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Lecture 1
Introduction

1 Scope of the lectures

In the course of these lectures, we shall consider mean periodic fanc-
tions of one variable. They are a generalization of periodic functions -
a generalization carried out on a basiffatient from that of the gener-
alization to almost periodic functions. This generalization enables us to
consider questions about periodic functions such as Fourier-seasies,
monic analysis, and later on, the problems of uniqueness, approximation
and quasi-analyticity, as problems on mean periodic functions. For in-
stance, the problems posed 8y Mandelbrojt (Mandelbrojt 1) can be
considered as problems about mean periodic functions. In the two final
lectures we shall consider mean periodic functions of several variables

2 Definition of mean periodic functions

We consider three equivalent definitions of mean periodic functions.
A periodic function f(x), defined on the real lin® and with period

a, satisfies the equatiofi(x) — f(x — a) = 0. This can be written
ff(x —y)du(y) = 0, wheredu(x) is a measure which is theftkrence

of the Dirac measures at 0 and a. For our generalization, we consider a
continuous complex valued solution of the integral equation

f F(x— y)du(y) = 0 1)
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2 1. Introduction

wheredu(y) is a measure with compact suppqt# 0. [The support
of a continuous functiorf (x) is the smallest closed set outside which
f(x) vanishes. [The support of a measdgeis the smallest closed set
outside of which the integral of any continuous functitx) (integral
with respect tau) is zero.]

Definition 1. Mean periodic functions are continuous complex-valued
solutions of homogeneous integral equations of convolution fype (1).

The introduction of mean periodic functions as solutions of (1) is
due toJ. Delsarte (Delsarte 1). His definitionff#irs slightly from ours
in that he takedu(y) = K(y) dy, whereK(y) is bounded. WheK(y) = 1
on (Q a), and zero otherwise, the solutions bf (1) arperiodic func-
tions, whose mean value is zero. This is the reason why Delsarte calls
a function whose mean is zero, in the sensd bf (1), a “mean-periodic”
function.

We study the equationl(1), for a givelp.

(a) The solutions of{1) form a vector space over the complex numbers
C. If a sequencéfy} of solutions of [(1) converges uniformly on
every compact set, tb, then f is again a solution of{1). For](1)
can be written as

f f(Y)dvx(y) = 0, dvx(y) = du(x-y) 1)
and [ ) =0— [ 100 =0
With f, each translatef,(X) = f(x — ) is also a solution

of (). Thus it is natural to consider the topological vector space
% = % (R) overC all complex-valued continuous functioriswith

the topology of compact convergence (uniform convergence on each
compact). The solutions dfl(1) form a closed subspacg,ofivari-

ant under translations.

(b) Solutions of[(1) which are of a certain special type are easy to char-
acterize: viz. those of the forri(x) = €% whereA is a complex
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number. For these solutions we have
[ ey o @)

Other solutions of a similar type are of the foriix) = P(x)€,
whereP(x) is a polynomial. FoP(x)eé** to be a solution, we must have
[ P(x - y)e"™du(y) = 0 for all x. Considering this fon + 1 different
values ofx(n = degP), we find that, forP(x)é* to be a solution of[{1),
it is necessary and flicient that

fyme‘”ydy(y) =0 (0O<m< n=degP) 3)

(a system of + 1 equations).

It is easy to solvel(2) and](3) if one considdvKw), the Fourier
transform ofdu : M(w) = [e™*du(x). M(w) is an entire function.
In order thate™* be a solution of[{ll) it is necessary andfgtient that
M(A) = 0. In order thaPP(x)é** be a solution of[{ll) it is necessary and
suficient thatM(2) = M) = ... = MM(2) = 0 whereMD(w) =
(il [ xie?™*du(x). These conditions follow from12) and frorfil(3).
Thus the study of the solutions dfl (1) reduces to the study of the ze-
ros of a certain entire functioll(w).

We call “simple solutions” the solutiorg™ of (Z) andP(x)é** of
@). In French, the produci(x)é** of a polynomial and an exponential
are called “exponentielles-polgnios”; the linear combinations &
are often called “polyahes exponential” i.e. exponential polynomialg;
to avoid confusion, we shall use the term “polynomial-exponentials”
for the translation of the word “exponentials polynomes” - then, the
English order of the term is better than the French one P(¥) is a
monomial,P(x)é* will be called “monomial exponential”. We use this
terminology later. Linear combinations of simple solutions and their
limits are again solutions of (1). We are thus led to another natural
definition of mean-periodic functions (as a generalization of periodic
functions).

Definition 2. Mean-periodic functions are limits i of linear combi-
nations of polynomial exponential¥x)e** which are orthogonal in the
sense of[(3) to a measure with compact support.
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A third natural definition occurs if we consider the closed linearsub-
space of¢ spanned byf € ¥ and its translates: call this spand).

Definition 3. f is mean-periodic if(f) # €.

This intrinsic definition is due to L. Schwartz (Schwartz 1). In order
that f be a solution of[{I1) it is necessary thdft) # €. Thus[1) implies
3). Also (2) implies[(lL). We prove the equivalence later. We thke (3) as
the definition of mean-periodic functions since it is intrinsic and allows
us to pose the problems of harmonic analysis and synthesis in the greater
generality.

3 Problems considered in the sequel
We consider the following problems in the sequel.

(1) Equivalence of the definitionsI(1]] (2) afd (3).

(2) Harmonic analysis and synthesis.

Definition[3 permits us to consider this problem and its solutions
allows us to prove (1).

(38) Spectrum of a function; the relation between the spectrum and the
properties of the function-for example, uniqueness and quasi-analy-
ticity when the spectrum hasficient gaps.

(4) Relations between mean-periodic functions and almost periodic
functions.

There are mean-periodic functions which are not almost periodic.
For examplee® is mean-periodic since**! — e.eX = 0. Being un-
bounded it is not almost periodic. There are almost periodic func-
tions which are not mean periodic. L&tx) = Y a,ét™* be an al-
most periodic function. We can take fot,,} a sequence which has

a finite limit point. Thenf(x) cannot be mean-periodic, as every
eétX(a, # 0) belongs tor(f) and no functionM(w) # O (Fourier
transform ofdu) can vanish ora,}.
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(4a) Are bounded mean-periodic functions almost periodic?

(4b) What are the properties g1} in order that the almost periodic
functions with spectrun,,} be mean-periodic?

(5) Given a setP(x)é"}, is it total in%"?
A set is total in%’ if its closed span i&’. If it is not, is it possible
that{P(x)e*"} is total in% (1), wherel is an interval? For sets of the
type {€4n%} this is the problem posed by Paley and Wiener (Paley-
Wiener).

(6) If f € %(l), is it possible to extend to a mean-periodic function? 6

Problem (3) is related to questions in (Mandelbrojt 1) while problem
(5) is related to the work of Paley-Wiener, Mandelbrojt, Levinson and
Schwartz. Problems (5) and (6) can be posed analogously for analytic
functions in an open set of the plane. This would give a new interpre-
tation of some classical results on Dirichlet series and give some new
results too.






Lecture 2
Some Preliminaries

1 Topological vector spaces

Let E be a vector space over the fighdof complex numbersE isa 7
topological vector space when a topology is giverEgisuch that addi-

tion and scalar multiplication are continuous fréw E andEx C to E.

We will confine ourselves only to those topological vector spaces which
are locally convex and separated. The topology of a locally convex sep-
arated vector spadeis specified by a familyp;}ic; of semi-norms such
that for everyx € E, x # 0, there is an € | with pj(x) # 0. The duaFE’

of E is the set of all continuous linear functionals Bn If X' € E’ we
write X'(X) = (X, X'). ThenE andE’ are in duality in the sense that

D;) (x,x')=0 forevery xe E impliesx = 0.
Dy) (X, xX')=0 forevery xe E’ implies x=0.

D1) is the statement that is the zero functional anD,) is given by the
theorem of Hahn-Banach. (Bourbaki, CHamandlIl).

Condition of F. Riesz. Let F be a closed subspace of E generated
by {X}ic;. In order that xe E belong to F it is necessary andjgcient
that< x;, X' >= Ofor every ie | should imply(x, X') = 0.

The necessity is obvious and thefstiency is a consequence of the
Hahn-Banach theorem.

We recall some examples of classical vector spaces. First comesthe
very well-known Banach spacé®(R") andLP(1"),1 < p < c. LetK

7



8 2. Some Preliminaries

be a compact subset 8.4 (K) is the space of continuous (complex-

valued ) functions oK with the topology of uniform convergence. It is

a Banach space and its dudl(K) is the space of Radon measures on
K.

LetQ be an open subset Bf.€'(Q2) is the space of continuous func-
tions onQ with the compact convergence topology (i.e., uniform con-
vergence on every compact set@j. It is an . # -space (a Frechet
space, i.e., locally convex, metrisable and complete). The€d (&) is
the space of Radon measures with compact supp®tt ithe duality is
denoted by[ fdyu.

D(R") is the space oE*-functions (indefinitely dierentiable func-
tions ) with compact support. It is a®.77-space (inductive limit of
J-spaces). Its dud)’(R") is the space of distributions.

&(R") is the space o€*-functions. It is ans”- space and its dual
&’ (R") is the space of distributions with compact support. (The support
of a distribution is the smallest closed set such that, T >= T.f
vanishes whenevdrvanishes on this closed set.)

These spaces were introduced by L. Schwartz(Schwartz 4).

2 Basis in a topological vector space

Let E be a locally convex separated vector space @/eA set{X;}ic
of elements ok is a total setinE if for every x € E there are sums
N .

Elg'in — xasN — oo (¢, € C).

A set{Xxi}icy of elements oft is freeif 0 = hIlianZg-“,\lxi implies
hIliLno'og',\, = 0 for everyi. el This.implies that ifx = ,\'liL“wZSLin ’\Ilanoo
2 My % thené = ’\IIiLnoof',\l = ,Jlian M-

A set{Xilic| Of elements of | is dasisif it is total and free.

Remark. In order that{x;}ic; be a basis oE it is necessary and suf-
ficient that for everyx € E we havex = I\IIianzg',\,xi and for each
i, |\||'Lnoo &\ = &, the& being uniquely determined. Then teare called
the components of with respect to the basis.
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3 Problems of harmonic analysis and synthesis

Let E be a topological vector space of functions defined on an abelian
groupG; 7(f) the closed subspace spanned by the translatesTiere
may be inE subspaces which are closed, invariant under translations, of
finite dimension> 1, and not representable as a sum of two such sub-
spaces (the subspaces generatéfl by € or by xPé™*, p=0,1,...n,
are of this type); we shall call such subspaces “simple subspaces”.

The problem of harmonic analyscan be formulated as the study of
simple subspaces containedriff). The problem of spectral synthesis
is this : Is it possible to considdras the limit of finite sumsy, f,, of f,
belonging to simple subspaces contained(if)? Practically, we know
a priori a type of simple subspaces, and we ask whether analysis and
synthesis are possible with only these simple subspaces; if it is possible,
we know perfectly the structure ef f), and we can recognize whether
the only simple subspaces are those we know already. The problems
of analysis and synthesis are usually solved by means of the theory of
duality. We give here a well-known example for illustration.

Let G be the one-dimensional tords(circle) and letE = #(T) .
Then we can write the equation:

1 .
N f -inxg
=5 [ f9e
as ae" = iff(x)e‘"”‘(x‘y)dx: iff(x+y)e‘"”‘dx
2t Jt 27 Jt
If a, # 0 thene™ is the limit of linear combinations of translates

of f, as the following calculations, taking the uniform continuity of
f(x)€™ into account, show:

|ané”y - % D 061 =) F(x + y)e™
1
< Z Z

Conversely ife"™ e 7(f), an # 0. For, given arz > 0 ands < 1 we

Xi+1 . .
f [ F(x+y)e™ = £(x +y)e ™| dx‘ <e.
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haveldW — 3 ;i f(X +Y)

|1— (Z aiei”’“)an’ < %fT

This givesa, # 0. So in order tha#™ e 7(f), or again, forr(€"¥) c
7(f), it is necessary and fiicient thata, # 0. Thus to specify the
“simple subspaces” of(f)[ viz. 7(€")] we define thespectrum $f)
of f to be the set of integerk, such thag'™ e 7(f). Thena, € S(f)
if and only if ad, # 0. On the other hand the answer to the problem
of spectral synthesis is given by the theorem of Fejer. (Titchmarsch p.
414) (Zygmund 1).

