easy to verify that the mapping
R’ —c \X obtained by composing the mappings — g(e x R’) and
glex R;\*, passes down to a mappind”®” —g \X. Sinceg\*’ is con-
nectedg\* thus contains a dense connected subset, hence is connected.

Proof of (iii). Use (ii), and (ii) of Lemmal3.

Proof of (iv). Letg\X be connected, and lgte X. By (i) of Lemma
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B, there exists a neighbourho&tof y such thatr(2) < r(y) for every

z € V. Now R is dense inX, andr, is constant orR, hence we have
7(X) < 7(y) for everyx € R. The converse assertion (even without any
assumption o\ X) follows from LemmdB, since we know that there
exists a slice at every e X.

Remark 1. We see from (iv) of Theorerl 4 that for the propeffei-
entiable action of a Lie group on a connected paracompacifoldin
the orbits of regular points are of maximal dimension. Theveose is
not true, even if the Lie group is connected. For instancasicer the
groupG = SO (3R) of rotations of the two - sphere, acting on it self by
inner automorphisms. Then the regular points are the ongibf angle

# 0 or x; the isotropy group at such point is the one parameter group
through that point, consisting of rotations about the sarig and the
orbit is a two sphere. For rotation of angie¢he isotropy group hatsvo
connected components (the identity component being thparsneter
group through that point), and the orbit is a projective plan

Remark 2.Let G be aconnectedLie group. For any compact sub-
group H of G, let [ H ] denote its conjugacy class. Now suppose
we are given two conjugacy classég, T, € %(G). Then in the set
{[H1 N Hy],H1 € T4, Hy € Ty}, there exists a ( unique ) minimal class
for the relation<. In factG acts in the obvious manner on the connected
spaceG\n, XG\n,, H1 € T1, Hy € Tp, and the class we are looking for is
the conjugacy class of the isotropy groups at regular poirtiss, given
T1, T2 € €(G) we are able to associate with them an elenignt T, of

% (G) characterised by the minimality property.

5 The discrete case

Let G be a discrete group, acting properly on a Hau§dgpaceX. Then
there exists a slice at every pointXf In fact for anyx € X, there exists
an open neighbourhodd of x such thatG(U | U) = G(x) (Lemmall,

Chaptefll). Sinc&(x) is finite,V = [\ gU is an open neighbourhood
9eG(x)
of x; clearlyG(V|V) = G(X) andV is G(x)- stable. Sincé/ is an open



neighbourhood ok, it follows that it is a slice ak.

Remark. In the classical constructions of fundamental domains for a
groupG acting isometrically on a metric spage one defines, for any
X € X, the set

A={ze X|d(z X) < d(z sX for everyse G — G(X)}.
A has the properties. 26
() G(AIA) =G(x),
(i) G(XA=A.

In fact lett € G(AJA), and letze Abe such thatze A. If t ¢ G(X),
we have

d(tz tx) > d(tz, X) = d(z t™1x) > d(z X),

which is impossible sinceis an isometry. Thus (i) is proved, and (ii)
is easily verified. ButA is in general not a slice. However, a slightly
different construction produces a slicexat

Let A be defined as above. SinGeis discrete and acts properigx
is discrete, henceg = SeGirJfGo() d(sxX) > 0. SetV = {ze X | d(z X) <

A/2}. ClearlyV is stable unde6G(x). On the other han¥ c A, hence
G(V | V) <c G(AIA) = G(X). SinceV is open, it follows thaV is a slice
at x.

Our construction of a slice in theftiérentiable case (Lemnia 4) is
somewhat similar to the construction given above, namedysliceq(ex
B) in Theorentll is the intersection of a neighbourhood efith {y €
X d(y, sX > d(y, x) for everys e G — G(X)}.

6

Let G now be acompact lie groupaction continuously on eompletely
regular topological space. The following lemmas reduce the proliém
constructing a slice at a point &fto that of the diferentiable case. 27
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Lemma 5. Let G be a compact Lie group. For any closed subgroup H of
G, there exists a representation of G in a finite dimensioral vector
space E, and a & E, such that @) = H.

Proof. We consider the left regular representationGin L%(G). We

know then, by the Peter-Weyl theorem, tha(G) = 3 E;, where theE;
il

are finite dimensional, G-invariant, and pairwise orthagon ]

Letqg: G — G/y be the natural mapping, and lebe a continuous
function onG/y such thatf(z) = 0 if and only ifz = q(H). Letg =
f 0 g, and consider the decompositign= 3 g;, g € E;, of gin L?(G).
Sinceg(y) = 0 if and only ofy € H, it is clear thatH = G(g), the
isotropy group ofG atg. On the other hand we ha¥&g) = ﬂl G(g).

le
Since theG(g;) are compact Lie groups, we can find a finite suldset
| such thatH = N G(g). For theE andu of the lemma, we can take

iel
E=YE.u=3%g0.
ied ied
Lemma 6. Let G be a compact Lie group acting on a completely reg-
ular space X. Then for anyyxe X, there exists a finite dimensional
representation of G in a real vector-space E, and a mappingKf- E
commuting with the action of G, such tha{i@x,)) = G(xo).

Proof. By Lemmab, we have a finite dimensional representatio@ of
in a real vector spack, and au € E, such thalG(u) = G(X,). Hence
the continuous mapping~» suof G into E passes down to a mapping
of G/g(x,) into E. SinceG is compact,G/gx,) is canonically homeo-
morphic toGx, and hence we get a continuous mappihgGx, — E
with the propertyf(sx) = su = sf(Xy). SinceX is completely reg-
ular, andGx, is compact,f cab be extended to a continuous mapping
f* . X —» E. The requiredf is now given byf(x) = fsf*(S‘lx)ds,

G

whereds is the Haar measure @with fds: 1. O
G

Theorem 5 (Mostow [1]). Let G be a compact Lie group operating on
a completely regular space X. Then there exists a slice ayeve X.
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Proof. Let f : X — E be as in Lemm&l6; thu§ commutes withG,
andG(f(x)) = G(x). By theorentL, there exists a sli@eat f(x). Then
by Lemmal®,f-1(B) is a slice. Sinc&s(f1(B)|f-1(B)) = G(f(x) =
G(X), f1(B) is a slice atx. o

Remark 1. Because of theorefd 5, the considerationg@®#fre valid in
the case of a compact Lie group acting on a completely regplace.

Remark 2. By similar methods, Palai$][1] has proved Theofdm 5 for
arbitrary Lie groups acting properly on completely regudpaces.






Chapter 3

This chapter is devoted to the following problem: given ackite 29
group G acting properly on a topological space, determine a presen-
tation of G (by generators and relations) and if possible a finite one. Th
treatment given here is due to Benr [1], [2]. The classicakpntation

of groups generated by reflections (Coxelér [1]) is disaligsesection

§3 by a similar method.

1 Finite presentations for discrete proper groups
of transformations

LetG be a group operating on a connected topological sgadessume
that eachs € G acts continuously oiX. Let A c X be such that

1) GA=X
2) G(AJA)Ais a neighbourhood oA.
Proposition. S = G(A|A) generates G.

Proof. Let G’ be the subgroup d& generated bys. We first assert that
G’A = X. Infact, it is clear thaG’A is open inX. G’Ais also closed in
X. For, letx = sae X,se G,a€ A. ThenV = sS Ais a neighbourhood
of x. If VNG'A #/p, we haves e G(G'AISA c G'G(AJA)S c G/, so
thatx € G’A. SinceX is connected, we hav®’A = X, Now, leta € A.
For anys € G, we haves € G’,& € A such thatsa = sa’. Hence
s1g € ScG. Hencese G'. o

25
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Remark. If Gis a locally compact group operating on a spxcend
A c X has properties 1) and 2) above, and if furtfi&A|A) = S
is relatively compact i, thenG acts properlyon X. In fact, for
X = saXx = sad(ss € G,aa € A,U = sSAandU’ = SSA
are respectively neighbourhoods wfand X', and we see easily that
G(UIU’) = sS®s~ L,

In particular, if S is finite, we are in the case of a discrete group
acting property.

Lemma. Let G be a discrete group acting continuously on a connected
topological space X. Let A be a closed subset of X such that

(1) GA= X,

(2) for each xe A, there exists a finite subset 8f G(AJA) such that
SxA is a neighbourhood of X,

(3) Alis connected,

(4) any connected covering of X which admits a section over Avialtr
Let L(S) be the free group generated by=SG(A|A); for each se G,

let 5 be the generator of(S) corresponding to s. Then G is isomorphic

to the quotient group (S)/k, where K is the normal sub group td%)

generated by the elementssss’ with s s',s” € S and s's” = e.

Proof. Let us selG = L(S)/k. Forse S, letse G denotes, mod K,
and letS = {gs e S}. Then we have:

() ecS
(i) S=(S) % infact, forse S, (91 =(sY);

(i) if s ginS are such thass € S, thenss € S;in factss = ss.
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It is clear that e= S. Also, sinceS™! = S (iii) implies (ii). To prove
(iii) note that ss'(ss)™* = g, sinces, s ((ss);?) € K.

We put the discrete topology on &d consider the product space
Gx A. Lety : G — G be the homomorphism induced by the mapping
s~ s, clearly, ¢ is surjective. We define a relatioR on Gx A by
setting {, a)R(t’, &) if (t)a = (t")a andt~'t’ € S. From (), (ii)and
(iii ) above, it follows thaR is an equivalence relation onxG\. LetY be
the quotient spacé&(xA),x, andq : GxXA — Y be the natural mapping.
The mappingt(a) ~» ¢(t) a of Gx Ainto X induces a mapping : Y —

X. We make Gact onY by settingrq(t,a) = q(rt,a);r,t € G,ae AG
also acts orX throughe, and it is clear that commutes with the action
of G.

We now wish to prove that : Y — X is a connected covering,
with H = ker ¢ as the group of covering transformations. We do this in
several steps.

(i) fis surjective Infact, f(Y) = ¢(G)A=GA=X.

(i) fislocally injective We remark first thaf is injective ong(SxA).
In fact, lets s € S and fq(s,a) = fq(s’,&). Thensa = s&,
hences™'s e S, implying s's' € S. This means thag(s, a) =
g(s’, &). We shall prove now thaj(S x A) is a neighbourhood of
d(e x A). It will follow that f is locally injective.

Let B= interior of SA and forse S, letBs = AN (s‘lB). Clearly,
B=|J sBs. LetL = |J(sx Bg). Clearly,q(Sx A) > q(L) > g(ex
seS seS

A). We now assert thai(L) is open inY, i.e., thatL’ = g 1(q((L) 32
is open Gx A. Infact let ¢,a) € L".

Then, for someb € Bg ¢(t)a = sbandt's € S. LetS =

{sinS|sbe A},andW = |J SBy. ThenW>Bn |J SA,
seS’ se€S’'NSqp

henceW is a neighbourhood of sb M. Theng(t"})W is a neigh-
bourhood of a inX, and it is easily seen that the neighbourhood
{t} x (AN (t")W} of (t, a) is contained irL’.

(iii) For every xe X, there are local sections for f at x
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It is sufficient to give a section 08 A To eachh € H = kerg, we
associate the sectian, : SA— Y defined bysa ~» q(hs, a).o,
is well-defined: ifsa= sa s in (S;aa € A),s's € S, so
that q(hs,a) = q(hs'@’). Clearlyfooy, = identity, and for every
s € S, op|sAis continuous. Since (2) holds, it follows that, is a
section off.

(iv) TX(SA = U on(SA. Infact, letf(q(t,a)) e SA
heH

Thene(t)a = sd with s e S anda’ € A. Hencep(tH)se S, i.e
t~ths e Sfor suitableh € H. Then clearlyon(s, &) = q(t, a).

(V) Ifh # Won(SA N o (SA = ¢. Suppose, foh,i € H, that

on(sa) = op(s,&)(ss € Sanda, & € A); i.e, ghs,a) =
q(vs,a). We have thendhlh's = s’, with s’ € S.
Henceh'h = ss’s~!. Sincep(h™h) = e = s¥s1in G, it
follows thath™l = ein G.

(vi) Y is connectedin fact, since G(exA) = Y, we have only to verify

that connected componel} of Y which containgg(e x A) is G-
stable. But this is clear, since, for asg S, q(exA)Nsg(exA) # ¢,
and Sgenerates G

Thus (Y, f) is a connected covering of, with H = kernely as the

group of covering transformations. Since (4) holds it fatbothatH =
(e), and this proves the lemma.

Theorem 1. Let G be a discrete group, acting continuously on a con-
nected topological space X. Suppose that there exists a&ctethsubset
A of X such that

(1) GA= X,

(2) G(AIA) is finite ,

(3) G(AJA)A is a neighbourhood of A.

Suppose further that there exists a compact subset C of Xtkath

any connected covering of X which admits a section over Qvmlkr
Then G is finitely presentable.



1. Finite presentations for discrete proper groups.... 29

Proof. We first remark thaA may be assumed to be closed. In fact we
shall verify the conditions (2) to (3) foh. Now, we note tha\ c S?A;

for, if x = sae A(s € G,a € A). the neighbourhood sSA of a meéts
hences € S?. HenceG(A/A) N S°, and so s finite. AlsoS®Ais clearly

a neighbourhood 08%A > A, henceG(A/A)A is a neighbourhood of
A O

Let nowS = G(AJA). For every n,S"A satisfies conditions (1),
(2), (3) of the lemma. Ih is large enoughS"A > C, and therefore
satisfies condition (4). Hence there exists a finite pretientaf G with 34
G(S"AIS"A) c S"! as set of generators.

Remark 1. For a locally simply connected spagthe existence of a
compact se€ satisfying the condition of the theorem means ffiatx)
is finitely generated.

Remark 2. Suppose that, in Theoren 1, we drop the assumptionAhat
is connected. We can still assert tl@atis finitely presentable, iX is
locally connected. We may assume tlasatisfies conditions (1), (2)
and (4) of the lemma. The spa¥econstructed above need not now be
connected, so that we will have to enlaigesuitably.

We retain the notation of the proof of Theor€in 1. Bet interior
of SA and letB, be a connected component®fWe first prove that

X = UG(By|B1)G(B1|By2) . . . G(Bn-1/Bn) B, *)

where the union is over all finite sequend®s. . ., B, connected com-
ponents ofB. In fact, sinceX is locally connected, the connected com-
ponents o are open, hence the right sidé of (x) is open inX.

Now let x be any point ofX. SinceGB = X, we havex € tB’,
for t € G and some connected compond@itof B. Now suppose the
neighbourhoodB’ of x meetsX’, say

tB" N {G(Bo|B1) - - - G(Bn-1/Bn)Bn} # ¢.
Then  te G(BolBy) - - G(Bn-1/Bn)G(BnlB"),
hence X € G(Bo|By) - - - G(Bn_1/Bn)G(Bn/B)B’ c X'.
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HenceX’ is also closed iX. HenceX’ = X. 35

We also have:

(**) For any By, B, c B and anyt € G(B4|By), there exists a € G
such thatde(By) N oe(B1) # ¢

This is clear since is surjective, and Gs transitive on the fibres of
f.

Now let s € S. By(x), there exist connected componeBts. . ., B,
of B such thatsB, N {G(B,B,) ... G(B,_1Bn)Bn} # ¢. We thus havé €
G(Bi_1Bi),i = 1,...,n,such that ! = st .- - t, € G(B,By). For each
ti,i=1,...,n+1, we chooseg te G as in ¢+), and consider the normal
subgroupK’, of G generated by all the$t1 - - - tn1, S€ S. Obviously,
K’ c H. Hencef : Y — X induces a mappindg’ : Y = K’'/Y —» X
such that the diagram

is commutative; herg : Y — Y’ is the natural mapping. Clearly’{, f’)
is a covering ofX and G = G,k operates orY’, transitively on the
fibres of f*. We now assert that’ is connected. In fact let; (resp.Yo)
denote the connected componen¥6{resp.Y) which containgioe(B,)
(resp.ce(Bo)). Sincef’(Ys) = X, we need only prove that) is stable
under G. For this again it is dflicient to check that for any s S, we
have a te K’ such that stoe(Bo) N tY, # ¢. In fact, we can choose
t= §_1t1"'tn+1 e K’.

Since A satisfies condition (4), it follows thatl -, the group of
covering transformations of(, f), is trivial. HenceG ~ G/| is finitely
presentable .

Remark 3. Let G be a discrete group, acting properly on a locally com-
pact connected spa¢esuchG/* is compact. Iff1,(X) is finitely gen-
erated, theit is finitely presentable.
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In fact, we can find a compact subsktof X containing a set of
loops which generatg]1(X), such thaGA = X, and thisA satisfies the
conditions of Theorerl 1.

In particular, since connected Lie groups have finitely gatesl fun-
damental groups, we see that, in a connected Lie group, acyett
subgroup with compact quotient is finitely presentable.

2 Finite presentations for groups of automorphisms
of graphs

For the next result, we need some elementary notions abaphgr

A graphis a setX in which there is associated to eaghe X a
subsety(X) of X such that (i) for everk € X, x € >.(x), and (ii) for any
Xy € X, xe Y(y) impliesy € 3(X). AgraphXis finite at xe X if }(X)
is finite.

A pathin a graphX is a sequences§, as, . . ., a,) of elements oX
such thatj,1 € 3.(&),0 <i < n—1;a, anda, are respectively thimitial
andend pointsof the path, and i&, = an, the path is called lop at &,

A graph is said to beonnectedf any two of its points can be joined by
a path.

Consider the operations which respectively associate yopath 37
(2o, ...,an) in the graph the pathay,,...,a,a.1,...a,) and the path
(a,,...,a,b,a,...,a,) with b € >(a). Two paths in a graph ateo-
motopicif we can obtain one from the other by means of a finite number
of the above operations and their inverses. The producttbfpa de-
fined in the usual way.

A loop (ag,...,an = &) is said to be ofength< mif a = an

for0<i<— AL\ graph X is of breadth< mif every loop inX is

homotopic to a product of loops of lengthm.

Let X andY be graphs. Ahomomorphism f X — Y is a mapping
such that for every e X, f(X (X)) c 2 (f(X)).

Let Y be a connected graph. A homomorphism X — Y is a
coveringif, for everyy € Y andy’ € 3 (y), and everyx € f=(y), there
exists a uniguex’ € >(X) such thatf(x’) = y'. If f is a covering, itis
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easily seen that any path ¥hcan be lifted to a path iX with any given
initial point.

If X is connected, and : X — Y is a covering such that every lift
of any loop inY is a loop inX, thenf is bijective. In fact, it is sfficient
to assume that for a poigg € Y and anx, € f~(y,), the lift throughx
of any loop aty, in Y of length< breadthY is a loop.

Theorem 2. Let X be a connected graph of finite breadth, finite at each
point. Let G be a transitive group of automorphisms of X. éfidotropy
38 group is finitely presentable, then G is finitely presentable

Proof. Let x, € X. For eachx € }'(Xy),choose ars, € G such that
ScXo = X, and letS = {syx € 3:(Xo)}. SinceX is finite atXy, S is a finite
set. m]

Let L(S) be the free group on the set, and lt= G(X,). Let
L(S)XH be the free product df(S) andH. We have a homomorphism

v L(S)IH - G

induced by the obvious maps &fS) andH into G. SinceX is con-
nected, we havg(L(S))%, = X, and henc& = ¢(L(S))H. In particular,
W is surjective.

Let T be a finite set of generators bff. Letse S,t € T. We have
tsxo € >.(Xo). Hence there exists a uniqeee S such that tsy = S Xo.
Clearly s—ts € H. Denoting bys, the element of.(S) corresponding
to s € S, we consider the normal subgro#fpof L(S)fH generated by
the (finitely many)elements of the following type

0) () M(s)(s s LseSteT

(i) (s)L(2)L ()12 s) LS. . s:eS s sHeH,N<
breadth ofX.

ClearlyK c kery, hencey induces a homomorphism
¢:G=(L(S)H)k — G.

39 We shall prove now thap is an isomorphism. Sinck(S)#H is
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finitely presentable, this will prove th& is finitely presentable.

Let H be the image oH in G. Since, for anys € S andt € T,K
contains an element of the typq_I‘lt(sL)h with h € H, we see that
SH = HSwhere Sis the image of the sg¢ |se S}inG. LetY = g/ﬂ,
andqg : G — H the natural mapping. The mapping+ ¢(t)X, of G onto
Xinduces a mapping : Y — X, and we have commutative diagram

GG
|, ]
f

Y—X

whereG — X is the mapping ~» $X%.G acts onY(by left multipli-
cation), and we have for anyetG andy € Y, f(ty) = ¢(t) f(y).

We define the structure of a graph s follows. Sey, = g(e), and
for anyy = ty, € Y, set) (y) = tSy,. We check first thap(y) is well-
defined. In fact, ley = t'y,. Then t = th, with y € H. Hence for any
s e S t'sy, = thsy, = ts’hy, = ts'y,, since Hs = SH. The verification
thaty, € > (y2) impliesy, € > (y1) is similar. SinceS generates G
modulo Hi.e.G= US™H), it is easily seen thal is a connectedgraph.
Moreover,f is a homomorphism of graphs.

We assert now that is a covering. To prove this it is enough to
lift paths starting at,. Lety e f71(xo). If y = tyo, we havep(t)x, = 40
M) f(yo) = f(tyo) = Xo, hencep(t) € H. Now letsx, € >.(X). Then
there exists a uniqus € S such thatp(t)sx = X, andy’ = ts'y, €
> (Yo) is clearly the unique lift ok, in 3 (Vo).

We verify finally that the lift of any loop of the type, si %o, ..., St
S S$%) With n < breadth ofX is a loopaty, € Y. This will
prove that the coveriny — X is trivial, since every loop ak, is
homotopic to a product of loops of this type. Now, it is clehatt
(Yo, S1Yo,--., SIS - - - ShYo) IS a path ay, which lifts the above loop. And
sinces; S --- s, = €, we have §...s, € H, i.e. this path is a loop.

Hence it follows thatf is bijective. Suppose now thatd G, and
o(t) = ein G. Then, f(ty,) = ¢()% = %o. Sincef is bijective, we must
have te H. However,¢|H being injective, this means thatt ein G,
and hence is finitely presented.
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Remark. It follows from TheorenR that if a grou@ admits of a left
invariant graph structure which ig) connected,i{) finite at each point,
and (ii) of finite breadth, ther® is finitely presentable. The converse
is also true, i.e. any finitely presentable group admits effaihvariant
graph structure which satisfies conditiomk (fi) and {ii). In fact letG
be a finitely presentable group, and &be a finite set of generators of
G such thate € S, andS = S~1. We define a graph structure @by
setting, for anyt € G,

> =it Gt es).

It is easy to see that this defines a graph structui@ wihich is left-
invariant, connected, and finite at each point. We shall nmvethat
the breadth of this graph is finite.