A second method for solving the problem of harmonic analysis is to
apply the condition of Riesze™ e (f) if and if every linear functional
vanishing over the translates 6falso vanishes &"*. In other words
f(x + y)du(-x) = 0 for everyy implies [ €™du(-x) = 0. Butif f ~
Y a,d™ anddu ~ 3 b,e™ are the Fourier developments dfand du
then [ f(x+y)du(x) ~ ¥ anbné™ and [ €™du(-X) = bn. Then, ‘anby, =
0 for everynimpliesh, = 0" follows from a, # 0. The converse is easy.

We can have such a theory f@& = Z, the group of integers or
G = RandE the spaces” or LP,1 < p < c. Obviously we cannot
have harmonic synthesis fof° with the strong (normed) topology. For
example in the case @& = T, the circle, this will imply that every
function in L*(T) is continuous. But for the spade€®(Z) or L*(R)
with the weak topology [ for this notion cf. (Bourbaki chap/)] the
problem of harmonic analysis and synthesis is not solved. For example
in L=(2) let f = {fy} and define the spectrug(f) of fby 1 € S(f) =
(&) e 7(f). If for everyg e L1(2), such thaty gnfrem = O for every
mwe haveY g,@!" = 0, then{¢""} € 7(f). Conversely if, for every
A € S(f), Y g™ = 0, does it follow thaty, gib, = 0? This is a
problem about absolutely convergent Fourier series.

< gforallyand

eV — o f(x + y)|dy.




Lecture 3
Preliminaries (Continued)

1 Fourier transforms of distributions with compact
support and the theorem of Paley-Wiener

Let T be a distribution (in particular a measure ) with compact suppadg.
We call thesegment of supporf T the smallest closed intervad,[b]
containing the support of. Let du be a measure with compact sup-
port. Its Fourier-transforne’(du) = M(w) = [ e*¥du(x) is an entire
function. Writingw = u + iv we have:

||v|(w)| <ebvf|dﬂ’,VZ 0;
||v|(w)| <ea"f|du’,vso

where B, b] is the segment of support @u. ThusM(w) is an entire
function of exponential type bounded on the real line, i.e.,:

|M(W)| < Ke™: M(u) = 0(1) 1)
Moreover
M(iv) = 0(®Y), v > 0 M(iv) = 0(™),v < O. 2)

We shall try to find, whether the conditio (1) isfBcient in order
that an entire functioM(w) be the Fourier-transform of a measuke

11
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with compact support, and whether conditih (2) ifisient to prove
that the support oflu is contained ing, b]. In fact, (1) is not séicient,
and we must replace it by a slightly stronger condition.

Theorem of Paley-Wiener. Let(M) be an entire function of expo-
nential type satisfying the condition:

M@ < Ke™: M) = o(&) )

Then Mw) is the Fourier transforn¥%’(du) of a measure with compact
support.
The proof runs in three parts.

(a) Theorem of Phragmen-Lindel of: le(z) be a function, holomor-
phic for|arg z| <a< g; we suppose that(z) = 0(e/1?) for every
e > 0 and thaty(2)| < Bon|arg Z = a. Then|p(2)| < B, when
largZ < a

We takeg(2)e ¢ and to this we apply the principle of Maximum
Modulus to get the result. (Titchmarsh 5.62)

(b) The resultd) is translated into a theorem for a functigfw) holo-
morphic in 0< argw < g

Let y(w) be holomorphic in this domain, bounded on the boundary,
and let §) y(w) = 0(@E™*) for somes > 0 and for every; > O.

Theny(w) = 0(1) when O< argw < g

We takeyp(2) = y(w), z = w?~¢ and apply &). We can replaces by
w(w) = 0(eM") for somea < 2.

(c) Proof of the theoremt by (1), the functionw?M(w)e°¥ satisfies
the conditions oflf) in 0 < arg w < g and%r < argw < 7 and

the functionw?M(w)e " satisfies the same conditions in the other
eM? 2

quadrants and so we haM(w) = O(W ). AsM(u) = O(@)’ M(u)

admits a co-Fourier transform (Conjugate Fourier Transfoffifx),

given by
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1 - o . ,
f(x) = ZfM(u)e'X“du.M(W)e'XW is an entire function. We ap-
ply Cauchy’s theorem to this function along the rectangular contauar
with sides—-R < u < RR+iv,0 < v < Vo;u+iVg,-R < u <

R;,—R+iv,0 < v < v,. LettingR — o we have the equation
1 - 1 - . <
EfM(u)e”‘“du: EfM(u)e”‘“du,w: U+iVo, [ :_{o Therefore

1 ; . .
f(xX) = > f M(w)e*du. Supposec > c. Then there existe’ with
X>c >,
Y , ec|v|7(:’v

e
K-—e <K .
|wi2 1+u?

’M(W)eix""

This is true for every = vp > 0. Allowing Vo — oo we find f(x) =
0. In a similar manner, ik < —c we havef(x) = 0. This means
that the support of (x) c [-c,c], ThenM(w) = f f(x)eWdx =
[ e ™Wdu(x), du(x) = f(X)dx

2 Refinements and various forms of the theorem of
Paley-Wiener

The second part of the theorem of Paley-Wiener consists in proving that
the condition[(R) (which is merely a condition on the behaviouvigiv)

on the imaginary axis) is $hcient to know that the segment of sup-
port of du is [a,b]. This second part is due to Polya and Plancherel.
(Plancherel).

Theorem. We suppose that the entire functior(Wj satisfies the condi-
tions:

M(w) < Ke™ and M(u) = 0(&) (1)
M(iv) = O(®Y), v > 0; M(iv) = O(€™), v < O. 2)

Then Mw) = € (du) and the segment of support gi & contained
is [a, b].
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Proof. We have seen, from the first part of Paley-Wiener theorem, timt
(') gives us thaM(w) = €' (du), with du = f(X)dx, and f(x) = O for

IX| > ¢. Condition (2) gives’M(w)eib""| = 0(1) on the positive part of the
imaginary axis. Then it is easy to see ttiéx) = O for x > b following

the same line of argument as in pamt ¢f the first part of the theorem of
Paley-Wiener. In a similar fashion we prove th@k) = Oforx<a. O

Now we studydu = f(x)dx, wheref € Z(R) and the segment of
support off is [a, b]. ThenM(w) = %’(du) satisfies:
() M(w) is an entire function of exponential type wii(u) =

0(—) for every integen;

un |
OGN _ gy o OO

V—o0o

(2" Jim sup

For M(w) = if(x)e bwgyx = — 1

> 2n(|w)” [ 1O (w)e-*dx for every

So we have (1). Conversely if we have’), thenM(w) = %(f)

with f € 2(R), for we have already (x) = %fM(u)e‘X“du and 1)
gives us thatf € 2(R).

(27) implies (2) with @ andb’ in (2'), @ <a< b < b’, and so we
have the segment of support bactually [, b]. Hence

Theorem. Conditions(1””) and (2") are necessary and ficient in or-
der in order that Mw) = € (f) with f € 2(R) and support of f= [a, b].

Now we generalize the theorem to distributions. ket &”(R)
be a distribution with the segment of suppatlj]. Its Fourier trans-
form is T(W) = (r,e™). We know thatr is a finite linear combi-
nation of derivatives of measures (Schwartz 4, CHaptheorem 26)

T= Z (d,un) SoT(w) can be written as:

n

T(w) =< Z dun, W >=< dun, +(;j—xne"xW >=IW"i"Mp(W)

Thus we havd (w) satisfying the following conditions:



3. Theorem of Hadamard 15

(1”7) T(w)is an entire function of exponential type w{th(u)| = 0(ul™)
for someN.

= b, lim inf M =a,
V——00 V

(2”7) lim sup

log|T (iv)|

V—o00 \'%
Conversely lefl (w) satisfy conditions (1') and (2”"). From (1)

we can writeT (w) = P(w)M(w), whereP(w) is a polynomial andvi(w)

N
satisfies (1). This implies thatM(w) = %(du) andT(w) = € (3 aq
o

n
(;j_wd“) =% (r). T € &'(R). We find as before that {Rimplies that the
segment of support afis [a, b].

Theorem. Conditions(1”) and(2”") are necessary and gicient in or-
der that T(w) = %'(7) with 7 € ¥’(R) and support of = [a, b].

The theorem of Paley-Wiener gives an easy characterisation of the
Fourier transforms of thé € Z(R) or T € &’(R). The original form
of the theorem of Paley-Wiener states that a necessary dfidiest
condition in order a function be the Fourier transform of a functon
&’ N L2, is that it should be of exponential type, aad_? on the real
axis. This last statement results from the preceding one, concerning the
Fourier forms ofT € &”’, and from the invariance df? under Fourier 17
transformation.

3 Theorem of Hadamard

We recall the classical theorem of Hadamard (Titchmardodt) M(w)
be an entire function of exponential type with zéotiser than 0XA,}.

Then Mw) = K@K [ (1— Vﬁv) e/t and ), P
n

Later on we shall give more properties of functions of exponential
type.

< 00
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4 Convolution product and its simple properties

Let f andg be two functions (integrable, continuous@® functions)
with segment of supporg]b] and [c,d]. The convolution off andg is
the functionh = f « g defined by

h(y) = f Fy - X)g()dx = f F()gly - ¥dx

The convolution product is commutativé £ g = g = f), associative
((f = g) =k = f = (g = k) and distributive with respect to addition.

Fory < a+ c,h(y) = 0 and fory > b+ d, h(y) = 0. So the segment
of support off « gis contained in the segment of supportfef segment
of support ofg.

If ¢ e, f h(y)£(y)dy = H o(x + X) f(X)g(x)dxdX.

This allows us to define the convolution of two measures with com-
pact, support by means of duality. The convolution of two measures
duy, dup € €’ is a measurey € €, dv = du; * duy defined by

(Cdv) = [ o+ y)dur(9dua(y)

for every¢ € ¥. The convolution product is again associative, com-
mutative and distributive with respect to addition. We have segment of
support ofdy c segment of support afu;+ segment of support afu,.
Indeed if the support ohc (-0, a+c) or if the support of c (b+d, )

then [ ¢dv = 0.

We have the same definition, by duality, for two distributions with
compact supportS = Tq = T, is the distribution defined byS, ¢) =
(E(X+Y), T1x. Toy) for everyl € &, T1x. T1y being the Cartesian product
of T1 andT,. (Schwartz 4 ChapV).

By considering the duality between distributions (respectively mea-
sures) with non-compact support amt{R) (respectively the space of
continuous functions with compact support), we can define in the same
way the convolution of a distribution; (respectively measuidu;) and
a distributiveT, (respectively measumdu,) with compact support and
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S = T1x T, (respectivelydy = du1 *duy) will be in general a distribution
(respectively measure ) with non-compact support. For example

d
0ax f=f(x—a) = fy ax f = f’ etc. (Schwartz 4, Chap. VI).
The convolution of several distributions (or measures), all but one

of which has a compact support, is associative and commutative.
If duy, dus, T1, T2 have compact supports, we have immediately

@(du1 * duz) = € (du1) 6 (dua), €' (T1 + T2) = €(T1)€(T2)
Ty« @, = d¥(Ty % To)

(¢ = (Ty, €™) = Fourier transform off). We can extend these equal-
ities to more general cases. For example, the first holdgsifhas a

compact support angﬂ‘d,uz < oo; the third holds whenever; has a

compact support.

The convolution by a measure with compact support transformsa
continuous function into a continuous function, and also (¢€arite-
gration dans les groupes topologiques” by Andre Weil) a function which
is locally € LP into a function which is locally_P(p > 1).







Lecture 4

Harmonic analysis for mean
periodic functions on the real
line

1 Equivalence of definitions | and IlI

The study of the problem of harmonic analysis and synthesis for mean
periodic functions will allow us to prove the equivalence of our defi-
nitions of mean periodic functions. We take definitidh as the basic
definition, viz., f is mean periodic ifr(f) # ¥. By the condition of
Rieszz(f) # ¥ if and only if there exists du € %, du # 0, orthogonal
to fy for everyy. Writing this in an equivalent form as

f «du = 0,du # 0 we see that definitiorisandl1l are equivalent.

2 Carleman transform and spectrum of a function

As preliminary to the study of harmonic analysis and synthesis we in-
troduce the Carleman transform of a mean periodic function

We put  f*(x) =0, f7(x) = f(X) for x< 0
ff(x)=f(x), f°(x)=0 forx>0

From (1) we can defing(y) = f~ «du = —f* « du.