Let L(S) be the free group o%; for s € S, we denote bes, the
corresponding generator &fS). Let K be the kernel of the natural
mappingL(S) — G. Since any loop aein G can be written in the
form (e s1, 519, ... Sy = €), we see thaK is naturally isomorphic to the
group of homotopy classes of loopseat

Now, sinceG is finitely presentable, we have by a theorem of Schre-
ier a finite subseF of K such thaK is the normal closure df in L(G).

It follows easily that, if for each element Bfwe choose a representative
loop ate, and 1 is an upper bound for the lengths of these loops, our
graph structure ot has breadthk 1.

Remark 2.Let G be a group which has a finitely presentable normal
subgroupN such thatGy is finitely presentable. The@ is finitely
presentable. In fact, by the above remark, there exisEsimvariant
graph structure ofs,n Which is connected, finite at each point, and of
finite breadth. Sinc& acts transitively orG,y with isotropy groupN
which is finitely presentable, it follows from Theoréin 2 tkais finitely
presentable.

As an application of Theoref 2, we shall prove the following

Theorem 3 (Behr [2]). For any finite set P of primes, the group
GL(nz[P~Y)) is finitely presentable.
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Here Z[P~] is the subring of the rational® generated by P* =
{p~Yp € P}. To prove Theoreld 3 we need some preliminaries.

For any prime p, letQ, be the p-adic fieldZ, c Q the ring of
p-adic integers. LeR be the set of all lattices iQ}. (A lattice inQ}
is aZp-submodule generated by a basis®.

If we set, for AB € R,

d(A,B) =inf{r e Z*|p"Ac B, p'B c A}

d is a metric onR. We define a graph structure gtiby setting, for any
AeR,>(A) ={BeR|dA, B) <1}

R is finite at every point. In fact(é, B) < 1 implies that pAc B c
p~tA, and this can hold (for a given A R) only for finitely many B.
Also,R is connected, in view of the following

Proposition. Given AB € R, A # B, there exists a & R such that:
() d(A,C)=1,and dC,B) =d(A,B) - 1;
(ii) forany D € R, we have

d(D, C) < supd(D, A), d(D, B)}.

Proof. Since Z, is a principal ideal domain, there exists a basis
(a1,...,an) for A, and integersy, ..., r,, such that p'ay, ..., pan)

is a basis foB; clearly we have thed(A, B) = supri|. Letc = pi“(')a;,
where

+1 if ri >0,
a(i) =<0 ifri=0
-1 ifri<0.
Then the latticeC with thec; as basis obviously satisfies (i). O 43

Now let D € R, and letr = sugd(D, A),d(D, B)). Then clearly
p'D c An B c C. On the other hand, for eachp'a; andp"*"i«; € D,
hencep **(q; € D; this means thap’C c D. This provesi().

It follows that R is connected: the above proposition shows that,
givenA, B € R, there exists a path of lengti{A, B) joining A andB.
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We shall now prove thaR has breadth< 8. We shall show that any
loop (Ao, ..., An) in Rwith n > 8 is homotopic to a product of loops of
length< n, and this will prove our assertion.

Case 1l.neven. Letn = 2m. If d(Ao., Am) < m, there exists a path of
length< mfrom A, to An, and it is obvious that the given loop is homo-
topic to the product of two loops of length 2m. Let thend(Aq, Am) =

m. We chooseC € R such thad(A,, C) = 1, andd(C, Ay)) = m— 1. By
the proposition above, we have thdfAn.2,C) < m— 2. Since there
exists a path fron€ to Am(resp. Am.2) of lengthm— 1(resp.< m-— 2).

It follows easily that the given loop is homotopic to the pnotof four
loops, each of lengtk 2m(see the figure below).

A'm,—2

m—2 Am+2

(In the figure, the lengths of the paths are less than or equikt
numbers marked along them.)

Case 2.nodd. Letn = 2m+ 1. Thend(Ao, Ami1) < M. If d(Ag, Ami1) <
m, there is a path of length mfrom A, to Am. 1, and we are through. If
d(Ao, Ami1) = m, we proceed as in Case 1. See the figure below:

Amfl

Am+1
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In the proof of Theorerl3, we shall use the following lemmarcop
of which can be found in M. Eichler[1§12.

Lemma. Suppose we are given, for each primggattice A, in Qj
such that A = E ® Z, except for finitely many p; here E is the unit
lattice in Q". Then there exists a lattice A @" such that A = A®Z,
for every p. (In fact A= N(Q" N Ap).

P

Proof of Theorem 3.Using Theorenf]2, we shall now prove tiat=
GL(n,Z[P1)) is finitely presentable, by induction on the cardinalify o
P. If P =¢,G = GL(n,Z), and this is finitely presentable (Remark
following LemmalT1[B). Now leP # ¢. We choose @ € P, and
considerG as a group acting on the stof lattices inQp. The graph
structure introduced oR is clearly invariant under the action &, in
fact the metric orR which defines its graph structure is itself invariamt
underG. Further, itis clear that the isotropy group®ft the unit lattice
Ep = E®Zp of Ris preciselyGL(n, Z[Pll]), whereP; = P—{p}. Hence

if we verify thatG is transitive, then all the conditions of TheorEm 2 will
be satisfied on account of the induction hypothesis, and rene@ will

be proved. We shall now show that the subgr@lig(n, Z[Pil]) of Gis
already transitive oR.

Given anyA € R, consider the familyAq, g prime}, whereAq = E®
Zqfor g # p, andAq = A. By the above lemma, there exists a latticm
Q" such that, for every primg, Ay = A®Zq. Consider thgy € GL(n, Q)
such thag.E = A. Theng(E ® Zp) = A (whereg is now regarded as in
GL(n,Qp)). But since, for every # p,9(E ® Zq) = (E ® Zp), we must
haveg € GL(n, Z[p~1]), and our assertion is proved.

3 Groups generated by reflexions

Let M be a connected fierentiable manifold. A dieomorphisnr of M
onto itself is called areflexionif (i)r? = identity, (i)M — M(r) is discon-
nected, wherd(r) = {x € M|r(X) = x}. Since, in a suitable coordinate
neighbourhood of any € M(r)r, acts as an orthogonal linear transfor-
mation (see Montogomery and Zippin [1], p.206), we see khatM(r)
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has exactly two connected components which are carriedigtckhe
other byr, and thatM(r) is a (not necessarily connected) submanifold
of M of codimension one.

Theorem 4. Let G be a discrete proper group offfdirentiable automor-
phisms of a simply connectedfdrentiable manifold M, generated by
reflexions. Then G has a presentation of the fdrm (r,rz)P* = €},
where the f are reflexions.

Proof. Let R be the set of all reflexions belonging® SinceM(r));er

is a locally finite family,M — [ J M(r) is an open set; we denote the set of
rer
its connected components Bjic;. G acts on the set dii(r)’'s;r € R;

in factgM(r) = M(r9-1),r%1 = grg~* being clearly a reflexion. Hence
G also acts on th&V's. i

Let W, denote any one of th&. LetR" = {r € R|there exists
x € W, such thatr € R N G(X)}. Let £ (R’) be the free group generated
by R’; we denote the natural injectiocRl —» Z(R) byr ~» r_. LetK
be the normal closure it (R’) of the set

{(ri)L(r D 1 € RY, M(r) 0 M(r) 0 W # ¢}.

We denote by : G = Z(R’)/k — G the natural homomorphism
induced byr ~» r. Also, for anyr € R’, we denoteg, modK by r. We
shall prove by induction on the dimensionXthat

(1) ¢ : G — Gis a bijection
(2) G acts freely transitively on the sat|)i .

For anyx € M let Gy(resp._G) be the subgroup oG (resp. G
generated bR’ N G(x)(resp. the such that € R’ N G(X)).

SinceG is discrete and proper, we have for every M a coordinate
neighbourhoodvy such thatVy is G(x)-stable, and5(Vy|Vx) = G(X).
We may assume the coordinate system so choserGihxatacts onVy
by orthogonal linear transformations. We assert thatxfeM\,,

(@) ¢ : G, — Gyis bijective,
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(b) for anyy € Vi, Gy is simply transitive on the set &} such that
y € W, in particular,Gx(W, N V) = V. These assertions are easy
to verify if dim X < 2; if dim X > 3, they follow from the induction
hypothesis (1) and (2), when we consider the actioGpbn the
spheres aboutin Vy.

Now let Y be the quotient space of &W,(G having the discrete
topology ) by the equivalence relation

VAN / -1
t',x) ~(t,X) &= X =xandt™te G,.

The mapping t{ X) ~» ¢(t)x of G x W, to M induces a mapping
f : Y —» M. Similarly the actiont; x) ~» (st, X) of G on G x W, induces
an action of Gon'Y. G acts onX throughe. It is clear thatf commutes
with the action of G We proceed to show thdt: Y — M is a connected
covering.

(i) Y is connected This is clear since for every € R’,rq(ew,) N
a(g, W)o) # ¢. Hereq : G x W, — Y is the natural map.

(i) fis locally injective. It is suficient to know thatf is injective 48
in a neighbourhood of ang(e, x), x € Wo. Now G, x (Vx N W)
is saturated with respect tp henceq(G, x (Vx N Wo)) is a neigh-
bourhood ofg(e, x). Using the inductive assertioa$ andb), we
see thaff is injective ong(G, x (Vx N Wp).

(iii) f is surjective We must show thap(G)W, = M. Now, ¢(G)W, is
obviously closed irM, being a locally finite union of closed sets.
But it is also open, since for any € Wo, (G, )Wo = Gy\W, is a
neighbourhood ok by the inductive assertioh).

(iv) f has local sectionsSincef commutes with the action of &nd
#(G)W, = M, it is suficient to consider points oiv,.

Now letN be the subgroup of @efined by
N = {n € Glp(NWo = Wo).

Clearly N oker¢. Forn € N andr € R, it is clear thatr"(=
reM) e R’. Further ifr,r'inR” and M(r) N M(r') N W, # ¢, we
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have alsoM(r™) N M(r'™) N W, # ¢. Hence we can define the
automorphisnh ~» h" of G by setting ()" = (r"). Clearlyp(h") =
e He(h)e(n).

Now, for anyn € N and anyx € Wo, we define the sectioor, :
Vyx — Y of f by

Talp®)y) = qnt’, oY)t € G,y € Vi N W,
By (ii), o is well-defined.
f-1(Vy) = U on(Vy). Leth e G,z € W,, and letf(q(h, 2)) € V.
neN

Theng(h) = ¢(t)y, witht € Gy, andy € VxNW,; thusp(ht)y = z
Now, since_G is transitive on thé\; containingz, there exists
se G, such thassth™'t € N. Letn = t™*hs. Then

q(tn, (n"1)y) = q(h, 2).

Now, Sincep(t n) = ¢(n t"), there existal € kerg such thatn =
unt” = unt'". Then

q(h.2) = q(tn, ¢(n"1)y)
= qunt™, e((un) ™)y
= oun(e®)y),
and (V) is proved.

Fornn € Nyon(Vx) Now(Vx) # ¢ = n =n'. Letnm €
N, on(Y) = om(y) for somey € V. Sincef is locally injective, and
GyW, is dense iy, therez € VN GxW, such thatrp(2) = o(2).
Letz=p(t)Z,t € G, andZ € Wp N Vyx.on(2) = om(2) gives
(N7 = p(mHZ = p(nm™) € G(Z) c G(x),
and at"){(mtM € G, =e.
Hencen™'m = t"(t™)™. Nowt" € G, 1), andt™ € Gy 1) Since
t € G,. But, sincep(nnr?) € G(x), p(n"1)x = o(m1)x, hence
nlme G - Sincen'm e N, it follows by the induction

(™
assumptiorb) thatn=*m = e, and i) is proved.
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Thusf : Y - M is a connected covering. Sindd is simply
connected,f is bijective. Since the fibres of are parametrised by
N D kerg, ¢ is injective. And therN = {e} means precisely that(G) is
simply transitive on th&\i. It follows easily that for every € %, there
existh € ¢(G) andr’ € %’ such that’ = r"; hencep(G) = G, and the
assertions (1) and (2) are proved.