19
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Lemma. Segment of support of support oEgsegment of support ofd

Let [a, b] be the segment of support dfi. Then
aly) = —f f(X)du(y — x), and y <aimplies g(y) =0.
(o]
0]
aly) = f f()du(y — ), and y < bimplies g(y)=0

Let M(w) = [ ™du(x) andG(w) = [ e™Wg(x)dx

Definition. We define the Carleman transform of a mean periodic func-
tion f to be the meromorphic functida(w) = G(w)/M(w).

This definition is independent of the measdge In fact suppose
f«du=0andf «xdy; = 0. Letg; = f~ = du;. We haveg; = du =
f=sdug*du = f~xduxdus = g=dug and saG(w)M(w) = G(w)M1(w).

The original definition of Carleman for functions which are not very
rapidly increasing at infinity cannot be applied to every mean periodic
function. But we shall see later that his definition coincides with ours in
the special case thgit(x)| = 0(€?¥). (Lecture VI).

Is the quotient of two entire functions of exponential type the Carle-
man transform of a mean periodic function? Let us look at this question.
If F(w) = G(w)/M(w), G(w) andM(w) two functions of exponential

type, in order that (w) be the Carleman transform of a functid(x)

it is necessary that #ég, bg; am, by are the constants of condition’)2
(lecture[3) forG and M,am < ag < bg < by. Examples may be
constructed to show that this condition is noffmient even to assert
that F(w) is the Carleman transform of a mean periodic distribution. (A
mean periodic distribution is defined by the intrinsic prope(ty) # 2’
(lecture V [3).

We now proceed to relate the “simple solutions” to the poles of the
Carleman transform.

Lemma.

f1(X) = € f(x) = Fa(w) = F(W + 2).
Set iy = edy, f1(X) = e F(X).
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22 Thengi(X) = e*g(x). For f «du = 0 = fe ™« e *dy = 0. So
fi«dus = 0and

g1(x) = ff * dug = € F7(X) » € Xdu(x) = e X(F~ * du)
= e ¥g(x).
Thus we havés; (w) = G(w + 1) and soF1(w) = F(w + 4).
Now €™ e 7(f) & (f *du = 0 = €™« du = 0 = M()).

P(X)€™ e 7(f) & P(X) € 7(fy), f = e*f(X).
P(x) € T(f1) © P(x+Y) € 7(f1) for everyy.

HenceP(x) € 7(f1)) © xP e 7(fy), p=0,1,2,...... n = degree of
P.
Now xP € 7(f1),p=0,1,...... ,h o foreverydug with fy«du; = 0
we have
M1(0) = M{D(0) = = M"(0) = oMy = ¢(d
10)=M70)=...... 1 (0)=0(M1 = ¢(du1))
This proves
Lemma.
P(x)e™ € 7(f) & for every ¢iwith f = du = 0,
M) =MD = =M =0
(M = % (du), n = degree of B
We shall prove that in this cades a pole of order n( = degree of 23
P) of F(w).

Theorem. P(x)é** € 7(f) & A is a pole of order> n (degree of P) of
F(w).

First we prove thafl is a pole. Without loss of generality we take
A = 0 (replacingf by f1, if necessary). Suppodé(0) = 0.
If G(0) # 0 there is nothing to prove. SuppdS€0) = 0. Then we

can define
dua(¥) = f du(t) - f " dut)
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o= [ w ot =- [ gt

M) = f &g () = Tn)

—iG(w)

GiW) = f &g, (x)dx =

0
Moreover we have:(x) = f f~(t)du1(x—t) because the derivatives

are the same, and the functfco)ns are 0 witem> +oo. For a similar
reason (withx — —co) we havegi(X) = —f fr(t)duar(x — t). Thus we
havef « du; = 0 and soM1(0) = 0. If G1(0) # 0, thenF(w) has a pole
at the origin. 1fG1(0) = 0 we iterate this method and finally arrive at
Mm(W) = —iMmp_1(W)/W, Gm(W) = —iGm_1(wW)/w with M»(0) = 0 and
Gm(0) # 0. Thus we see thatis a pole.

To see thafi is a pole of ordek n (degree ofP) by the above lemma,
we have merely to replace the conditib{0) = 0 by M(0) = M1)(0) =

... M™(0) = 0 in the above construction.
The above construction gives us the following corollary.

Corollary. Suppose N1) = 0 and A is not a pole of Fw). Then
M(W)/w-2 = €¢(pa) with f « p; = 0 and segment of support of, -
segment of support ofd

Definition. The spectrun$(f) of a mean periodic functiori(x) is de-
fined to be the set of poles &f(x), each counted with its order of mul-
tiplicity.

3 The problem of harmonic synthesis

It will turn out that the only “simple subspaces” # are generated

by the translates of a polynomial exponential. In order to answer the
problem of harmonic synthesis, we shall try to prove thaan be ap-
proximated by sums of polynomial exponentials belonging(f9.

Lemma. Supposede ¢’ and f mean periodic. Thegn= f «dvis also
mean periodic.
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This results fromp + du = f + dv = du = 0.

We shall study the spectrum @f Sincedv has compact support,
for |x| > Xg, Xo suficiently large,o~ = f~ « dv coincide. Thus we can
write ¢~ = ™« dv + h, h(x) being a function with compact support. Let
@, N, H be the Fourier transforms ¢f dv andh. We have the following
equations:

@ du = (f7 = dv s du) + (h=du)
O(W)M(W) = G(W)N(W) + H(w)M(w)
d(w) = F(W)N(W) + H(w)

Thus we have the following lemma : 25
Lemma. The spectrum ap = f = dv is the set of poles of (#)N(w).

Now our problem requires for solution the result tha(x)e? «
dv = 0 for everyP,(x)€™ e (f) implies f «+ dv = 0. This is just
the reformulation of the problem using the condition of Riesz. Now
Pn(X)€ « dv = 0 for everyP,(x)é* e 7(f) implies N(w) vanishes on
the spectrum of. Thus,F(W)N(w) is an entire function. By the above
lemma, the solution of the problem of synthesis will follow if we prove
that a mean periodic functiohwhose spectrum is void is zero.






Lecture 5

Harmonic synthesis for
mean-periodic functions on
the real line

1 Solutions of the problem of harmonic synthesis

We give the solution of the problem of harmonic synthesis by provizgy
that if the spectrum of is void thenf is identically zero.

Suppose that (X)= du = 0 and the spectrum of is void. First we
prove that () f = xdu = 0. We shall suppose thdt:t = pdxwherep is
suficiently differentiable (say\N-times diferentiable). This can be done
by convolutingdy, if necessary, with a suitableftirentiable function.

In this case, we have

% (du) = M(w) = 0(iN) for someN > 2.

u

The corollary of a theorem in 2 of lectul¥, gives us the following
lemma:

Lemma. Suppose NR) = 0and Hw) has no pole ai. Then Mw)/(w—
A) = €(pa), with f « p, = 0and segment of support of, g segment of
support of g.

25
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Now by the theorem of Hadamard, we have
_ AW, _ ™
M(w) = €(p) = Ke2"wK l—[ (1 )eﬂ and Z g

/()
o = 2wt 1)

SinceM’(w) = €' (-ixp) andM(w)/(w — 1) = €' (p,), we have

. 1
¢(-ixp) = a¢'(p) + k&' (po) + Z(%(mn) TG
n
From the equation«) we want to have the equation
1
—i = k - *k
ixp=ap+ po+Zn](pAn+ﬂnp) (*)
and the equation
f*(—ixp):af*p+kf*pO+Z(f*pAn+if*p):O. (***)
n An
To pass from£) to (xx), it is sufficient to have convergence In
for the summation in«) and to pass formx) to (= = %) it is sufficient to

have uniform convergence ir+), since each term in it has support in
the same interval.

We write
XoW) = M(w) . MWw) _ wMw) _ w2 M (w)
W— Ap An An(W—=27)  An(W— AW
o= de] > 2 = [ < 2w M@ aof )
An
|—| > W= o > 12 |xn| < 2wMm@)|/[a> @)
Wl <1= | )|< s | v )|<| sup_M(w)
4IWI2
= |Xa| < o, S |M(W)| for|an| > xo. 3)

W —w|=2
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Since[M(w) < Kie?/wN| for someN, we have, in each of the

above three casgX(u)| < K/|u|N_2|/ln|2. Now we have a uniform ma-
jorization of each term in the summation of (*) so that the sum is ais-

1
= 0(—=2). Thus
(lenlz )

we have ¢ = %), i.e., f « xp = 0. By iterating this process, we have

f « h(X)p(x) = 0 for every polynomiah(x). This implies thatf fy -
X)e'*p(x)dx = 0, since on the support gi(x) one can approacd*
uniformly by the polynomial$i(x). In other wordsg’(f(y — X)p(x)) = 0

for everyy. By the uniqueness theorem on Fourier transform, we have
f(y — X)p(x) = O for everyy. Thusf(x) = 0, which gives the

solutely convergent and we also h#ﬁan + P/A,

Lemma. If the spectrum of f is void, £ O.

In the last lecture we have seen that this lemma gives us the follow-
ing theorem:

Theorem. Suppose(f) # ¥. f belongs to the closed subspaces span-
ned by the “polynomial exponentials” in(f). Thusz(f) is the closed
span of “polynomial exponentials” contained in it.

In this theorem we have a solution of the problem of harmonic anal-
ysis and synthesis of mean periodic functions.

2 Equivalence of all the definitions of mean periodic
functions

The above theorem enables us to prove the equivalence of our deBnition
stated in the introduction. Using the condition of Riesz we have already
proved the equivalence of definition | and lll (lecturéi4, 1). We haens

in the introduction that definition Implies definition I. Our last theorem
has just gives us the result that definition Il implies definition II.

Theorem. Definitions |, Il, I, of the lecture lare equivalent.

The equivalence of definitions | and Il allows us to define the mezm
period of a mean periodic function.
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Definition. The mean period of a mean periodic function is defined as
the infimum of the lengths of the segment of support of measiwes
orthogonal tor(f).

Remark. This definition implies that if = 0 on a segment(a+{+¢),

e >0, thenf = 0. Let¢ be the mean-period df, and supposé = 0 on

(0, ¢ + €): theng* = 0, and hencé& = 0, and sof = 0. This means that

a mean-periodic function cannot be zero on any interval of length larger
than its mean-period, if it is not the zero-function. We shall see better
results of this type (lecture 9).

In the next lecture, using definition 1l, we shall develop various
equivalent forms of this definition.

3 Mean periodic C* - functions and mean-periodic
distributions

Just as one defines mean periodic functions by the intrinsic property
7(f) # €, for f € €, one can define mean periodic’- functionsf or
distributionsT by r(f) # &, f e K orr(T) # 2, T € 2’. (Heret(f))
is the span of the translates fafin the space consideretbr example, if
fed&, “r(f)"in €is not“r(f)’"in" &”, which again is not#(f) in 27,
but,asf c € c &', “r(f) in & is dense in ‘r(f) in €”, which is dense
in “7(f) in 2”. We can have definitions similar to definitiohsandlIl,
by replacingdu with T € &” whenf € & and withp € 2 whenT € &’
It is possible to develop the whole theorem in particular the equivalence
of the definitions, by considering harmonic analysis and synthesis. In
obtaining the criterion for simple subspaces the same reasoning applies,
with T € &’ or ¢ € Z playing the role otdu. The proof of the theorem
on synthesis will-depend on the lemma in 1. The same proof holds if
one replacedt(w) by € (T) with T € & or €(¢) with ¢ € Z. In either
case we get’(fy(—x)p(X)) = 0(€'(Typ(x)) = 0) for everyy, which gives
us by the uniqueness theorem that O(T = 0).

If a mean periodic function (distribution) is als&& - function, itis
a mean periodi€*- function. In other word$1.P.& = (M.P¥)N & =
(M.P2)n&. Forif f € & be such that is a mean periodic distribution
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then there existg € & with f x¢ = 0. Buty is again a distribution with
compact support; sb € M.P.£. In the same way, if € (M.P.¥) N &,

f € M.P.&. Without confusion we can say that a function is mean
periodic and &*- function or a mean periodiC*-function. We have
alsoM.P.% = (M.P2)N%.

4 Other extensions

By the method we used in lectuké 4 dnd 5, it is possible to develop
the theory of harmonic analysis and synthesis for functions which are
“mean-periodic on a half-line”, i.e., continuous functions oypf) such
that their negative translate$,(x) = f(x — @),a < 0), restricted to
[0, ], are not a total set in the space of the continuous functions on
[0, o0], with the topology of compact convergence (see Koosis (2)).
Another method seems to be necessary in order to study mean-
periodic functions orR" (see Malgrange, Ehrenpreis, and ldct] 23 and
[24) or mean-periodic functions (sequence)Zir (whose theory was
given, quite recently, by Lefranc).