Chapter 4

This chapter contains results related with the followingdkof problem: 51
given a discrete group of continuous transformations, ngrnation

on the behaviour of a set of generators to prove that theracfidche
group is proper. The solution of such a problem is based hera o
Lemma (Lemmal2) related to the methods of Chalgter 3 as wetl as t
Theorem of Weil on discrete subgroup of Lie groups (A. WejJ [2]).

1 Criterion for proper action for groups of isome-
tries

Let G be a topological group acting oncannectedspaceX.
Let S c GandA c X be such that
() eeS
(i) S cGAA)
(i) ss €S, ANSANSA#¢implys?'sesS.

Note that these conditions impfy = S™.
On the product spacByA, consider the relatios? defined as fol-
lows:
(t,a)Z(t,a)if ta=t'a andt™t' € S.
Itis easily seen tha® is an equivalence relation. Lgt= (GyA)/ %,
and letq : GyA — Y be the canonical mapping. The mapping) ~»
ta of GyAinto X induces a mapping : Y — X such that the diagram

43
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is commutativeG actsY in the usual manner, anidcommutes with the
action of G. Our object is to give dticient conditions ors and A so
that f is a homeomorphism.

Lemma 1. If Ais connected and S generates G, then Y is connected.

Proof. LetY, be the connected component¥otontainingg(eyA). O

SinceGg(ex A) = Y, we need only verify tha¥, is G-stable . This
is clear since, for ang € S, g(ex A) N sqeyA) # ¢, andS generates.

Lemma 2. Suppose that: (i) there exists a G invariant metric d on X;
(i) S is a neighbourhood of e in G; (iii) there existoa> 0 such that

for any ac Athereisan £ S With{X e X|d(x,a) < g} C SA.
Then GIntA) = X, and f: Y — X is a covering .

Proof. Since X is connected an@&(Int A) open in X, we will have
G(IntA) = X if we show thatG(IntA) is closed inX. Now let x €
G(Int A). Then there exist € G and aa € Int A such thaid(x, ta) < p,
i.e.,d(t™1x,a) < 0. Hence there is a8 € S such thatt™'x e s(IntA);
this implies thatx € G(Int A). ]

It follows from G(IntA) = X that f is onto. We now prove that
f .Y — Xis acovering.

1. fis locally injective It is suficient to prove thatf is injective
in a neighbourhood of ang(e, a), with a € IntA. Now let U
be a neighbourhood & in G such thatU~'U c S. Sinceq™
Uy IntA) = J(Usy(An stiIntA), Uy IntA) is a neigh-

bourhood ofq(e)ie ISnt A). We assert thaf is injective onq(Uy
IntA). In fact let ¢, a), (t’,a) € UyIntA, and letf(q(t,a)) =
f(q(t’,&)), i.e.ta=t'a’. Then, sinca™'t’ e U"U c S, we have
q(t, &) = q(t’, &).
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2. f has a local sectionFor anyx, € X, letB = {x € X|d(%o, X) <

9/2}, and letN = {t € G‘tA ) B}. For eacht € N, we have a
sectiono : B — Y of f defined byor(2) = q(t,t™12),z € B. Note
that, fort,t” in N, we have eitheo; = o oro(B) N o¢(B) = ¢.

3. fisacovering Letx, € X. Inview of 1) and 2), itis sfficient to
show, with the notation of 2), thdt2(B) = | o(B).
teN

Letq(r,a) € f1(B), i.e.ra € B. Lets e S be such thasA> {x €

X|d(x a) < g}. ThenrsA o {x e Xl|d(x ra) < g} S B, which means
rse N. Thenos(ra) = q(rs, s *r~1ra) = q(rs, sa) = q(r, a).
This proves LemmBl 1.

Theorem 1. Let G be a topological group acting isometrically on a
connected metric space X. Let A be a connected subset of X§ and
neighbourhood of e in G generating G such that the followimgditions
are satisfied:

1. Sc G(A/A),

2. sSe€S ANsANSA£¢pimplysls eS;

3. there exists @ > 0 such that for any & A, we have € S with
SAD {x e X|d(x a) < Q};

4. any connected covering of X admitting a section over Avgtr

ThenS = G(AJA). If moreoversS is relatively compact irG, then 54
the action ofG on X is proper.

Proof. By Lemmadll anfl2f : Y — X is a connected covering; this
covering admits a section ovéy, given by a~» g(e a). Hencef is
bijective. O
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We now prove thaG(AlA) c S. Lett € G(AJA). Then there exists
a,a € Asuch thatta = &, i.e., f(q(t,a)) = f(g(e,&)). Sincef is
bijective, we havey(t,a) = (e, &), i.e.,t € S.

The second assertion of the theorem now follows from the rema
after Lemma 1, Chaptét 3.

2 The rigidity of proper actions with compact quo-
tients

Let G be a locally compact group, arXla locally compact metrisable
space, We denote by = % (Gy X, X) the space of all continuous map-
ping of Gy X into X, provided with the compact open topology, and we
denote byM the subset ofs” consisting of continuous actions &f on
X(with the induced topology). Also, we denote B, the set oforoper
actions ofG on X, and byM, the set of isometric actions (i.e., an action
of G on X belongs toM, if there exists a metric oiX invariant under
this action). By Theorerl 2, chapfér 1, we hawtg c M, (at least when
Xis connected).

Theorem 2. Let G be a locally compact group, and X a connected,
locally connected, locally compact metrisable space. Bspphat X
has a compact subset K such that any connected covering ahXteud)

a section over K is trivial. Let ggM , be such that giX is compact.

Then there exists a neighbourhoddof m, in M, such that
a) Wc M,
b) for everymeW, m Xis compact

c) the action ofG on W x X defined by § (m, X)) ~» (m, m(s, X)) is
proper,

d) if Gis a Lie group, then kan c kerm, for anymesW (here, for any
m, kerm = {ggG|m(g, X) = xfor everstX}.
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Proof of a) and b). With the assumptions of the theorem, we shall prove
that there exists a compact connected suBs#EtX containingK, a rel-
atively compact open neighbourho8dof e in G, and a neighbourhood
W of my in M, such that, for everynsW, A and Sy, = S N G(AIA)
satisfy the conditions of Theordm 1. Théhwill satisfy a) andb).

Let C be a compact subset &f such thatmy(G,C) = X. SinceX
is locally connected, locally compact and connected, thgigts a con-
nected compact neighbourhoddof C containingK. Let B be an open
relatively compact set iX, containingA. We setS = Gy, (B|B). Clearly
S is a symmetric open relatively compact neighbourhood iafG. For
meM, we setSy, = SNGy(AIA). ClearlySy, is also a neighbourhood of
e

(i) There exists a neighbourhood ;V&éf m, in M such, that, for
any meWi, and any sSeSm, Anm(s,A) n m(s, A) # ¢ implies
s19eSy.

In fact, L = S2 — S is compact, andny(L, A) N A = ¢. Hence
there exists a neighbourhoddf; of m, in M such that, for any 56
me Wm(L,A) N A = ¢. Itis easily verified thaW; has the
required property.

(i) There exists a neighbourhood,Wf m, in M such that, for any
m e Wh, S, generates G

Let C’ be a compact neighbourhood Gfcontained in InA Then

T = Gy, (C’|C) generatess; in fact, sinceT Cis a neighbourhood
of C, andT > G (CIC), the proof of Lemma 1, Chaptir 3 is valid.
We shall now show thal c Sy, is m suficiently close tam,.

For eacht € T, we havea t) € C such thatmy(t, c(t)) € C’ c
Int A. Thus there exists a compact neighbourhdtt) of t such
thatm,(V(t), c(t)) c IntA. Let W(t) be a neighbourhood af, in
M such tham(V(t), c(t)) c Int A for anym e W(t).

SinceT is compact, there exists a finite sub3étof T such that

T c U V(). If we takeW, = () W(t), we clearly havel c
teT’ teT’
Gm(AlA) for anym € Ws. SinceT c S, we haveTl c Sy, hence

Sm generatess, for everym e Wh.
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(i) There exists a neighbourhoodsWf m, in M such that, for any
me Wa, (S, INtA) O A

We know thatmy(S, Int A) > A. Thus for anya € A, there exists an
Sa € S such thaim(s,, IntA) 2 a. Let U, be a compact neighbourhood
of a in Asuch thatU, c my(s,, IntA),i.e. mo(sgl, Ujy) C IntA. SinceA

is compact, we have a finite subgedf A such thatl J U, = A. For each
acF

a e F, letW, be neighbourhood afy, in M such thatm(s;?, U,) c IntA
for everym e W,. ClearlyWs = (| W; has the required property.

acF
We now setW = M, n Wy n W> N Wa, and assert that, for any

m € W, A and Sy, satisfy the conditions of Theorelh 1. In view of the

above considerations, our assertion will follow if we veriondition 3)

of TheorentIl. Take anyn € W, and choose an invariant metiicon

X with respect tan. By (iii) above, we havé c Lg m(s,IntA) = U
SESm

say. Letd = d(A, X — U), and letA’ = {x e X|d(x, A) < /1/2}. Then for

thep of condition 3) we can take the minimum ©f2 and the Lebesgue
number of the coveringm(s, Int A)}«s,, of A".
Thus a) and b) are proved.

Proof of c). We shall prove that the action & on WyX is proper,
whereW is as above. Sinc&/yX is Hausdoff, it is enough to verify
the condition P) of ChaptelL for the pointarg, x1), (Mg, X2), X1, Xo €
X. Now, givenxy, Xo € X, we may assume by enlarging theof the
above considerations if necessary, tRatx, € Int A. For this A we
obtain a neighbourhood” c W of m, such thatG,(AlA) c S for every
m e W. WyA is a neighbourhood ofnfy, X1) and (g, X2) such that
G(W yAlW'yA) c S. SinceS SinceS is relatively compact, this proves

).

Proof of d). Let K = kermy. Since the actionm, is proper,K is a
compactnormal subgroup oB. Letq: G — G/K be the canonical ho-
momorphism. Le¥ be an open neighbourhood gfK) which contains
no nontrivial subgroup oB/K. Now F = S—q1(V) is a compact set in
G such that kemyNF = ¢. hence there exists a neighbourhawtic W
of my such that kemn F = ¢ for all me W’. Since, for anyme W, we
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have kemn c G (AJA) € S, we have, fom e W, g(kerm) c V, i.e. ker
m c K. This proved).

Remark 1.Itis not in general true that every, € M has a neighbour-
hood inM which is contained irtM,, even if we suppose that, X is

compact. For instance, I& = Z, X = R, and letm, € M, be defined by
mo(n,t) = t+ n. For anya € R, lety, : RR be a diferentiable function

such that
1, t<a
‘Oa()_{o, t>a+2
wa(t) > -1

Let my be defined bymy(x,t) = t + np;(t). It is easy to check that
my € M. Itis also clear that if a is large enough,, is arbitrarily close
to my. However,my ¢ M, since under this actiori leaves every point
> a+ 2 fixed.