Lecture 6

Mean period and fourier
series

1 Mean period

The equivalence of the definitions of mean periodic functions allows3as
to define the mean period of a function, or again, the mean period related
to its spectrum\, in different ways.

Definition Il can be put in a dierent form. Leté, be the closed
subspace spanned I{))ype”’(} ()p+1 € A (We use the notatiom]p,; €
Aif 1 € A, at leastp + 1 times). We have eithefy, = € or €A # €.
Definition || means:f is mean periodic iff € ¥, and%x # €. Then
S(f) c A; S(f) being the spectrum of.

We recall (lect[R,[11) that given a closed inter& (1) is the space
of continuous functions oh with the topology of uniform convergence;
¢’ (1) is the space of measure with support inVe defineg, (1) as the
closed subspace generated{B9€} (1)p.1 € A.

Definition of mean period

1. Mean period of a mean periodic function.

We recall this definition from 2, lectufd 5. The mean period of a
mean periodic function is defined to be the infimum of the lengths of the
segments of support ot L 7(f).

2. Mean period related ta\.

31
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(a) It is the common mean period of functions with spectrangfor
which 7(f) = %4). Now we use the fact thagps(l1) # Z(l) is
equivalent to saying that there exists a measirerthogonal to all
xPeX with support ofdy c I.

(b) The mean period,, is the infimum ofl wherel is such tha@x(l) #
%().

(c) The mean periodl,, is the supremum of wherel is such that
Ea(l) =7(1).

(d) The mean period,, is the infimum of lengths of segment of support
of measurelu orthogonal tac"é**,n=0,..., p, (1) p+1 € A.

(e) The mean-period relatedAais the infimum of thd.” such that there
exists an entire functioM(w) of exponential type withtM(w) =

0E2" ™). M(A) = 0. M(U) = O(1)(u] — o).

(f) Same definition, withvi(u) = O(ulN) for oneN = N(M(u)), instead
of M(u) = 0(1).

(g) Same definition, wittM(u) = 0(u|™") for eachn, instead oM (u) =
o(uM).

The equivalence betweed)(@nd €) is a simple consequence of the
Paley-Wiener theorem (leck] 3). The equivalence betwegar(d (f)
is obvious, because multiplication by a polynomial does ficca the
exponential type of an entire function. The equivalence betwégn (
and @) depends on the following remark: given> 0, the function

® = (W) T 229 \ith S am = 3 |an] < &, satisfiesb(w) = 0(e™)
1 an 1 1

and®(u) = 0(u|™") for eachn. Then, if M(w) satisfies the conditions in
(e), M(w)d(w) satisfies those ingj (with L’ + £ instead ofL’).

The equivalence betwees)((f) (g) shows that the mean-period re-
lated toA would be the same, when, defined either from@atinction
or from the distribution of spectrum.
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Half of the mean-period has been called by Schwartz “radius of to-
tality” associated with\ (Schwartz 2) (because of the definitia))( In
(Paley-Wiener), (Levinson), (Schwartz 2), problems of closure séta
of exponentials over an interval are considered, which naturally lead to
the calculation of the mean period related with a sequence

In this direction, the simplest facts are the following.

Theorem. Let L be the mean-period &. If > % < oo then L= 0,
AeA
Further if 1, — Dp = 0(1) (N » *),4_.n = —An(n = 0,1,...,), and

A = {An}, then L= 27D.

) - 1
Proof of the first part: LetA = A1UA,, A; finite,and Y — < e&. As

5 A€EN |
(sin2u)? < A 5, the function
1+u
w2 w2\ (sin 2w/|A?
- Z BB
/1;1 2 /1;2 2 2w/|A

is O(uiN) on the real axis wheiN is large enough of exponential typas
< 4g,andM(2) = 0 for A € A. According to definition {), L = 0.

For the second part, the proof depends on an estimfﬁs{b#?) =
1 n

M1(w). We shall see (lecti10) thadl{(w) = 0€®™). Moreover, a
careful calculation showM(u) = 0(uN) for N large enough (Paley-
Wiener p. 93 - 94) According to definitionf},L > 27D. From the
Jensen formula we hate< 237D (lect.[11).

In lect.[12 we shall prove > 27D max, WhereDmax is the maximum
density of Polya of the sequence (see appendix 1). This inequal-
ity, together with the above theorem, led Schwartz to the following
hypothesis; ifA = {1,} is real, symmetric{_, = —1,) and has a den-
sity lim /l_nn = D, thenL = 27D. In (Kahane 1p.57) this equality is
given as a consequence of the following statement. each analytic func-
tion f € ¥ (1) is continuable into an analytic functiohe % (). This
last statement was not proved, and it is not at all equivalent to the known
results about continuation of analytic functions (léct] [18, 17). In fact,
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Kahane’s statement as well as the Schwartz hypothesis are false, since

we can construct a real symmetric sequencef density zero, whose
mean-period is infinitely (see appendix 2).

2 Fourier series of a mean periodic function

We shall study the Carleman transfof(w) of f in order to define the
Fourier series of.

If ’f(x)| < ¥ then we define with Carleman (Carleman)

0 S
F+(W) - f f(X)e_iXWdX’ F_(W) = — f f(X)e—iXWdX
- 0

Whenw = u+ iv, F* is defined and holomorphic m> aandF~ is
defined and holomorphic m< —a. We can write

0
Fr(u+iv) = f f(x)e”XeXdx = € (e f v fixedv > &

F(u+iv) = €(-e”*f*),vfixedv < —a

Supposef is mean periodic and lef = —f* « du = f~ « du. Then
(see lectlL F14)"*f~ « €*du = €*g; M(u + iv) = €("*du); G(u+iv) =
¢(€%9); F*(u+ iv)M(u +iv) = G(u+iv),v > a; F~(u+ iv)M(u +
iv) = G(u + iv),v < —a, whenv > a, we haveF™ = F and when
v < —a,F~ = F. Hence the definition oF(w) is consistent with the
definition of Carleman. We shall use this interpretation of one definition
of the Carleman transform to define the Fourier seriek of

Supposen(x) = 3 AxPe?* with A = A(4, p, ¢) and the sum a finite
sum. Then we have the following equation:

0
W) =) A f XPe X Deix = " Apl/(i(w - )P
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Supposef is the given mean-periodic function; there is a sequence
of finite sumsp € 7(f) tending tof in ¢ (lect. 51). Letdu be a measure
with the segment of support-{, 0) such thatf « du = 0, * du = 0, 37
sincep —» fin %, - f~in % andy™ «du — gin ¥. Hence
d(W)M(w) — F(w)M(w).

Therefore ¢)A(1, p,¢) — A(4, p) where the term containingv(—
A)~P~1in the development of (w) is A(1, p)p!/iP*(w — )P,

Definition. We denote the polar part in the expansioiir6fv) by C(f) =
> A1, p)p!/iPTL(w — 2)P+L. TheFourier series of f is defined to be the
formal sum.#(f) having an expansion of the following form

f~s(f= > AdpxPe™,

() p+leA

where A4, p) is the term obtained from the polar par{ € of the Car-
leman transform Ew) of f.

From (), taking into account the remark at the end of ledt] 2 2, we
have:

Theorem. Supposer(f) # €. The ¥ e 7(f) form a basis ofr(f).
Each f € 7(f) admits a Fourier development which is the formal sum
F(f) = 3 A, p)xPe*, with respect to this basis and the formal

APHleA
Carleman transform of this sum is the polar partf¢ of F(w), C(f) =

5 A4, p)p!

I ip+1(W_/l)p+l'
Corollary. Each simple subspace f is generated by a finite number
of monomial exponentialP&™*, p=0,1,...n

Remark. The functionf e 7(f) # % is uniquely determined by its
Fourier series.#(f). In other words, if all the A, p) are zero, then 38
f=0.

In (Kahane 1)F(w) is called a “Fourier-transform” of; it is not a
good definition. Itis possible to define a kind of Fourier-transform in the
following manner. Consider the operatinj’ defined for functions an-
alytic in the complex plane b§D", ¢(w)) = ¢(P(2). The Fourier trans-
form %’(f) can be defined as a formal linear combinatiorDj’f such
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that.7 (f) = %(%(f),e“"’x)- anFjC(f)(w) = %(%(f)(w’), w—w’>; for
example, if the spectrum is simple,
%(f) =2t ) ADY, 7 (f) = > AWEX,C(f) = > i(x(_ﬁ)ﬁ)

Let us find the relation between the Fourier seriesf aind f =
dv,dv € ¥”. C(f = dv) = polar part ofC(f)&'(dv), for if ¢ — f in
C,pxdv » fxdvand?(f «dv) = €(f)¢(dv) + N. Therefore
F(f «dv) = 3 AL, p)(XPE> « dv) = () * dv.

The definition of Fourier series of a mean perio@i¢—functions or
distributions is given in the same fashion. Comparifigl) and. 7 (T =

d—X) we have:

Theorem. The derivative of a mean periodic distribution T, is mean
periodic and its Fourier series is obtained by deriviggT) formally.

We have a similar theorem for the primitive of a distribution.

The primitive T of a mean-periodic distribution T is mean-periodic,
and its Fourier series is obtained by takingamal primitive of .#(T).

For, there exist® € 7, ¢ # 0, such thall = ¢ = 0; thenTy x¢” =0,
andT; is mean periodic; the property of its Fourier series depends on
the precedent theorem.



Lecture 7

Bounded mean periodic
functions and their
connection with almost
periodic functions

Let f be a bounded mean periodic function, i|él,< M, f € €,7(f) # 40

0
%. In this case the Carleman transfornFign) = f f(X)e™Wdx w =

0
; _ —iXW VXJy — =
u+iv,v > 0, andF(w) = - [~ f(x)e™dx v < 0. As_{o e”dx v

—00

for v> 0, and f eXdx = % for v < 0, we have in both casés(w)| <
c

M o . :
vk This implies the spectrum is real. Taking the polar development of

F(w) in A (that gives the principal part whemtends tol), we see 9)
the spectrum is simple®® the Fourier cofficients A(1) are bounded:

|A(1)| < M. Thus we have proved:

Theorem. A bounded periodic function has its spectrum real and simple
and its Fourier cogicients are bounded.

Supposéf| < M, f” chtinuous andif”’| < M7 £ is again mean-
periodic, andf ~ ¥ AQ)é™ = 7 ~ — Y A()A%€™ and f” is again

37
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mean periodic. Thusl?A(1)] < M”. Sinced € S(f) are the zeros of an

entire function of exponential typé, ﬁ < oo. Thus the Fourier series
. i 1 . .
of f, being majorized by 2 is absolutely convergent and $as an
almost periodic function.
We recall the various definitions of almost periodic functions and

find their connection with bounded mean periodic functions.

The definition of Bohr.
We consider function$ € ¢’ (R).

Definition (Bohr). Givene > 0, the numbet is analmost periodcor-
responding te) of f if |fT_f| < ¢. A setisrelatively denséf there exists
a length? > 0, such that in any interval of length there is at least one
point of the set.

A function isalmost periodidin the sense of Bohr) if

(a) for everye > 0, the almost periods df form a relatively dense
set. This is equivalent to either of the following:

(b) The translates of form a relatively compact set af.

(c) fisthe uniform limitinR of a sequence of trigonometric poly-
nomialsy a,é**, A, real (see for example (Besicovitch)).

Properties.

i 1 ! —iAX i
(1) a(/l)_TI[}nwﬁ_i f(x)e""*dx exists.

2 /12 li 1Tf 2dP I's relati
2) Z‘a( )| _Tinooz_T_£’ (x)‘ x (Perceval’s relation).
Here only a countable number of & & O.

In order to find the analogue of the Riesz-Fischer theorem Besicov-
itch introduced the following norm. (Besicovitch).

D(f) = TIi_r)noosup% f_: |f(x)°dx D(f,2) = D(f - 2).

It may happen thad(f) = 0 without f = 0.
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Definition of Besicovitch.A bounded functionf € ¢ (R) is almost pe-
riodic (in the sense of Besicovitch) if it belongs to the closed subspace
spanned by}, 1 € R, the closure being taken in the metiixf).
Thenf ~ Y a(1)e.

Besicovitch showed that if |a(/1)’2 < o0, then there exists a func-
tion f ~ Y a(2)e.

Definition of Schwartz. Consider the spac# of C*- functions all of
whose derivatives are bounded. (Schwartz 3). A funcfien% is %-
almost periodidf the set of its translates from a relatively compact set
in #. These functiond € 4 are such that they are almost periodic in
the sense of Bohr and all their derivativE®) are also almost periodic
in the sense of Bohr.

Let #’ be the dual of#. %’ is the space of distributions which
are finite sums of derivatives ( in the sense of distributions) of bounded
functions. A distributionil € %’ is defined to be”’- almost periodic if
it satisfies either the definitiom) or (c) of Bohr in the space#’. There
is a simple connection between the clasbé®.,, ZA.P. and %’ A.P.
which consist respectively of mean-periodic distributiog, almost
periodic functions andg’ - almost periodic distributions.

Theorem.M.PN%Z = MPNn2A.A.P.and MP.N%" = M.P.N % A.P.

The first part results from the fact thatis almost periodic (Bohr) 43
wheneverf € ¢, f and f” bounded; moreover, we see thae M.P N
% =t ~ Y a)e™ a(1) = 0(4| ") for everyn > 0. The second part
results from:

feMPNZ = f~ ) al)e™ a(1)=0(4") for oneN.

The corresponding result for Bohr almost periodic functions is the
following:

Theorem. A uniformly continuous bounded mean periodic function is
almost periodic (in the sense of Bohr).
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We have seen that if has a bounded second derivatifas almost
periodic. In other cases we regularizevith the help of suitable|flfnc-
g—|X

82 )
A¢(X) has its support inHe, &) andf_gg A:(X)dX= 1. Thenf A, A, IS
a bounded mean periodic function having a bounded second derivative
and so almost periodic. Sindas uniformly continuousf «A. %A, — f
uniformly whene — 0. Hence by the definitiorc) of Bohr f is almost
periodic in the sense of Bohr.

A natural question is to ask whether every bounded mean periodic
function is uniformly continuous. In fact, that this is not true in general
is seen from the following example.

We take the Fejer Kernd, (X) = (v sir? %(/(%()2). It is possible to

tions. Leta, be the conical function defined hay.(x) = sup(Q

. . .21 X
choose aincreasing sequepgesuch that the functiory, —Kyn(?—n)
n=1 Mn
is bounded, and the sum uniformly continuous on each compact set.

The spectrum of the Fejer Kernlé]Jn(Z—):]) consists of (2, — 1) points

o X :
between-u,/2" andu,/2".The spectrum of 4" Kﬂn(? — ) consists of

H Hn

(2un — 1) points between, — —2 andAp + o Now it is possible to

choosel, satisfying the following conditions:

R | X . .
(1) Each term of the serieg eM”X—Kﬂn(% — m) consists of function
1 HMn

whose spectra do not overlap.

(2) Denote by{vn} the spectrum of this sun}, vi < o0
n

. o 1 . .
Then the functionf(x) = 3 €™ —K,_ (2—); - n) is not uniformly
1 Hn

continuous irR, but is bounded and (see theorem), lect] 6, 1) has mean-
period zero.

This example show that there are bounded mean periodic functions
which are not almost periodic in the sense of Bohr. Now one may ask
for the relation between bounded mean periodic functions and almost
periodic functions of Besicovitch.
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We shall prove that, iff is a bounded mean periodic function then

> ’A(/l)|2 < oo. In other words, its Fourier céigcients are those of an
almost periodic function in the sense of Besicovitch.
Letfe=f A, f~3 AR

sint £ :
Now €'(As) = ——= = 6,(X); f ~ £ A()d:(1)e,
%(
Since|A()] < M and} % < o0, We have

S s, = i % [ 158 < e
Wheneg — 0, 6.(1) — 1 and so
Theorem.If f is a bounded mean-periodic function, 45
f~ Z A)E™, [f] < M, then Z IA()? < M?

One has also the summation formula of Fejer, viz.,

Z (1_ lTﬂ)A(ﬂ)ei’lxz f x iTSinZT - f

|A<T 2n (B)Z
2

uniformly if f is uniformly continuous and other wise it is uniformly
convergent on every compact set.

Instead of#, let us consider the spad, consisting of the func-
tions which are locallye L2.E?- mean-periodic functions are defined,
as usual, by the conditior(f) # E? (r(f) closedin E?). E2- bounded
functions are defined by*** 2 = 0(1) uniformly with respect ta.

The problem is to study the functions which &&mean-periodic
andE2-bounded. In particular©) is it possible to get the Parceval and
Riesz-Fischer theorems ?)24s it possible to have the summation for-
mula of Fegr? 3 what are their connections with Besicovitch almost-
periodic functions and with Stepafi@lmost-periodic functions (which
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1
are analogous to Bohr a.p. functions, with the norn(ﬁ?pl |f|2)§ in-
X

stead of supf(x))? For more details about this type of questions, see
X
(Kahane, 2).



Lecture 8

Approximation by Dirichlet’s
polynomials and some
problems of closure

1 Dirichlet polynomials and approximation on an
interval

A Dirichlet polynomialis a finite sum of the forn} a(1)e', 1 e C,ze 46
C. Before studying the approximation by such polynomials in a domain
Q of the complex plane, we study the same problem in the spdte

Let €4 (1) be the closed subspace @{1) spanned b){e”"hEA (if

A is simple) or{xpe”x}(/l)p+1 € A (let us recall that{)P** € A means
A€ A, atleasip+1times) and leBx(l) # € (1). We have the following
theorem:

Theorem. Suppos& (1) # % (1). Then{xPéX}(1)P* e A form a basis
of €x(l) and each function ifs’(l) is characterised by its development.
For, suppose I= [0,1]f € %a(l), and let ¢t be a measure: 0,

with support in 1, such thaff xPe**du(x) = 0()P** € A. Let us put
f* = fonl f* = Ooutside I, and g = f* xdu on I,g = 0 outside
%(9)
7 (d) | _
between the polar part of (%) and the Fourier expansion of f, when

|. Defining Kw) = , we get the same relation as in lect. [@ §2

43
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f is a finite linear combination ofBd*X; then, taking a limit, we prove
the existence of a Fourier expansioiif$ for all f € €x(1), with the
same relation as in lecture 682, betweg(f Band Hw); hence f) =
0= F=0=g=0= f*du =0o0nl. The same holds if we take
I = [-¢,0]. Using these remarks, it is easy to see that)Ss= 0 =
f*xdu=0= f*=0= f =0, and the theorem is proved.

We consider the same kind of problem in the complex plane; to this
end we first describe space analogou¥’t@l) and obtain a theorem of
closure.

2 Runge’s theorem

Let Q be an open set i@ and.>Z’(Q2) be the space of holomorphic func-
tions in Q with the compact convergence topology?’(Q2) is an¥ —
space. Let”’(Q) be its dual. Since’(Q) is a closed subspace of

% (Q), by the Hahn - Banach theorep#”’ (Q) c Q. Every vector of

' (Q) defines an equivalence class of measures”iff2), which are
merely the extensions of this vector (by the Hahn - Banach theorem)
to a linear functional irfg’(Q). In other wordsgdus ~ duy if for every

f e #(Q), [, fdu1 = [, fdua. Thus the duab?”(Q) of J#(Q) is the
quotient of%” (Q) by the subspace orthogonal #&'(Q2).

Runge’s theorem. Suppose&? is connected (bu€ need not be con-
nected). In77(Q) the sef{z’}, p=0,1,... form a total set.

In other words, by the condition of Riegzzpd,u =0forp=0,1,...
implies [ f(2)du = O for every fe J#(Q) .

Proof. Let support ofdy’ c Q' c Q c Q(Q’) open and connected
1 1 z
and let|z,| be large enough. Theg— = ——(1 + — + --.), the
) |2 g g e Z0( Z )

series in the right hand side being convergei2inThus—— belongs
to the closed span of the monomial:iﬁ(ﬂ’). Moreover,m
belongs to this closed span ; th§ Z —ﬂziz))nﬂ =0n=0,1...). But
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Q) = fd'uT(Zg) is holomorphic outsid€’ (because’ is connected)

: from ¢ (z) = n! f%z))n =00 =0,1,...) resultsy = 0. Let

C be closed rectifiable curve arougd in Q — Q’. Then by Cauchy’s
theorem

0- ;“fmmwu— [t _fun

- [ 1@ue
Remarks about?” (Q2). O
’ _ @)
Remarks 1.To eachdu € ¢’(Q2) corresponds &({) = sz which

is holomorphic outside the suppdft of du, and vanishing at infinity.
du1 ~ dup if and only if 91(2) = ¢2(2), and the duality betwees’(Q)
and " (Q) can be defined by fdu = [ f(p(ddz f € #(Q),C:
curve surroundingdg, and contained if2. Then it is convenient to rep-
resent the elements o#”’(Q2) as the functions vanishing at infinity and
holomorphic outside a compact subsefbf

Remarks 2.Let Q be connected and 8 Q. Supposes(2) = oo z'?rl'
0
© ap

Then— f f(2e(2)dz = —f(”)(O) Thus one can represent the ling
o

ear functlonal o/ (Q) as dfferentlal operators of infinite order with
constant coficients. In general, the relation between thefiioents
a, andQ is not simple. It is simple wheg is a circle around origin

and of radiusR. ThenZ f(”)(O) is a linear functional if and only if
lim suplan*’" < R.

We give without proof an extension of Runge’s theorem due to Mer-
gelyan and Lavrentie (Mergelyan). LKtbe a compact set of the com-
plex plane and let#’(K) be the space of continuous functions Kn
which are holomorphic in the interior d€ with the topology of Uni-
form Convergence.
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Mergelyan’s theorem. In order that the setzp = 0,1,... be total
in 77 (K) it is necessary and gfcient that the complement of K should
consist of one region (i.e., “K does not divide the plane ”).

3 Problems of Closure in the Complex Plane

In terms of the duality betweef?’(Q2) and.>#”’(Q2) we obtain a condition

of closure.
Let %, (Q) be the closed span ¢'%) ca (or {ZPe?}()P*L e A)in
(). Then, by the condition of Riesz, we have

%(9):%@%:)”@2@:0,“/\:ffduzo,fejf(g)

Lete() = [ #(4) { ¢ support ofdy, then letd(w) = [ €"Zdu(2).

We may calICI)(w) the transform odu. Then condition f e2du(z) =
0,1 € A is merely®(A) = 0 and if this impliesf fdu =0, f € Z22(Q),
by our duality,o(¢) = 0 and®(w) = 0. Conversely if P(A) = 0 =
®(w) = 0], does it follow thati (Q) = H2(Q), or againg() = 0?
one can get the answer using Runge’s theorem but we prefer toeleduc
it from a relation betwee® andy, which is interesting in itself.
We have the following equations:

f R — f f —dé“du(Z) [ e

oW = o fc PO @

If p(2) = 1{ we haved(w)et"; but when ReZ— ) > 0, i{ =

J5” €®9du. Heuristically we can have a formula, reciprocal to for-
mula (1) in the following form

fo " o(U)edu = o2 @)
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¢o(2) = ¢(2) ()

For the proof of([(B), letp(2) be regular outside a compact et Q
and vanishing at infinity. Theil (1) gives

go(z):nz_;)%,|an|<R”=>d>(w):Z%W”

and therefor¢d(w)| < M. Conversely lefd(w)| < ¥, Then [2) has
a meaning for Re > Rand it is easily seen that

TN @ - an
f(; Hune uzdu = Z W = QD()(Z)

Definition. ¢o(2) = fom e Y“Dd(u)du is defined to be théaplace trans- 51
form of the entire functiorb(w) of exponential type.

Now if ®(w) = 0, theng(z) = 0 and thus we have the following
closure theorem.

Theorem. /4 (Q) = #(Q) < [®(W) = [ e¥du(2)],
du € #7(Q), B(A) = 0 —> @ = 0.

Thus the problem of closure is related to the problem of the distri-
bution of the zeros of an entire function of exponential type.

Definition. Let ®(w) be an entire function of exponentighe Thetype
of @ is the lower bound of such thatb(w) = 0(e™). Thetype H#) of
® in the directiord is defined by :

h(6) = lim supM

r—oo

we shall see in the next lecture how the formila (1) helps us to find
h(9).






Lecture 9

Laplace - Borel transform
and conjugate diagram of an
entire function of exponential

type

1 Conjugate diagram and Laplace - Borel
transform

We recall the formulaep(2) is holomorphic orC and vanishes at infinity 52
; d(w) is an entire function of exponential tyjbe

Dd(w) = % fc "% (2)dz 1)
(2 = f B ®(u)e“dz Rez> b. @)
0
If (L) and [2) hold, then

vo(2) = ¢(2) for Rez> b. 3)

i
h(6) = lim supw = the type of®(w) in the directiory.