Remark 2. In TheorenfR, the condition that,x is compact is essential
For instance, leG = Z, X = GL(2, C).Z operates oiX by left multipli-
cation, through the homomorphidmdefined by

w-fs ]

This action is proper. The action @f on X defined by the homo-
i/n

0 1
near this action ih is large, but is not proper. Note that all the above
actions are irM,, sinceGL(2, C) has a left-invariant metric.

morphismh,, : Z — GL(2, C) which maps 1 076 is arbitrarily

3 Discrete subgroup of Lie group. Witt's Theorem

Theorem 3(A. Weil [1]). LetI be a discrete group, G a connected Lig9
group,and i : T' — G a homomorphism such that

() kerhy is finite;



60

50 4,

(ii) ho(I) is discrete;
(i) ho(I® is compact.

Then there exists a neighbourhoddlof hy in Hom ([, G) (with the
finite open topology), such that for ahye W, (i), (ii) and (iii) hold with
ho replaced byh.

Proof. We may identify Hom[(, G) with a subspace dfl. Then, since
there exists a left invariant metric & Hom (", G) c M,. Also, (i) and
(i) imply that hy € M further [14(G) is finitely generated. Hence we
may apply Theorerl 2 to obtain Theor€mn 3.

Let G be a Lie group, an& a ddferential manifold. By alifferen-
tiable(one-parameterfamily of actionsf G on X we mean a dferen-
tiable mappingn : RyGyX — X such that for eache R, m : (s, X) —
m(t, s, X) is an action ofs on X. O

Theorem 4. Let G be a Lie group, and X a connectedfalientiable
manifold such thaf],(X) is finitely generated. Suppose given fadi
entiable family m: R x G x X — X of actions of G on X such that
m, € M, for every te R, and suppose that gnis proper and g com-
pact. Then there exists a neighbourhood V@ of R, and for each € W

a differentiable automorphism; af X such that

my(s, X) = a(Mo(s, 3 (X))
for every xe X,se G,t e W.

Proof. In view of TheoreniR, we can find a neighbourhdd#l of O in
R, and a compact sétin X, such that the action @& onW; x X defined
by s(t, X) = (t, m(s, X)) is proper, and such thaw (G, A) = X for every
t € W;i. Then there exists @-invariant Riemannian metric oW, x X
(Theorenl R, Chaptél 1). Let: Wi x X — W be the natural projection,
and letH be the vector-field olV; x X orthogonal to the fibres gf such

d .. . o .
thatp™ = ar It is easily seen thatl is G-invariant. m|



3. Discrete subgroup of Lie group. Witt's Theorem 51

Let the diferentiable mapping
go:{TeRhl <e}xW2><U - W; x X

be the local one-parameter group generated by the vectdrHien a
neighbourhoodV, x U of {0} x Ain W x X. SinceH is G-invariant and
G(W1 x A) = Wp X X, ¢ can be extended to aftrentiable mapping

p {teR|T<e} xWo x X —» Wy x X
by means of the equation
Sp(t, X) = @ (t, my(S X)), t € Wo. *)

SinceH projects on the vector- fieI%, we have

(0, %) = (7, a-(x))

wherea, : X — X is a difeomorphism. Using the fact that (0, my
(s, X)) = sp-(0,X) (which is (<) with t = 0), we see that the, |t| <€, 61
satisfy the conditions of the theorem.

For other applications, we need the following modificatidéi loeo-
rem[].

Theorem 5. Let G be a discrete group acting isometrically on a con-
nected locally connected, simply connected metric spackeXC be

a connected compact subset of X, and S a finite subsetG)C{such
that

(i) e€sS,

(i) forany ss € S,CNsCNsSC#¢impliessisesS,
(i) SCis aneighbourhood of C,
(iv) S generates G.

This S= G(C|C), the action of G on X is proper, and GE X.
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Proof. SinceC is compact, ane is finite, there exists a neighboit
of C such thats; s € SSCNsCNSC = ¢, implyVNnsvnsV = ¢.
Let A be the connected component\bf S Cwhich containgC. Since
X is locally connectedA is a neighbourhood df. A andS satisfy the
conditions of Theorerll1. In fact, it is clear we need only éhde
condition 3) of Theoreril1, and for theof that condition we can take
d(C,X — A). SinceC c A c SC, the assertions of Theordr 5 follows
from Theorenil (and Lemnfid 1). m|

Theorem 6 (E. Witt [1]). Let G be the group generated by the set
{r1,...,rn} with the relations(rir;)? = e 1 <i,j < n, where the p
are integers satisfying

Pi=1pj=p;j>Llifj#i,1<i,j<n

ThenG is finite if and only if the matri><— cospﬂ) is positive defi-
i
nite.
Proof. Let (g§)1<j<n denote the canonical basis &f, and B the sym-
metric bilinear form orR" defined byB(e, ;) = —cosg. We define

ij
the standard representatioaf G in R" by setting

riej = ej — 2B(e, g))e.
Clearly, B is invariant undef. m]

a) G is finite= B is positive definite
We first prove thaB is non-degenerate. L&t = {x e R™|B(x,y) =

0 for everyy € R”}. SinceN is G-stable ané is finite, there exists a

G-stable supplemem’ to N. Now, for evenyi, ri|N = identity, andr;
is not identity onR", hence there existy, € N’ such thaty; # Vi,
i.e., B(g,y) # 0. Sincerjyy, —y; = —2B(g,Yy)e, we haveg € N'.
HenceN’ =R", i.e.N = 0.
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Then prove the positive-definiteness, we consider any riciatir-
reducible G-subspade of R". We see as above that there exists an
g € L.On the other hand, there exists bra G-invariant positive
definite bilinear form, sa,, and (Sincel is irreducible)ad € R
such thaB|L = AB,. SinceB(g, g) = 1, we must hava > 0. Hence
BIL is positive definite. Sinc® is non-degenerate, it follows thBt 63
is positive definite.

b) B positive definite> G is finite (The following proof is based on
Buisson [1]). LetC c R" be defined by

C= {x € R"|B(x,&) > 0 for every i}.

We shall prove the following statements by inductionmon
1) Gis finite
2) GC=R"

3) If se Gandc € C are such thasc € C, thensc = ¢, and in facts
belongs to the subgroup & generated by thg belonging toG(c).

If n = 2,B is automatically positive definite, and the above state-
ments are easily verified. Thus let> 3, and let us assume that 1), 2)
and 3) are true fon — 1.

Let Y = {x € R"B(x,x) = 1} , and letA = Y nC. For eachi,
let G; be the subgroup o& generated by, ...,ri_1,ri1,...,rn Note
thatN; = 3 Rej is Gj-stable, and that the representationGafin N;

j#i
thus obtained is the standard representatio®; af R"*. By induction,
eachG; is finite, hence the s& = |J G; is finite. Clearlye € S, and

1<i<n
S = S™L. SinceG; operates trivially on the orthogonal complemeiit
of N; with respect tdB, we haveG; c G(A|A), henceS c G(AA). Also,
S generate§s, sinceri € S,1<i <n.

Lemma.lfa e Aand se S are such that sa A, then sa= a; infact s 64
belongs to the subgroup&f G(a) generated by theg E G(a).
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Proof of the lemma.Let se Gj,and leta= b+ b’, where be N;,b’ €
N/. Then both b and sb belong tg N(C + N/) c Ci; hence ¢ = {y €

Ni|B(y, gj) > Ofor every j+ i}. Hence, by induction, s belongs to the
subgroup of Ggenerated by thejiwhich leave b(and hence a) fixed .

The lemma implies in particular that § s € S are such thaA N
SAN SA # ¢, thens s e G, for somea € A. But clearlyG, c G; for
somei, and thers™1s € G; c S.

We prove finally thatS Ais a neighbourhood oA in Y. Since, for
anyace A G, C S, it is suficient to check thaG,A is a neighbourhood
of aiin~, or equivalently thaG,C is a neighbourhood of a iR".

LetL = 3 Rej, andL’ its orthogonal complement with respect
rieG(a)
to B. Clearlya € L’, and there exists a neighbourhodaf a inR" such
that

VmC:Vm{xeR”|B(x,a)zOforalIe. eL}.

Then if
Ca={ycLBy.0) 2 0foralle <L,

we haveVNC = VN (Cy+L’). Assuming as we may thatis G,-stable,
we have therefore

Ga(v N C) = V N (GaCa + L’).

By induction, Go,C; = L, henceGa(V N C) = V, andG.C is a
neighbourhood oé.

Now, for the action of5 on ), all the conditions of Theorem 5 are
satisfied forA andS; note thatA is connected ang, simply connected.
Thus the action of5 on Y is proper. Since, is compact, this means
thatG finite. Moreover, sinc&A = Y, we haveGC = R". This proves
the statements 1) and 2); 3) follows from the lemma si@ce G(A/A).
Hence the proof of the theorem is complete.

Remark. The proof of Theorerfil6 shows that show wHercosaL) is
positive definite, the standard representatio® af R" is faithful.



Chapter 5

For proper action a discrete grolipn a space with compact orbit spaces
I'/ X, there are rather strong connections between the topalqgicper-
ties of X and the properties @f. The theory of ends, due to Freundenthal
[1] and Hopf [1] is the most conspicuous example of such a ection.

1

Let X be a connected topological space. We denote ltiye set of all
sequencesy) of connected sets iK such that

(i) foreveryi,a # ¢,
(i) a > ayq foralli,
(iii) eacha; has compact boundary,
(iv) for every compact s in X, there exists ansuch thag NK = ¢.

For &), () € £, we write @) ~ (by) if for everyi there exists g
such thata; > bj. The relation~ is an equivalence relatio. Indeed
we need only check that it is symmetric. Laf)(~ (b;). For anyi, there
existsa j such that; N ob; = ¢. Sincea, is connected and; ¢ X — by,
it follows thata; c b;.

An equivalence class of with respect to the relation is called an
endof X. The set of all ends oK is denoted by¢’(X) .

55
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Remark . For (g), (b) € ¢ with (a)y(b;), there exists & such that
ax N by = ¢. In fact, there exists ansuch that, for every,a 2 b;. On
the other hand, for a fliciently largej, we havea; N db; = ¢. Then for
k> i, j we haveay N bx = ¢.

Leta € &(X), and let &) € ¢ represent. By a neighbourhood
of a we mean any subset #fwhich containsg; for somei. If V is a
neighbourhood of a, it it clear that, fany (a) representing,V o g
for somei.

We also need the notion @ndsof graphs. LetX be a connected
graph (see ChaptEl ). For anyA c X, we define théoundaryof A,
denoted byA, as the set

{x e X|Z() N A £ ¢,3(X) N (X = A) ¢}.

It is easily seen that i€ c X is connected an@ N dA = ¢, then
eitherC c AorC c X — A. Now let ¢ be the set all sequences)(of
connected subsets #fsuch that

(i) a # ¢ for everyi,

(i) a > a1 for everyi,
(iii) 9g is finite for everyi,
(iv) Qa = ¢.

We define the equivalence relatierin £ as in the topological case,
and the quotient set is the setarfdsof X, denoted by¢’(X). Theneigh-
bourhoodsof points of&(X) are defined as in the topological case.

We note that a group which acts as a group of automorphisms on a
connected space (or grapi)also acts o#’(X) in a natural way.

The following theorem will enable us to speak of the “set oi€n
of any finitely generated group.

Theorem 1. Let X and Y be connected countable graphs finite at each
point, and let f: X — Y be a homomorphism. Suppose that



(1) for every ye Y, f=1(y) is finite.

Then there exists a unique map; £(X) — &£(Y) such that, for
any a e &(X) and any neighbourhood V off@@), f1(V) is a
neighbourhood of a. If we further suppose that

(2) f is surjective, and for each connected € Y with C finite,
there exists a finite H- Y such that Ho d(f(C)) for every con-
nected component C of ¥(C’), then F is surjective. Finally, if
we suppose in addition that

(3) for every ye Y, f~1(y) is connected, then¢fis bijective.