49
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Interpretation off(IL):
o(re) < &< x % f o(2)dz
wherek:(d) = supRgze?).

zeC
Interpretation ok:(0): the closed convex hull & is the intersection

of the half planex cos6 —ysing < k;(6). Letk(d) = inf k(6). Then the
intersection of the planescosd — ysin < k(6), is the smallest convex
set outside of whiclp(z) is holomorphic. By abuse of language we call
this set “the convex hull of the singularities @f.

Evidentlyh(6) < kc(¢) and soh(6) < k(6).

Interpretation of (2): we consider the following equation

ooei"

bul?) = f d(w)e 7w w = rel. (2.)
0

We havey, (2) holomorphic for Reé® > h(e). In the same manner
we have the equation:

coglf
03(2) = f o(w)e Vadw, w = re’? (25)
0

We haveyg(Z) holomorphic for Re
z&® > h(B). Supposea # f(
mod 2r). Then the intersection of
the half-planes in whichp, and ¢z
are holomorphic is non-empty; more-
over for any point in the intersection
of these halfplanes we havg,(2) =
¢p(2). For this it is sificient to show
that [ d(w)e"dw — 0 asR —
oo, whereC is the smaller are join-
ing R andRé&®. Sincew?d(w)e?
is bounded on the lines (&€”) and
(0, 0€?) it is sufficient to apply the
theorem of Phragmen Lindelof.
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Thus we havex(z) defined and holomorphic outside of every half
planexcosa — ysina < h(a). Hencek(d) < h(6) and we have the
following theorem:

Theorem. The equations 54
_ i wz
d(w) = o L e"p(2)dz 1)
ooei“
el [ owe iz @
0

allow us to associate to each functign holomorphic at infinity and
vanishing there, an entire functiaof exponential type and conversely.
If S is the “convex hull of the singularities” @f(z) and H#) the type of
@(w) in the directiond, then S is the intersection of the half-planes
xcosd —ysing < h(6)(0 < 6 < 2n).

Definition. ¢(2) is defined to be théaplace-Boraltransform of®(w)
andsS is defined to be theonjugate diagramof @(w).

The notion of the conjugate diagram is due to G. Polya.

2 Basis and Fourier development insz, (Q2)

We suppose for simpliciti\ to be simple and we consider the Fourier
development of functions i (2). The formal development will be
established if we prove thg'?} form a basis i/, (Q).

Theorem 1. SupposeQ is connected and, (Q) # #(Q). Then
{€'%) 1ca form a basis in, (Q).

Since 74 (Q) # 7(Q), there exists a measudy € s7’Q with
feﬂzd,u(z) # 0,1 € A. SinceQ is connected a closed rectifiable cure
C can be found with the support df: in its interior. Then we have the
following equations:

O(w) = f e"du(2) = % fc e"p(2)dz
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We have trivially,{eﬂz} total in.7#; (Q). To show tha{eﬂz} is free 55
AeA

it is suficient to show that there exists a measure which is orthogonal
to all e except one, sayl;. For this it is stficient to suppose that

A1 = 6 € A. We have®(0) = O,i.e. [j¢(2dz = 0. Let¢; be the
primitive of ¢ which vanishes at infinity. Sincfb ¢(2)dz = 0, we have

d(W) = —%wfc V%1 (2)dz If ? # 0, we have a measuu,

given bye;(2) not orthogonal to = €°2 In the contrary case we iterate
the process.

Corollary. If Q' > Q, Q' open and connected and if7; (QQ) # J7(Q)
then{e'?} ,co form a basis of#4 ().

Remark 1. We cannot extend the result to the case wiigis not con-
nected. For lei\ = Z andQ consist of two disjoint circular domains
aroundri and—ri. Here 1€ span offe"n # 0.

Remark 2. Let ®(w) = % fCeWng(Z)dz and®(A) = 0. Then for each

A € A, we can findpa (2) holomorphic outside the same convex domain
asy(2) and satisfying the equation

o) 1 [
L Zﬂifce 1Dz

Theorem 2. Suppose? is convex and’4 () # (). Then every

f e J4(Q) is uniquely defined by its development. In other words
if all the cogficients in the development of f are zero, the function is
identically zero.

Proof. Letg € /4 (Q) andg(2) ~ Y, 0e*2. Let ®(w) andy(2) be deter-
mined as before witid(A) = 0. We have the equation

D.(W) = O/ W) = o f o1()edz

By our hypothesis, we have for evelye A, fcnpﬁ(z)g(z)dz: 0. O
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Now ®(w) = wPe?" [] (1 — V—v) e/,
AeA A

’ _ p(DO(W) O
' (w) = ad + W +; z+d>ﬂ .
We setX(w) = ®(w)/2 + @, (w). In the same way as we have
proved in the case of mean periodic functions (Lecturd b, 81) we have
the following inequalities:

X, W)| < % lw (w)| when w1 > @
2 i
X1 (w)| < W wa w)| when 1< |w- 1=

X, W) < — sup |[wW2ow)|whenjw- | < 1.
||” w-wi=2

Therefore we have the following inequality

X, ()| < %eh<0)|W|+€|W|

uniformly in w. SinceQ is convex, we can take a pathin Q around
the conjugate diagram @ and by taking the Laplace-Borel transform
along this path we have,(2) + ¢(2)/4| < K/|/l|2 uniformly in z. There-
fore we have the following implication:

[o@[ae+ peot Y er + o] dz=0— [ g@aadz=o

As the same holds if we replaeggz) by ¢.(2), we havezgz) <
J4(Q) andzgz) ~ 3 oe?. Therefore ifg(2) ~ 3 0e¥? € 74 (Q)9(2)
P(2) € 74 (Q) for every polynomialP(2). If g(2 # 0. We can suppose
thatg(2) has only a finite number of zeros {2 if necessary we cans7
replaceQ2 by a smaller domain containir@r so that every holomorphic
function with these zeros is it4 (), and 7,4 (Q) = s2(Q), contrary
to the hypothesis that#) (Q) = 77 (Q).
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Remark. SupposeY’ c Q, Q convex and4 (Q) # (). Then one
cannot assert that evefye 7, (') is determined by its development.
As an example, leh = set of integers anf be a convex set containing
ni and—-ri. LetQ; be disjoint fromQ, and contained iRez> 0,|ImZ <
m. We takeQ)’ = QU Qq, f =0inQ, f analyticz 0in Q.

Letus putZ = €, f(2 = F(2). Fis

zero on the set log; and analytict O Q

in logQ1. By the theorem of Runge,

F can be approximated by polynomi- o

als in logQ, and thenf € 573 (Q1). §

As {€"9n € N is a basis In/, (Q),

the development of has zero co@-

cients, what ever bé in Q1.

Problems.

1) Itis possible to get a statement like the above theorem if the open
convex sef) is replaced by a closed convex set?

2) Also, is a similar statement possible on replacing the open convex
setQ by an open connected set ?



Lecture 10

Canonical products and their
conjugate diagrams

1 Canonical products and location of conjugate di-
agram

Given a sequenca = {1}, |/1n| — o0, it is always possible to constructs
an entire function with,, as zeros. We suppoge to be symmetric,
© 1 .
A = {£n} | 1] > || = 1, 2,...),ZW < o0, and (to avoid
1 n
complications),|11] > 0. Then the simplest of these functions is the

canonical product
C(w) = ﬁ v
IR 2]

. in , . .
For example, ift, = n,C(w) = o ﬂW. With convenient hypothesis

T
about thel,,, we shall see thdaE(w) is an entire function of exponential
type, and be able to locate its conjugate diagram.
We first recall the following definitions (Mandelbrojt 2).

n(r) = Z 1 : distribution function ofA.
[An|<r
D(r) = n(r)/r : density function ofA.
D' =lim supD(r) : upper density of\.

r—oo
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D. =lim rinf D(r) : lower density ofA.

We haveD., = lim ¥ ﬂlnl > liminf % _ D.. WhenD =D =D,
we defineD to be the density oA.

— 1 . .

D(r) =+ [0 D(H)dt : Mean density function of.

We define the mean upper densily, mean lower densit., and
the mean densitp in the same way. We hay@. < D. < D < D, and
one can prov®d- < eD- (Mandelbrojt 3).

59  Calculation of Mandelbrojt (Mandelbrojt 3) . .
We make the hypothesis thBt < o, and we majorise the type of
C(w), in order to have a location of the conjugate diagram.

I’2 00 r2
jC(w)| < l_[ (1+ W) = ¢(r),loge(r) = j; log (1+ m)dn(/l).

To calculatep(r) we integrate by parts

f “log(L+ r222)dn(d) = f " _n(@) @du

r2\|*
. m n(/l) |Og (1 + E)]O .

n(Xx)

SinceD < oo, we cannot havex— — oo. Therefore there exists a

X .
sequencé, — oo, such thatn(—zn) — 0. Sincen(0) = 0 and
Xn

2
n(x,) log (1+ r_2) — 0 asxy — o
Xn

®  Dr2
we have loge(r) = ——d(1)DA.
@)= [ i)
X o2 X g2 - — 22 I
———Ddi= | ———==1D(A)dA+ [AD()——]| .
j; r2+ 22 ) fo (r?2 + 22)? (Dt + ()r2+/12]0
So,

A2z _ A2 —
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_ loge(r) = f"" 4t2
I — <D ———dt.
MR =P ) @2

2

We haver = f—tz)zdt. This gives the relation

h(@) <zD (M)

Geometrically, this signifies that the conjugate diagram is situated
in a circle with centre at origin and or radia®-.

Calculation of Carlson (Bernstein, notelll ).
We now suppose that we have one of the following equivalent rela-
tions
An
[D=D =D=1argl, » 0 = - 1]

Under these conditions the conjugate diagram is particularly simpte.

Supposel, = h. ThenC(w) = W is of typern in the upper and lower

half planes. Also we have(0) :ﬂh(n) = 0. Since the conjugate diagram
is convex, it is the segment betwegrand—i.

Now,
awWC(w) (1-w?/22) w2 /n? — w2/ 22
sinTw 1_[ (1-w2/n?) 1—[(1+ 1-w2/n? )

LetO<a < 7‘—: andw = re'g, @ < 6] < g In this case, we have the

inequality|w? — n?| > n? sin 2v. Since (2 - n?)/A%2 — 0, we have the
following inequalities:

00
<[ I+
1

-1

%
1

7TWC(W)
sintw

quz %)/ 43

— W2

pd

%o m( n2 sin 2a/

1_[ Xnl sin(inr 4/&/ sin 2a)|

L-_
-
i
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This gives us lim suft/r log C(w) < 0; from which we have

o0 sintw

lim sup < nlsing|,0 # 0,7( mod 2r)

r—oo

log|C(w)|
r

By taking the function (sinw)/mwC(w) we have rt]he same calcula-
tion with the roles ofd, andn interchanged. SinC(/al— — 1, we can

replacet, by nfor large values oh in majorising (simr\}v)/an(w) and
get the reverse inequality. Thus we get
. logC(w) . 0 .
(c) limsup| | = n|singl,w = re'?,0 # 0,7( mod 2r). This

r—oo r

result shows us that if the density &fis D, then the conjugate diagram
of C(w) is the segment joiningrD and—izD

We can relax slightly the hypothe-
sis in the calculation of Carlson, viz.,
make the hypothesis th&t = 1 and
limsuplargd,| < a < z Then, for
n > N,largln| < a + € = a. Taking
0 <argw=< 7 —a’ we have

-] <1]
N n N

Henceh() < wsin(r + @) if 0 < 0 <
n/2— & .In this case the conjugate di-
agram turns out to be contained in the
portion of the disdZ < =, contain-

ing 0 and bounded by the lines =

+rSina.

W2
— 1—
A%e—ZI(Z’

2 Theorems of Jensen and Carleman

We now recall well - known formulae which will be used in the problems
of closure and quasi- analyticity among others.
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Jensen’s formula.Let F(w) be a function meromorphic inside and con-
tinuous on a circle of radius R and cent@y and let w) be without
zero or pole a0 and onjw| = R. Denote by 1(r) the number of zero
in |7 < r and by n(r) the number of poles ijzl < r. Then we have the
following relation:

foR(an(r) B nzT(r)) 27rf FéF;c?)g)

Carleman’s formula. Let F(w) be meromorphic in the half plane
O(w = u + iv) with zeros at kg% and poles ap;€* and with no zero or
pole on u= 0. Taking a contour D consisting of a part of the imaginary
axis and a semi - circle of radius R and cenfan the half plane u= 0, 62
we have the following relation:

1 1 i
Z ——B)COSQK— = _pP cosaj
r« R2? pj R

/2
_ 1 f log |F (R%)] cosade
7R
n/2

2ﬂf ( )'°9|F('V)F( iy)idy +0(1)

the summation being one®, p;€i insideD.
For the proof<C f. Titchmarsh.






Lecture 11

Application of Jensen’s and
Carleman’s formulae to
closure theorems

1 Application of Jensen’s formula

The formula of Jensen allows us to have a condition of totality of a &t
{€'?} in an open sef. The relation

eWZ

[D(W) = f du(2), ®(A) = 0,du € #(Q)] = @ = 0,
Q

implies that{e'?} is total inQ. Let us see what happens where 0.
If the convex closure of) is the intersection of the half planes
: . d(re'?
xcosh — ysing < k(6), thenh(#) = lim suplog @ < k() —2¢,& >
r—o0

0. We can find such thatR > r implies logl®(Ré?)| < (h(d) + )R.
Suppose ¢ A, and denote by (r) the distribution function of|a|}.
Taking F(w) = ®(w) in Jensen’s formula, we have the following:

R 21
foan(r)drS%fo (h(®) + )R + O(1).

61
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Sinceh(0) < k(0) — 2e we have the following relation:
éf ”1(r)d _D(R) < —f K(6)dO — £ + O(= )
[0}

In order that® = O it is suficient that this condition is not satisfied. In
other words, if®(A) = 0,0 ¢ A, in order thatd = 0 it is suficient to

have the inequality
D >+ f 2”k(e)ole
1= o o .

In this formula, 51 is the mean upper density of the sequepige
If Ais symmetricA = {+A,}, the formula becomes

— 1 %
2D < — k(6)de
<5 [ KO
In particular, we have the following result:

: : w2
Theorem.If A is symmetric and () = [](1 - —) is of exponential

type zero on the real line, the conjugate dlagram OiiCreduces to the
segmenf-ia, ia],a = 7D.

_ To prove it, we take)[—ia, ia] such thak(f) = a'sinf| + ¢ If @ <
7D, the formula ) will be satisfied fore sufficiently small ande*4»}
will be total in .7 (Q), which is false. Therefore > 7D-. As we know
(Lecture 10, B} < 7D, we haver = zD-.

We shall see later (Lecture 12]81) thatifu) is bounded on the real
axis, one hag = 7D = 7D = 7D

2 Application of Carleman’s formula

We have see the use of Jensen’s formula in a theorem of closure involv-

ing the behaviour of the sequengaen the whole plane. But when we
want to use only the behaviour of the sequenda one half plane we
can use the formula of Carleman. For simplicity we suppsare real

and positive, and < oo(if not, 774 (Q) = s(Q) what ever be the
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open bounded set. Moreover @tbe contained in a horizontal strip
a <V <B Letdw) = erWZd,u(z). We have the closure theorem
JN(Q) = 7(Q), when the following relation holds:

[@(2) = 0 for everyd € A] == 0.

Let us see what happens whénz 0. Leth(#) be the type ofd(w)
alongé, thenh(r/2) < —a, h(-n/2) < B. Applying Carleman’s formula
we have the following relations:

R
[ (B-E)aw=2 [(3-Z)oswwocmiayou

foR(riz Rz)n(r)dr<— a/)f( )ydy+0(1)

=353ng+mn

1 (RD(r) B-a
Iongo . dr < o + 0(2).

Supposd: < oo; then 65

R R R Dy
fo‘ dr:,(r) :L fo)+0(1):j; @dr+0(l).

Definition.

R
D = limsup—— 1 fw limsup—— f(D(r)
R— oo Ig r R— oo I

1 f mom
Row 0GR r

= limsup——

is defined to be thiagarithmic upper density ok
D(r)

p-

We haveD- < D- < D, sincef —dr < logR(D + &). In order

that® = 0 it is suficient to haved: > . Thus we have the closure

theorem.
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Theorem.
D >

B 20‘ = H4(Q) = Q).

The constants occurring in the above inequality are the best possible.
To see this we takd = N = (1,2,...) andQ a strip of width greater
than 2r. We do not have closure in this case dhd= 1 < (8 — a)/2n.

WhenA andQ are given, either Jensen’s or Carleman’s formula can
be applied to prover#; () = 27(Q). Roughly specking, Carleman’s
formula is better ifQ is “flat” enough, or if the part oA which is in
some half-plane is “scarce”. If we try to prov#, (Q) # 57(Q) the
methods of the lectufe 1.0 have be applied.

3 Theorem of closure on a compact set

Let K be a compact set which does not divide the plane, &{K) be
the space of functions, continuous Krand holomorphic in the interior
of K; the polynomials form a total set i#’(K) (Theorem of Mergelyan,
Lecturd8). Let7(K) be the closed span ¢} ., in s7(K). We want
to find wheni, (K) = 72 (K). Let

o) = [ &4 *)
with ®(A) = 0. In order that7# (K) = 22(K) it is suficient that ¢)

implies® = 0 andJs#4, (K) # 27(K) if there exists ab # 0 satisfying
(*). Supposeb # 0. We have the following majorization:

o) < maxie | Id
zeK K
Now we apply Jensen’s formula, as i 81. We have the inequality:
_ 1 21
RD1(R) < —Rf k(#)do + 0(2)
2 Jo

wherek(9) = g\?(xRe(zég) = r;]?g(xcosﬁ?—ysim), andD+(R) is the func-
(S €

tion of mean density of the sequer{Cl) ca (then, ifA = {1y}, 51(R) =
2D(R), D(R) being the function of mean density of the sequeiht:¢}.
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Theorem.In order that{e'?} e be total inZ(K) it is syficient that
lim SUp(RD1(R) — AR [ k(6)d6) = co.
R

In particular, letk = [-x, n1]. Thens#; (K) = 77(K) = ¢ (K) when
the following condition is satisfied:

lim supRD(R) - 2R) = o 1)

The resultis a very precise one. For example, take+n = Z-{0}. 67
ThenRD1(R) = 2R - logR + 0(1); the condition[{l1) is not satisfied, and
it is easily seen that, (K) # €' (K). If we add one element # 0 toA,
we add logR+ 0(1) orRD1(R); the condition[(Il) is not yet satisfied, and
in fact €4y (K) # €' (K) (this is very easy to seeif = 0, because the
functions take equal values;aand—n, and still holds fokr # 0). But if
we add two elemenis, 8 # 0 to A (1)) is satisfied, an@x +(q)+5(K) =
€ (K).

4 Theorem of Muntz

We shall see what happens if we try to apply Carleman’s formula in the
case of a line segment. We can get a finer result by having a condition of
totality in an infinite interval. For simplicity we can take the half- line

L = (—o0,0) Let%o(L) be the space of functions, continuousloand
vanishing at infinity. We taka to be a sequence of positive numbers. In
order thate'?} be non-total it is necessary anditient that there exists

a measuraly orthogonal to{e*?} and not orthogonal t&,(L). Then

0
® = 0 whered(w) = [ €"du(z) with ®(A) = 0.Foru > 0 we have
- , R D(r)
|D(W)| < f|d,u|. Applying Carleman’s formula we hav Tdr =
0(1), whereD(r) is the function of density oA. AsrD(r) ,/ we have

(o) (o8]

fR[r)gR)dr,< fD(r)dr:O(l)

r
R R
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R dN(r)

- D(R) +

fR D(r)d = 0(1). This means

thenD = 0. Then ]

1 . 1
> = < oo, Therefore{eﬂz} is total whenevep, 7= Conversely, if
AeAN

1 . . . .
> = < oo, we do not have totality. This is proved by taking a function
@(w) of exponential type withb(A) = 0 and small at infinity. For the
construction ofd(w), we take

3 sinw/A 8 e i
d(w) = E\ gy ,|O(U)| = ]} 141 = 0(u2)0(1) and

®(w) is of exponential type ( we have already seen such a con-
structed in Lecture &1.). Thus®(w) is the Fourier transform of a
measurep(w) # 0 andd(A) =

Thus we have the following closure theorem.

Theorem. In order that{e'?} 5 1-0 be total in%(0, ) it is necessary
and syficientthat 3, % =
AeA
This theorem gives us, by making the transformatbe: x, e¥? =
x! the theorem of Muntz, viz.{x'} is total in %[0, 1] if and only if

Z% = 00.(%6[0, 1] being the subspace &f[0, 1] consisting of thef
vanishing at zero).

The proof of the above theorem gives also the following result:

In each closed interval{#t (1) = (1), A positive} & 2 00
/181\

and alsg%x (1) = €(1), A negative} & Z

We shall complete the last result i |n Lecture 16 81.



Lecture 12

LEVINSON'S THEOREM
Problem of Continuation

1 Levinson’s theorem on entire functions of expo-
nential type and its application to the problem of
closure

Levinson’s theoremLet®(w) be an entire function of exponential types9o
having (-ik, ik) as its conjugate diagram and satisfying the following
condition

0 du
fl I0g BWB(-u) 3 < oo ()

Let ré®% be the zeros of(w) with N (r) the distribution of zeros of
®(w) in the right half - plane and Nr) the distribution of zeros ab(w)

in the left half-plane. Under these conditions, the following relations
hold:

D AIsinéid/rid < oo (1)
lim Nfr(r) =D = lim N"r(r), D = k/x @)

The first part is proved by applying Carleman’s formula, but the
second part is more involved. (Levinson, ChHp).

Let us consider the problem of closure{ef*},c in an intervall
if length|I]. We want to find conditions ofh| and in order thate*} ;s

67
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be total in€(l); in other words, we want to find conditions gnhand
A in order that the following relation holdéd(w) is an entire function

of exponential type< % with ®(u) bounded an@(A) = 0} = @ = 0.

We have already studied this problem by means of Jensen’s and Carle-
man’s formulae. In order to find new conditions arwe first define the
maximum densityof Polya.

Definition. Given a sequenca, consider sequences having density
D’ andA’ o A. Ifthe set ofA’ is empty we define the maximum density,
Dmax, Of A to beco. Otherwise Dyax = Aian (densityD’ of A)

o)

Now the zeros of form a sequencA’ > A. Denoting byA*andA~
the set ofl € A in the right half plane and left half plane respectively,
we have by Levinson’s theorem thattandA’~ have the same density

k .
D,D > Dpmax Of A* andD > Dyax of A=. Moreover,D = —, k being
T
the type of®d. Thus we have the following closure theorem:

Theorem (Levison).

We have a similar theorem for the spacegfl)or&. Theorems of
this type apply to sequences which do not have a density. For example,
take the sequence formed of

(N, 1oV + 1,108+ 2,20V + 10V Y for N =101 n=1,2,...

It hasDuax = 1 but has no density and even the upper density is very

1 . . .
small© = —1). One can easily calculate the maximum density of Polya
by the following formula:

Dyax Of A = lim sup[lim sup{
k71 r—oo

w0

We shall give a proof of this result in appendix

The above theorem of closure gives immediately that the mean pe-
riod of a mean periodic functiof, L > 27Dyax Of A* andL > 2x
Dmax Of A~ whereA is the spectrum of.
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The theorem about the supports of the convolution of two distribu-
tions can be deduced from Levinson’s theorem as follows:

If T is a distribution with segment of suppadrtthe density of zeros
of its Fourier transforn®’(l) (either in Rez > 0 or Rez < 0) is|l|/2x.
It is suficient to show this wheh = [-k,K]: then @ (T) satisfies the
hypothesis of Levinson’s theorem.

Theorem on supports.T =Ty« To = | =11 + |o.

Since we know that c I + Iy, it is suficient to show thafl| =
[11] + |l2]. This results from the fact that the density of zero&qT) =
% (T1)%(T,) is the sum of the density of zeros &f(T;) and that of
€ (T2).
We shall see another application of Levinson’s theorem, to a prob-
lem of quasi - analyticity, in lectufe1.9.

2 Problem of continuation - Description of the
problem

Consider a functionf € S (Q) (or (1), Z2’(1) etc. We suppose
JN(Q) = Q) (Ba(l) # €(1)etd. Then the natural question is to
ask whether one can continue it beyafforl). More precisely, we
have to give conditions on andQ so that everyf € 7, (Q) (or Ga(l)
etc.) is analytically continuable into a doman> Q(or into R); then
we have to give properties dfin G(orR) in terms of its properties in

Q(orl) (See foot note.71@)
First, letQq be an open sef), the

translate of2 by the translation carry- <
ing O into; supposef € J4(Qo) = “a
H(Qp), and f is analytically con- vr
tinuable into a domain generated by N\
a chain of translates d®q. i.e., f €
7 (€), for every { belonging to a
curveC with origin in O.
We shall show thaf € 4 (Q). For this, it is stficient to prove that 72
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if |, e'du(2) = 0 for everya € A and if we set

o) = f fz- (). £ € C.