Proof. LetK; c Ky C --- be finite subsets of such that JK; = Y. Let
ae &(X), and let &) € &(X) represent. Since, by (1), eacli—(K;)
is finite, there exists §(i) such thatf~1(K;) n aji) = ¢, we assume
that j(i) is the least integer with this property. Latbe the connected
component off (aj5) in Y — Kj. We assert thatt) € £(Y). Itis clear
b, # ¢ andb;j, 1 c by for everyi. And sinceb; c Y — Kj,nb; = ¢. Also,
b; being a connected componentof K;, db; c 4(Y — K;) = dK; which
is finite sinceY is finite at each point. Hencéj € Z(Y). Letb be the
end ofY defined by ). We setf¢(a) = b. It is easily checked that®
is a well-defined map fror#’(X) to &(Y). ]

Now let V be any neighbourhood df = f¢(a). ThenV > b >
f(ajq) for somei. Thusf=1(V) > aj;), and hence is a neighbourhoodso
of a. Supposefet : &(X) — &(Y) is any map having this property.
We assert thaty = f#. Suppose in fact thati(a) # f*(a) for some
a € &(X). LetV,V; be neighbourhoods of®(a), f7(a) respectively
such thatv N Vy = ¢. Thenf=1(V) n f~1(V;) = ¢, contradicting the
assumption thaf ~1(V), f~1(V) are neighbourhoods @t

We now assume (2), and prove thdtis surjective. Leb € £(Y)
and let {) represenb. For everyi, we choose a finite subskf; of Y
such thatH; > d(f(C))) for every connected compone@t of f~1(by).
Also let j(i) be the least integer such thdt N bji) = ¢.

Let a; be any connected component tf!(b;) which meetsf !
(bj())- Sinced(f(a1)) c Hi, we haved(f(az)) N bja) = ¢.
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Also, f(a1)nbj) # ¢, sinceasnf~(bj)) # ¢. Hencef (a1) o bjay
i.e., f(a1) is a neighbourhood dj.

Assume inductively that we have a sequengeo a, D -+ D a,
of subsets oiX such that each is a connected component 6f1(b;)
and f(g) is a neighbourhood df. Then we take foa,,1 any connected
component off ~1(b,,1) which meetsn N f ~1(bj(n1)); such a connected
component exists sinciay), bn,1 andbj.1) are all neighbourhoods of
b so thatf (a,) N bnr1 N bjne1) # ¢. It can be verified as in the caseaf
that f(an+1) D bjns1) @and hence is a neighbourhoodiofit is also clear
thatan,1 C a,. Sinceda; c (f~1(by)) c f~1(9by), da is finite for every
I. Also N, = ¢. Thus the sequence;) defines an end a iX. We have
f¢(a) = b, since every neighbourhood 6f(a) is also a neighbourhood
of b. Hencef? is surjective.

With the same assumptions, we assert that for amry &(X) and
any neighbourhootl of a, f(U) is a neighbourhood of¢(a). Letb =
f¢(a), and let &),(by) representr andb respectively. Since, for every
i, f~(bi) is a neighbourhood of a, there existg(g such thatajj c
f~1(b). Leta/be the connected component bf'(b) which contains
aji)- Clearly, &)e.Z(X). Sincea > a’j(i), it follows that @) ~ (&),
l.e. @) represents. We now assert thatf(a)) € -Z(Y) and represents
b. In fact, (f(&)) € Z(Y) since, by (2pf(&) is finite, and the other
conditions are clearly satisfied. Sinééa/) c b, we have {(@)) ~
(bi). Thus everyf(a) is a neighbourhood df; it follows that f(U)is a
neighbourhood ob.

Finally, we assume in addition that (3) holds and prove fhiatalso
injective. Leta,a € &(X),a # &. LetV,V’ be neighbourhoods of
a,a suchthatv NV’ =V noV' = ¢. Thenf(V)n f(V’) = ¢, Since
f(V), f(V’) are neighbourhoods dff(a), f¢(a’) respectively, we must
havefé(a) # f¢(a’), and Theorerfill is proved.

Let G be a (discrete) group. L& be a set of generators f@ such
thatesS, andS = S~1. Then we know thaS defines a left invariant
connected graph structufes on G, given byés(x) = xS, x € G, We
denote byés(G) the set of ends 0f3, }'s).

Theorem 2. Let G be a finitely generated group, and |etS5 be two
finite symmetric sets of generators of G which contain e. There is
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a unique natural bijectionps s : &5(G) — &4(G) such that, for any
a € &s(G), any neighbourhood of a is also a neighbourhaagk (a).

Proof. The uniqueness afs s/, is obvious. To findps s/, we first as-
sume thatS c S’. Then the identity mapping d& is a graph homo-
morphisme : (G, Ys) — (G,X5). We assert that the conditions of
Theorem are satisfied far. In fact, we need only verify condition (2).
Thus letC’ be anS’-connected set witlhgC’ finite. Letn an integer
such thatS” c S". We takeH = 95C’.S", and claim that for any-
connected compone& of C’,ds/C c H. In fact letx € dssC. Then
dsxS' ' NC # ¢ # xXS' N (G - C).xS" is S-connected, henc®’- con-
nected. SincxS' N C # ¢, we must havexS' ¢ C’, for otherwise
xS' c C, contradictingxS’ N (G — C) # ¢. HencexS' N ds,,C’ # ¢,
i.e.,xeH. m]

Henceys s is they® of TheorentlL.

If S¢ S”, letS” = SUS’, then we can takes s = 905%5' 0 ps5.

In view of the above theorem, ends and their neighbourhoogls a
intrinsically defined for finitely generated groups.

Theorem 3. Let G be a discrete group, operating properly on a connn-
ected, locally connected locally compact space X suchdlfais com-
pact (consequently G is finitely generated). Then therdsegisinique 72
map f: &(G) — &(X) such that for ae £(G) and any neighbourhood
V of f(a), G(V|{x}) is a neighbourhood of a for any« X. Moreover, f

is bijective, and commutes with the operation of G.

Proof. We first prove the uniqueness. Lft f, be two mapss’(G) —
&(X) having the properties stated in the theorem. &et £(G), and
fi(a) = bj; let V; be any neighbourhood df(i = 1,2). Then, for any

x € X,G(V1/{x}) N G(V2|{x}) is a neighbourhood of a, and hence non-
empty. Hence&/; NV, # ¢. It follows thatb; = by. Hencef; = f,. O

We now prove the existence 6f There exists a compact connected
subsetk of X such thatGK = X. LetS = G(K|K). ThenS = S71lis
finite, containse, and generate§; and S K is a neighbourhood oK.
We put onG the graph structure defined 9y
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Leta € £(G), and let &) represent a. Lely = K. We want to
prove that§,)e.Z (X). Clearly,b; > b, 1, and eacl; is connected. Also,
for any compact setl in X, G(H|K) is finite, henceyy N G(K’|K) = ¢ for
all largei, i.e.,bj N K’ = ¢ for all largei. Now, for anyt € a — da;, we
havetS c g, hencetlK c tS K c by; sinceS Kis a neighbourhood df,
we havetK c Intb;. Since (K)iy is locally finite . b = &K is closed ,
hence it follows thabb; c da;K. Sincedq; is finite, we have finally that
db; is compact. Hencdy() € .Z(X).

Let b denote the end defined bip). We setf(a) = b. Clearly
f: &(G) — &(X)isthenwell defined. Now le¥ be any neighbourhood
of b = f(a), and letxeX. SinceS generate§,andGK = X, there exists
an integemn such thatx € S"K. It is easily seen that{S"K) represents
b. ThusV > a;S"K for somej. Hencea; c G(V|{x}|), i.e.,G(VI{x}) is a
neighbourhood o&.

We now prove that is bijective. Letb € &(X), and let b;) represent
b. We setg; = G(bj|K). Clearlya # ¢,a D a1 andna = ¢. Further,
sinceK andb; are connected, and the familgK)qc is locally finite,
we see easily that thg are connected. Now, iS N g = ¢, we have
t € G(bj|K)S = G(b|S K). SimilarlytSn (G — &) # gimpliest € G((X—
b)IS K). SinceS Kis connected, it follows thaia, ¢ G(db;|S K), and
hence is finite. Thusa() defines an end’(b) of G. Clearlyb ~» f’(b)
is a well - defined map af’(X) into &(G), andf’ is easily seen to be the
inverse off.

Finally, for anyt € G,t™tofot : &(G) — &(X), also has the prop-
erties mentioned in the theorem, hence we have, by the umégse
ttofot= f,i.e. fot = tof. This completes the proof of the theorem.

2

Lemma 1. Let X be a connected graph, and letB\H be connected
subsets such thatA ¢ H and9B c A - H. Then either Bc A or
AUB=X.

Proof. SincedBn H = ¢ andH is connected we have eithkr c B or
HcX-B.If HcB,wehaved(AUB)c JAUIBc HUAC BN A.
SinceX is connected, we haven B = X or ¢. O
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If Hc X-B, we havedANB = ¢. Hence eitheB c AorB c X-A.
But sincedB c A, we must havé8 c Aor B c X— A. But sincedB c A,
we must havd3 c A.

Theorem 4. Let G be a finitely generated group, and 1éVza@, a®),
their distinct ends of G. Then for every neighbourhood \(®f there
exists a te G such that V is a neighbourhood of at least dftaa@,
ta®.

Proof. Let S be a finite set of generators f@r defining a graph struc-
ture. Letaj(’) represental), j = 1,2,3. We may assume that, for
everyi, theal), j = 1,2,3, are mutually disjoint. Now leV be a

neighbourhood 08®, sayV > a®. Letn be an integer such that

Sh o Uaj(j). Take anyt € a1.(3) - S?". SincetS" is connected, and
j

sincetS" N aq.(:” c tS"n S" = ¢, it follows thattS" N ai(3) — S". Hence
Lemmall can be applied, with = &, H = S", andB = ta”. Since
thetaj(j), j = 1,2,3 are mutually disjoint, we must haw ) a1.(3) for
at least two thg’s. This proves the theorem. O

Corollary 1. Let G be afinitely generated group. If G has three distinct
ends, then every neighbourhood of an end of G is the neighbodrof
two distinct ends; in particular, the set of ends is finite.

Corollary 2. If the finitely generated group G has two invariant ends, it
has no other ends.

Proof. Let a, b be two invariant ends db. If possible letc be another
end of G. By TheoreniB, there exists, for every neighbourh&bdf 75
¢, at € G such thav is a neighbourhood of at least onetat= a,th = b,.
Hencec = a or b, a contradiction. m]

Remark. It is known whether a group with one invariant end can have
infinitely may ends (Freundenthall [1]).

Examples.1) The groupZ has two invariant ends.

2) The groudZXZ has just one end.
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3) The free product of the cyclic group of order 2 with the aygroup
of order 3 (which is isomorphic to the classical modular giolias
infinitely many ends, none of which is invariant. This exaengthows
incidentally that in Theorerfl 3, the assumption &t is compact
cannot be dropped.



Chapter 6

Discrete linear groups acting properly on convex open conesal vec- 76
tor spaces are of special interest for the applicationshdn ¢ase, the
existence of a stable lattice or, more generally, of cedtable discrete
subsets gives rise to special methods of constructing foedtal do-
mains. The material here is due to Koechér [1] and Siégel [1].

1

Let E be a real vector space, of dimensior> 2. A subsetQ of E is
called a cone if tQ c Q for every realt > 0. The coneQ* in the dual
E* of E, defined by

Q= {x* cE*

< X, x>>0 forall er—{O}}

is called the dual coneof Q.Q* is always open irE*; in fact, if >
denotes the unit sphere E(with respect to some norm df), we have

Q= {x* cE
Assumek to be a Euclidean vector space with scalar produgctlf,

under the canonical identification & with E, we haveQ* = Q, we
say thatQ) is aself- dualcone (or gositivity domaii. Clearly,Q is self

- dual if and only ifQ = {x e E‘(x, y)>0forallye Q- {0}}.

<x*,x>>0fora||xe§mZ—}.

63
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Examples. (i) In R"(with the usual Euclidean structure),

Q- {(tl, )i > 0forall i}
and Q{(tl, B R <t > o}

are selfdual cones.

77 (i) Let E be the vector of reah x n symmetric matrices, with the
scalar productA, B) = T, (AB). Then the se® of positive definite
matrices ofE is a selfdual cone. To see this, we note first that
Q* c Q. Infact, letA € Q*, and letey, ..., e, be an orthonormal
basis ofR" such thatAq = g, 4 e R,i=1....,n. LetP; e E
be defined byPie; = dij. ThenP; € Q — {0}, and(A, Pj) = 4;.
Henced; > O for all'i, thusA € Q. Conversely, leA € Q, and
B e Q—{0}. Let VA € Qand VB € Q- {0} be the positive square
roots of A andB respectively. Then

(A,B) = T;(AB) = T,( VAVAVB VB)
= T.(VBVAVAVE)
= T,((VAVB) (VAVB)) > 0.

2

We now state elementary properties of cones and their duals.
(i) For any cone, Q* is convex.

(i) If the coneQ in E contains a basis d the Q* is a non-degenerate
convex cone (A convex seion- degeneraté it does not contain
any straight line). In fact, let",y* € E*, and supposg&" +ty* € Q*
for everyt € R. Then, for everyz € Q — {0}, we have 0< (X* +
ty*, 2 = (X*, 2) + K{y*, 2), for everyt € R.

78 Hence(y*, 2) = 0 for everyz € Q — {0}, hencey* = 0.



Using (i) and (ii) we have (iii) IfQ contains a basis d, then
X' € Qf, —x* € Q* imply X = 0.

Lemma 1. Given any compact subset K Qf, we havep(K) > 0 such
that (x*,y) > p(K)lyl for every X € K and ye Q. Here|| denotes some
normon E.

Proof. Let}; be the unit sphere iB. Then the functionx’, y) ~» (x*,y)
onKx(QnNY)) is continuous and 0. We can tak@(K) to be the infimum
of this function. m|

Remark. If Qis open, the statement analogous to that of Lefdma 1, with
the roles of2 andQ* interchanged, is also true; the proof is the same.

3

LetQ c E be a non-degenerate cone; we then Have: ¢. LetD be a
discrete subset d contained i — {0}. For anyx* € Q*, we define

u(X) = (ljlgg(x ,d).
We see by lemmd 1 tha{x*) < 0, and that the set
M(X) = {d e D(x', d) = ,u(X*)}

is non-empty and finite.

Lemma 2. For any X € Q" ande> 0, there exists a neighbourhoodr9
U c @ of X such that, for any ye U, |u(y*) — u(x*)| <€ and M(Y*) c
M(x").

Proof. LetK c Q* be a compact neighbourhood it Letp = p(K) be
as in Lemmdll. LeD’ = { de D||d| < (u(x)+ e)/p}. ClearlyD’ is
finite, and for any* € K andd € D — D’, we have

<y, d>pu(x)+e.
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In particular, we haveM(x*) c D’. Clearly there exista > 0 such
that a
) > u(X) + 5

ford € D’ — M(x*). (We may suppose th% <€.) Thus, there exists a
neighbourhood/; c Q* of x* such that/* € V; implies

(Wﬂbmuﬁ+;deU—MuW

Finally there exists neighbourhod c Q* of x* such thaty* € V,
implies
Ky*, d > —u(X)

Clearly,U = K n V1 NV, satisfies conditions of the lemma. O

< g;d € M(X).

A point x* of Q* is calledperfectit M(x*) contains a basis dE.
Since, for anyd > 0, M(1x*) = M(x*), we shall assume that , for a
perfect point*, u(x*) = 1.

Lemma 3. Lety* € Q* be not perfect, and let M M(y*), M # ¢. Then,
for every X e E* with (x*, M(y*)) > 0 and(x*, M) = 0, we have either

(i) p(y" +tx) = u(y*) for every t> 0 such that § + tx* € Q*, or
(i) there exists¢> 0 such that

(@) Yy +1x € QF

(b) p(y" +toX") = u(y’)

(c) M c M(Y* + toXx¥)

(d) dimM(y* + toX*) > dim M,

(where, for any subset S of, @m S denotes the dimensions of the
subspace generated by S).

Proof. Suppose thati) does not hold. Since, for any € M and any
t € R, we have(y" + tx*, d) = u(y*), it follows thatu(y* + tx*) < u(y")
if y* +tx" € Q*. Hence there exis# > 0 such that* + 6x* € Q*, and
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uly* +0x7) < u(y*). LetB = {d € D(x*,d >< 0}. B is hon-empty,

since®B > M(y" + 0x*). Ford € B, we set

o(d) = (u(y") - <y, d)/{x", d)-

Clearly, ¢(d) > 0, and ford € M(y* + 6x*), we havep(d) < . On
other hand, ifp(d) < 6, we haveu(y*) — (y* + 6x*,dy > 0. Hence if
p = p(K) of Lemmall withK = {y* + x*}, we haved| < u(y*)/p. Hence
¢ < 6 only on a (hon-empty) finite subset &. Hencegp attaints its
infimum in B, letty = (Ijg; ©(d), and lety(d,) = tg. We assert, has the 81

properties stated in (ii) of the lemma. O

SinceQ* is convex, and (x ty < 0, we havey* + toX* € QF. We
observe that fod € M, (y* + tox*, d) = u(y*). Hence b) and €) of (i)
will be proved if we show that

" +toX) > uly’) (1)

for everyd € D. This is obvious fod € D — 8. Ford € 8B, we have
o(d) > to, i.e., u(y*) — (v, d) < to < x*,d) . Hence () follows, and
(b), (c) are proved. Finally, it is clear thal, € M(Yy" + toX*); since
(X*, M) = 0, while< x*,d, >< 0, (d) follows.

From now on, we shall suppose thatis an open non-degenerate
convex cone; we then havR()* = Q. For any finite subses of Q, the
setPS = {Ztis|3 €St > 0} is called thepyramid on S If x* € Q" is
a perfect point, the M(x*) is called aperfect pyramid

Lemma 4. For any X,y* € Q*, we have
PM(x) N PM(y") = P(M(x) N M(y"))
and
W)Y = ply)x', PM(X) n PM(y")) = 0.

Proof. Obviously,P(M(x*) n M(y*)) c PM(x*) n PM(y*). Conversely,
letze PM(Xx*) N PM(Y*). Letz= Y aX; X € M(x*),a > 0. Similarly,
letz= 3 bjyj;yj € M(y*),b; > 0. We have 82
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(x,2) = Z (X', %) = u(x") Z a

= > bi(X,yp = (X) ) by
j j

Sinceu(x") # 0, we have}; a; > '’ bj, hence, by symmetry, g =
2. bj. It follows that (x*,y;) = u(x’), i.e. y; € M(x") for every j.
Similarly, x, € M(y*) for everyi, i.e. ze PM(X*) n PM(y*). The first
assertion of the lemma is therefore proved. The secondrisclear. O

4

Definition . The discrete set D in E (contained - {O}) is said to
satisfy the density condition if, for eache Q* — Q*, u(x*) —» 0 as X (e
Q") - Z.

Examples. (i) Let QCR? be the (self - dual) cone defined I8y =
{(tl,t2)|t1,t2 > 0}. ThenD = {(1,0) U (0, 1)} also satisfies the den-
sity condition. The seb = {(expn, exp (—n)|n € Z} also satisfies
the density condition.

(i) Let Q be the (self - dual ) cone of positive definite matrices in
the spacetE of realn x n symmetric matrices. LdD be the set
{UU’|U € Z",U # 0}. ClearlyD is a discrete set ik, andD c
Q — {0}. D satisfies the density condition. We shall prove in fact
that for anyA € Q,

u(A)" < (22", detA)/ 2,

wherepy, is the volume of the unit ball iiR". Let A € Q, and
U € Z" - {0}. We have

u(A) < Tr(AUU’) = TrU’AU = U’BBU = |BUJ?,

whereB € Q is the square root oA. Thus, the convex symmetric
setC = {x € R"|BX? < p(A)} does not contain any non-zero
integral point. Hence, by a theorem of Minkowski, Wl< 2",
However, the volume o is easily seen to bhenu(A)"2/(detA)z,
and we get the required inequality.



Remark. If D satisfies the density condition, then

Q_*:{x*eE*

(x*,dy > Oforalld e D}. (1)

In fact, it is clear thaQ is contained in the right hand side df(
Now letx" € E* — Q*. Then, for anyy* € Q*, there exists,, 0 < t; < 1,
such thatox* + (1 - to)y* € Q* — Q*. For anyd € D, we have

(X" + (1= to)y", d) = to(X, d) + (1 = to)y", d)
= to(X", d) + (1 - to)u(y").

Sinceu(tx* + (1 — t)y*) — 0 ast increases tdy, it follows that
(x*,dy < 0 for somed € D, and (l) is proved. However, the density
condition is not necessary for (1) to hold.

Lemma 5. If D satisfies the density condition, then the $eof perfect
points is discrete in E

Proof. Let (x) be a sequence it converging tox™ € E*. Clearly 84
x* € Q% and in view of the density condition, we must havee Q*.
Thenu(x*) = 1, andM(x") ¢ M(x") for largei (Lemma[2). Sinces is
perfect, it follows by LemmaBl4 that = x;. m|

Lemma 6. If D satisfies the density condition, every pointolbelongs
to a perfect pyramid.

Proof. We first note that, sinc® satisfies the density condition, the
first alternative of LemmEl 3 can never holkif¢ Q*. Hence we see by
LemmalB thaf # ¢. Now letz € Q, and lety* be any perfect point. If
ze PM(y"), there is nothing to prove. Let¢ PM(y*). O

Then there existg* € E* such that&)(x*, PM(y*)) > O, (b){X*,2) <
O, (c)x* vanishes on a subsbt of M(y*)containingn - 1 linearly inde-
pendent points. On account df)(x* ¢ Q*. Hence the second alter-
native of LemmdI3 holds, and there exigs> O suchy* + toX* €
Q% uly* +toX) = L, M € M(Y* + tox*). and dimM(y* + toX*) > dim M.
Clearlyy; = y* + toX" is perfect. Moreovery;,2) <(y'z).



85

86

70 6.

If z € PM(y;) we are through. Otherwise, we repeat the above
procedure withy;, and obtainy; € P such thaky;,2) < (y;,2. This
process must terminate after a finite number of steps, Siiediscrete,
and since (Remark following Lemrih 1) there is a constaaio(2) such
that

Vil <oy, 2 <oy, 2
for anyi. We thus obtain a perfect pyramid containing

Lemma 7. Any compact set K if2 is met by only finitely many perfect
pyramids.

Proof. Let x* € P, and lety € K n PM(x*). Then if o(K) is as in
. X,
Lemmall, we havex*,y) > o(K)|x|,i.e|x| < <(—K); On the other
Y
hand, the convex closure Bfdoes not contai®, and hence there exists
o’ (K) > O such that for every* € P, (X",y) < ¢’(K) on K n PM(x").
SinceP is discrete, the lemma follows. O

Remark. It follows from the above lemma that, for any € P, the set

{y* € PIPM(X*)NPM(y*)NQ # ¢} is finite: in view of LemmdH, this set

is the set ofy* € P such thatPM(y*) N K # ¢, whereK is, for instance
the (finite) set i consisting of those of the barycentres of the subsets
of M(x*) which lie inQ.

5

Let Q be an open non-degenerate convex cone in a real vector Epace
Let G(Q2) = G be the subgroup @& L(E) which map®2 into itself. Then

G is a closed subgroup @L(E). For anyx € Q, G(X) is compact. In
fact, the sef2 N {x— 7z € Q} is stable under the action &f(x). SinceQ

is non-degenerate, this is a bounded open set. H8(xes compact.

G = G(Q) also acts o2*: for se G andx* € Q*, we definesx’ by
(sX,y) = (x*, s71y); this identifiesG with G(Q*). Let D be a discrete
subset ofQ — {O}, and letI" be a subgroup o& such thatl'D = D.
Then clearlyu(sx) = u(x*) andM(sx) = sM(x*) for any x* € Q* and
seI. ThusI also acts on the set of perfect points and the set of perfect



pyramids. Note that ik € P,T'(x") = {se I'|[PM(X*) = sPM(x")}.
Assume now thabD satisfies the density condition. Then for any
compact seK in Q, we can find a finite subs@& of P such thatk c
U PM(x*) (Lemmd® andl7), thus
X*eR
I'KIK)c U T(KNnPM(x)|PM(y")). Since, for any* € P, {y* €
Xy eR
PIKNPM(Xx)NnPM(y*) # ¢>} is finite, it follows thatl'(K N PM(x*)|PM

(y*)) is finite for x*, y* € P); hencel(K|K) is finite. Thusl" is a discrete
subgroup of5(Q), and acts properly ofd.

Remark. It can be proved thag(Q) itself acts properly of2.

Also there is a naturdb(Q)-invariant Riemannian metric ai. For
anyx € Q, we define

(NG)) ™ = f exp(-(y’, )y’

O

Then integral is finite, in view of Lemnid 1. It is easy to verihat

n . d%logN
for se G(Q), (N(sX)™* = |detg(N(x))~*. The 2-form- X%
0]

dxdx;
gives aG(Q)-invariant Riemannian metric an.

Theorem 1. Let Q be an open convex non-degenerate cone in a real
vector space ED c Q - {o}a discrete subset of E satisfying the density
condition, andl” a discrete subgroup of () such thatl’D = D. Let
P(c Q%) be the set perfect points. Assume that there exists a filisesus7
L of P such thaf'L = P. Then, if

A=Qn | ] PMX),

x*el
we have
@ TA=Q,

(b) T(AIA) is finite,



88

72 6.

(c) T'(AJA)A is a neighbourhood of A if,
(d) T is finitely presentable.

Proof. Using Lemmd® and the fact thBt. = P (and sincesM(x*) =
M(sx),x* € P,s € I, it is easy to see thdtA = Q. The proof of
(b) is similar to that of the fact that the action Bfon Q is proper; we
have only to use the remark following Lemiga 7. Sidde = Q, (c)

follows. (Note that{sA{s € F} is a locally finite family of closed sets

in Q.) SinceQ is conve, it is connected, locally connected and simply
connected. Hence the conditions of Theofém 1, Chapter Jatisfiad,
and the assertiord) follows. m|

Remark. The condition in the above theorem th&P be finite is satis-
fied if we assume the following: there exists a finite suligef D such
that, for everyy* € P, there existss € I" such that convex envelope of
M(sy) N B meetsQ. In fact, lety* € P, and lets be as above. Then
b= 1 >, ae€ Q,wherer =number of elements d¥1(sy") N B.

I aeM(sy)nB
Now,

1
(sy.by== ) (sy.a) =1

Hencelsy| < i whereop = o(K) of Lemmal withK = {b}.

b
The number of points is finite. SinceP is discrete, our assertion
follows.

6

We now apply the preceding results to the cas&bfn, Z) acting on
the space of symmetric positive definite matrices. Thusldte the
vector space of all real x n symmetric matrices with the scalar product
(A,B) = Tr(AB), and letQ be the (self-dual) cone of positive definite
matrices inE. I’ = GL(n,Z) acts onQ : (S, A) ~» SAS = S[A].

LetD = {UU’lU eZ"\U # o}. We have seen thdd satisfies the
density condition. It is clear th&D] = D.
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For anyA € Q, let M(A) = {u € ZUU’ € M(A)}. ForS €T, we
clearly haveM(S[A]) = S*M(A), whereS* = (S’)L.

Lemma 8. If A is perfect, therM(A) contains n linearly independent
elements.

Proof. Let B be any matrix such thaBU = O for everyU ¢ I\ZI(A).
Then(B,UU’y = Tr(BUU’) = U’'BU = O for everyU € M(A),
i.e(B, M(A)) = O. SinceAis perfect, this implie8 = O. O

Lemma 9. Let A be perfect, and let 4)...,U, € M(A) be linearly
independent. Let G (U4,...,U,) be the matrix whose i-th column is
Ui. Then|detC| < 2"/on, Whereg, is the volume of the unit ball iR".

Proof. We haveC’AC € Q, and the diagonal elements GfAC are 89
equal to 1. Hence by a known lemma we haveQiét < 1,i.e.(detC)? <
(detA)~. However, we have seen (Exampi®,(p.82) that (def) <
22N /02, i

Lemma 10. There exists a finite subset L8F such that, for any A P,
there exists & I" such thatdim(L N SM(A)) = n.

Proof. LetL = {(vl,...,vn) €Z"-{O}lo <V < 2”/Qn}. LetA e P. By
Lemma®,M(A) containsn independent elements; ..., U,. O

Now there exist$ € I' such that, for i< i < n,

a1.1

i o
SU = g ,0<a <dforl<j<i

O
The proof of this fact is analogous to the Elementary DiviEbeo-

rem (see~van de[ Waerdern [1]). Clearly &} are independent. Since
SU € SM(A) = M(S*[A]), we have bu Lemm@ 9,

detGUy,...,SU,) = ajza12- - - @i < 2"/pn.
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Thusaij < 2%,,1 <i,j <n ThusSU € L, and the lemma is
proved.

Lemma 11. There exists a finite subsgtof D such that for every & P.
there exists & I" such that the convex envelopeBoh M(S*[A]) meets
Q.

Proof. LetB = {UU’|U € L}, whereL is as in Lemm&10. Leh € P.

By LemmalID, there existS e I' such thatL N SM(A) containsn
independent element4, ..., V. ThenV;V/ e BAM(S*[A]), 1 <i<n.

1 . " -
Clearlyﬁ 2. ViV/ is positive definite, and belongs to the convex closure
of B n M(S*[A]). i

Remark. The above lemma and the remark following Theofgm 1 show
that Theorenill is applicable to the casezdf(n, Z) acting on the pos-
itive definite matrices. It follows in particular th&L(n, Z) is finitely
presentable.

7

Let Q be an open non-degenerate convex cone in a real vector Epace
Let G be a subgroup dB(Q2), and lety : G — R* be a homomorphism
(R*denotes the group of real number®).

Definition. A normon Q (with respect tgy : G — R™) is a continuous
mapy : Q — R* such that

) v(sX = x(9v(X) for se G, x € Q,
(i) v(X) > oasx— Q-0
(iii) for every xe Qandr> O,
(x+Q)n {x € Qv(x) < r} is compact.

Examples. i) If Qis the cone of positive definite realx n matrices
andG = GL(n,R), thenv(A) = detA A € Q, is a norm onQ for
x : G - R* defined byy(S) = (detS)2.



i) ForanyQ, andG = G(Q)

-1
v(X) :[ fe—<KW>dy*]

Q*
is a norm fory(s) = | dets. 91

Theorem 2. Let Q be an open non-degenerate convex cone in a real
vector space E of dimension n. Let L be a lattice in E, and leteD b
a subset of L0 (Q — {O}) satisfying the density condition. LEtbe a
discrete subgroup of &) such thatl’'D = D, and assume that\P is
finite. Then the subset A@fconstructed in Theorel 1 has the property:
for any normy on Q and any r> o, An L contains only finitely many
points x withv(x) <.

We first prove the following

Lemma 12. For any y € P, there exists & Q such that PMy*) N Q n
Lca+Q.

Proof. We first remark that for any compact s¢t c Q, there exists
¥ € Q such thatk c ¢ + Q. Now, for anyy* € P, PM(y*) is a finite
union of pyramidsPM;, where theM; c M(y*) consists of precisely
n independent elements. It isfBaient to find each preciselyn inde-
pendent elements. It is ficient to find for each ang € Q such that
PMinQNL c g +Q; for, by the remark above, there existe Q such
thata; € a+ Q for eachi, and clearly a will satisfy the condition of the
lemma. O

LetM = {al,...,an} be any one of theVl;. We haveM c L; let

Lo be the sublattice of. generated byM. Let p > O be an integer
such thatpL c Lo. Foranyx e PMNQNL, letpx= 3 g, € Z.
Sincex € PM, and theg; are independent, we have > O for every 92

: 1 . .
i. Letay = = 3 &. Sincex € Q, we see easily tha, € Q. Also,
A;#0

1 _
X—ay = B(Z/iia; - > g)ePMcQ. The set{ax|xe PMNQn L}
Ai#0
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is clearly finite. Hence we hawee Q such that, € a + Q for everyx.
ClearlyPMN QN L ca+Q,and this proves the lemma.

Proof of Theorem 2.Let A = Q N [ JPM(y;) be as in Theorefl 1. Let

iel

g € Qbe suchthaQ N PM(y/) nL C & + Q. For anyr, letV, = {ze

(2 < r}. ThenV; N (g + Q) is compact. Henc¥; N (& + Q) N L is
finite. It follows thatA N L N V,is finite.

Examples. (i) Let Q be the cone or real positive definitex n ma-
trices,I' = GL(n,Z),D = {UU’|U eZ" - {o}}, L = the lattice of

all integraln x n matrices,v(A) = (detA)? for A € Q. Sincevis
constant on the orbits df, TheorenR implies in particular that
the number of orbits of in A n L with determinant less than a
givenr is finite.

(i) Let Q = {(x, v.2) € R3z> Oand® + y2 — 32 < o}. LetL = 73,
and letl” be the subgroup dBL(R3) generated by the matrices

0O 1 0 2 0 3
-1 0 Oland|O 1 O

0 01 1 0 2

It is easy to verify that'Q = Q. Let D = T'{(0, 0, 1}.D satisfies the
density condition. The fact that\P is finite is a consequence of
the following remark: ifD c Q satisfies the density condition and
I'\D is finite, then'\P is finite. In fact letB be a finite subset dD
such thaf'B = D. Then for any* € P, there exists as € I" such
that M(sy’) N A # ¢. The remark follows, SinceM(Z) N A # ¢
for only finitely manyz* € P-note that by assumptior, c Q.

(i) Let K be a totally real extension @ of degreen.
LetT be the group of totally positive units &f. Leto,...,on ben
distinct isomorphisms df into R. We makd" act on the self dual cone



Q- {(tl, .ty €R"t; > Ofor all i} by setting
elty,....th) = (o1(&)ty, ..., on(eth),

LetD = F{(l,...,l}. It is a classical result that for anyl < i < n,

there existse I" such thatri(e) > 1, andoj(e) < 1 for j #i.
Using this, we verify thatD satisfies the density condition. Let
(t1,....ty) € Q; lett; = o. Lete be chosen as above. Then

(€L, 1) (t, 1)y = D t(o ()P

j#i

which tends to zero ag — . It follows as in Exampleii) thatr\P is
finite.
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