KcQ

theng(?) = 0. Butg(¢?) is analytic in a neighbourhood @f and zero in
a neighbourhood of 0. Sg(¢) = 0.

Suppose nowQ is the right half
plane. Q = {u > 0}. Letf €

JN(Q) # 7 (Q). For examplef can

be a Dirichlet series = 3 a(1)e*?(1

negative). In any casé ~ Y a(1)e®?. ¢
Let G be the domain formed by the

right half-plane and parallel strips

projecting into the left half- plane.

(see figure ). //

Supposef € #(G), i.e., f is continuable inG. Every bounded
subset ofG can be translated iG until it is in Q. Then, ifdu is a
measure with compact support@) orthogonal tge'?} ca, its support
is in Q, which can be related to af}, c Q by a chain of translates
c G. Under these conditions, we have just seen that.s#; () and
fe(G) = f e i(Q) ie.,forthogonal tadu. Then,f € 4, (G).

N
This proves the existence of a sequedtay(1)e? — f in J2(G). In

the case of Dirichlet series, whéh is tﬁe half-plane of convergence,
this is called ultra convergence. By means of a conformal mapping, we
get a result about ultra convergence of Taylor's series; correlpg to
the case when the strips@are horizontal, we obtain a classical result
about ultra convergence in a star domain (that is usually obtained by the
method of Mittag Léfer, which gives a summation process).

We now give an analogous result on the line.

Definition. A classK{M,} of C* functions on the line is defined to be
the class off satisfying the condition that € K{My} if and only if
for everyn, | f™M(x)| < kM, on a closed interval, k being constank(J)
depending ord and f;
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2. K{Mp} is said to be quasi - analytic if the only function of the
class all of whose derivatives vanish at the origin is the zero function
(see lecture 19[%1).

Suppose furthef can be continued on the line in such a manner
that f € K{Mp}. Thenf is mean periodic with spectruth. For let
du be a measure Witifeuxdu(x) = 0 for everyd € A. Letg(é) =
fl f(x + &)du(x), wherel is the support oflu. Now f € K{Mp} = g €
K{Mpn}. Butg™(0) = 0 for alln. Sog = 0. This means thaf and
all its translates are orthogonal dp, i.e.,7(f) # €. This gives that if
f e G)(I)andf € ¥(R), in order thatf € %A (R) it is suficient that
f € K{Mp} quasi - analytic. This kind of result was first given By
Mandelbrojt (Mandelbrojt 1).

@ These problems are considered in the lecfures 13, 16 and 16 for the
complex plane, and in the lectufes 17 18 for the line. We give now
some very easy results.






Lecture 13
A method of continuation

1 Principle of continuation

Give f € J4(Q), first we shall find out a method of continuation of 74
to a pointZ. Suppose that it is possible to find a measiwe- duz with
support inQ such thatlu -, is orthogonal te&'? for everyi € A, where

6, is the Dirac measure &. In other words, the following relation is
given

ez = du(2). 1)

We can try to replace'? by f(2) in (1), i.e. we can try to get

f(2) = f FQdu(). @

This is certainly possible whed € A, sincef € J4(Q). When
Z ¢ Q this gives a means of defininigatZ. More precisely, iff can be
approximated by a(1)e®? in Q, then formally we have the following
relations

1@-Ya0e? = [ [10)- )} aleIduad;
1@ - Y, alvetd < [ Idud

Hence the majorization does not dependZobut ondy,. If Z belongs
to a continuun®” and if it is possible to find a measudg, with support

73
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in K c Q,K independent o, such thatfld,uzl < B uniformly in Z,
then f can be approximated o& by the same sumg, a(1)e'? as on
K and supf(Z)l < Const maXf(z)l To find the measurdu is exactly

the same thing as to flnd its Fourier transform. In other words, we seek
an entire functiorM(w) = Mz(w) of exponential type with conjugate
diagram inQ such that-M(w) + e¥* vanishes fow € A

1 Pevz
Moreover, we wanM(w) to be the typeM(w) = o fc ,C
being a curve iM fixed for all Z, and¢z(2) uniformly bounded orC
whenZ belongs to a given continuum. According to formulak (1) and
@) in lecture®, this last condition is satisfied whenevei(w) admits a
uniform majorization

IMz(W)] < €O (w = re") (3)
andC is the frontier for the convex set defined by
Xcost — ysing < k() 4)

Then, [2) can be written as
f(2) = — f o221 (2)dz (5)

Let us remark thaf{3) need not be required for every C can be
defined from[(#) withd € S, S being a given subset of [@n], it is suffi-
cient to have[(B) whefsS, and to assume thaz(w) is of exponential
type; in particular, ifC is a convex polygor can be taken as a discrete
set; in this case, we shall s&3 is associated with C”

Thus the principle of continuation can be formulated as follows: Let
D(w) be an entire function of exponential type, vanishiigwith its
conjugate diagrand contained inQ. Let C be a convex polygon con-
tained inQ, and containing in its interior, and le be a set associated

with C. LetZ € G, and suppose that, for eaghthere exists a meromor-
z

phic functionA(w) = Az(w), with polar partz uniformly

e D'()(w - 2)
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bounded whel € S, and also whefw| = RjlimRj = co. ThenC and
Mz(w) = D(w)Az(w) satisfy the condition above. If we put

OOIG‘

o) = f DW)Az(W)e 7w ®)
0

and if f € 7, (Q), (B) defines a continuation dfin G, in such a manner7é
that °) on G f is a uniform limit of the same Dirichlet polynomials
Y a(1)et?(1 € A) as onC (in particular, ifG is an open setf is analytic

on G, if Gis an open set an@ N Q # ¢, (B) provides an analytic
continuation off from Q into G).

2% onG, |f(2)| < K sup|f(2)], K independent oF. 7
Z,eC

Let us remark that, if\ is the sequence of the negative integers, our
principle of continuation gives the same result as the Cauchy formula,
translated after a change of varialdle= €% Thus, [) is a kind of
generalization of the Cauchy formula.

2 Application of the principle of continuation

We have a solution of the problem of continuation of we can construct
the functionD(w) andA(w) satisfying the above principle. We shall ap-
ply this principle directly in simple cases and with a little modification
in other cases, for example féfy(K), K c R; then we shall obtain,
for certain real sequenck, the analytic continuation of € %, (K);

this forms the main result in the thesislaf Schwartz (Schwartz 1 (see
lecture 16)). In certain cases, we shall tée/) having an integral rep-
evZdw

resentation of the form\(w) = J_Im fc,- W,Cj being certain
closed curves (see lecturel 15).

We first apply this principle in the simplest way. We suppdse
is a negative sequence,viz. every elemenidk a negative number
A = {1},<0. The requiredD(w) is provided by the canonical product

D(w) = C(w) = [T(1- ‘3—’5). This begin achieved, to construgtw),
AEA
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we make some more assumptions Ann such a way that the polar
part of A(w) is normally convergent outside the union of small circles
U, = {lw - 2] < p}, A(w) being uniformly majorized outside these small
circles.

I. Let A possess a densiD.

We haveD(w) = C(w) = [](1 - Vﬂij) and the conjugate diagram
of C(w) is the segment joiningrD and—ixD. We takeQ to be a small
domain containing this segment so tlias analytic inQ2. Supposeé\(w)
is of the form

ez

A(w) = Z W 1)

In order that this series is normally convergent wizeg: X + iY
varies outsiddJ, = {jw - 4| < ¢}, it is suficient to have exp(X —
log|C’(1)]) < €% or again the following relation

logIC (4]

X>6+¢g¢e>0, wheres = limsup 7

Definition. When A possesses a densib; s = limsup is de-
fined as the¢ index of condensationdf A.
A sequenceA is called “regular” ifllirgsupm’ - >0. IfAis
'#
a regular sequence it can be proved (V. Bernstein, note Il)dtkat0.
When¢ = 0. we have the

log|C’ ()]
A

Theorem.Let A be a negative sequence with density D and let f
J0(Q), Q D [-inD,inD]. Whens = 0, every function fe 74 (Q2) can
be continued analytically in the right half plane x 0 into a sum of
convergent Dirichlet’s serie¥, a(1)e'?

As a consequence of this theorem we obtain a classical result on
Dirichlet’s series. Letf(2) = 3, a(1)e*? be a Dirichlet’s series wher&
is a sequence of positive number haviags the sole limit point. Iff (2)
is convergent foReZ= X, itis also convergent fdReZ= X > X,. Thus
one can define the abscissa of convergengeas an ordinate through
X = 05 to the right of whichy a(1)e'? is convergent and to the left of
which Y a(1)e* is not convergent

We have the following corollary:
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Corollary. The Dirichlet’s seriesy, a(1)e'? with exponents extracted
from a sequence having a density D and index of condensation zero,
admits at least one singularity on every segment of le2gth on its
abscissa of convergence. If0 and if A is a sequence of integers, the
change of variableg = e gives the Fabry theorem, viz., the circle of
convergence is the natural boundary of a gap series.

Proof of the Corollary. Indeed if there is no
singularity,Q can be taken very narrow con-
taining this segment and the Dirichlet’s series
is ultra-convergent iif2 (lecture 12[P). Tak-
ing a segment of length® in Q parallel to
this segment and to the left of the abscissa of ——
convergencer; we see by the above theorem
that the Dirichlet’s series is convergent to the
left of o-¢, which is impossible.

Let o (“abscissa of holomorphy”) be the in-
fimum of theo such thatf(2) = Y a(1)e®? is
analytically continuable for Rez o. When
6 # 0 and if o, and o are the abscissa of
holomorphy and convergence of Dirichlet's
series Y a(1)e'?, applying as above the re-
sult about ultra-convergence and the condi-
tion that it converges fok > o + 6 + & we
obtain the following result of V. Bernstein.

=9

Theorem.o¢ — o, < 6, and every segment of leng?hD on Re z= o, 79
contains at least one singularity.

Suppose now (2) is an entire functionf(z) = 3 a(1)e?. The

AeA
inequality {T) allows us to compare the order of magnitudé of the
whole plane and in the strip, when= Rez— —co. Let % be a horizon-
tal strip of width 2tD + &, M(X) = sup |f(2)|

Rezx
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L
/Qw

Mx(x) sup [f(2)|. We have immediately
Rezx,ze%

N

Theorem.M(xX) < KMy (x — ¢ — €’),K depending only om\, ¢ and
(e >0,& >0 width of # = 27D + &)

We obviously get the same result on supposingp be a curvilinear
strip. B
Il. Let the sequenc@ possess a finite mean upper dengbty If A is
regular andA’ — A| > h > 0, it has been proved by S. Mandelbrojt that
lim gupw = 6 < B, whereB = B(D, h) is a constant depending
on D-. andh (Mandelbrojt 2, 3).

7

We know that the conjugate diagram@w) is contained in a circle
of radius7D-. We suppose€ to be a circular with radiugD- + £ around
0 and letf € J7;3(Q2). We takeA(w) given by [1) as in the part\(w) is
80  normally convergent wheK > § + &. Thus we have a continuation of
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f into the half planés to the right ofQ at a distanceB(IS-, h) from its
center, and i, f is represented by a convergent Dirichlet’s series. The
result proved in the last lecture about the continuation by means of trans-
lates ofQ2 permits us to find again the following result of S. Mandelbrojt
(Mandelbrojt 23) which generalizes a theorem of A. Ostrowski’s.

Theorem.If o is the abscissa of convergence of f as a Dirichlet’s se-
ries, then f cannot be analytically continued into the domain generated
by circular discs); of radiuszD" + £, > 0 whose centerg belong to

a continuunts” which has at least one poigtwith Re > o and at least
one point” € ¢ with Re”’ < o — B(D-, h).

Now, if we continuef with ¢ running along a closed path, we come
back to the original function (see fig.), according to theorém 2, lecture
l g'

It is natural to ask: Is it possible to have such a figure with singular-
ities inside? In other words, can we have continuatiori (&) along a
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chain of translate®, whose union forms an annular region with singu-
larities of f(Z) in the interior of the bounding curves? We shall consider
this question in a later lecture. (LeCt.]16)

By the same argument as in we get a result about the order of
magnitude off in the plane the whole plane and in a strip. H&fés a
horizontal strip, of width 2D + ¢.

Theorem. M(x) > KMy (X — B - ¢’), K depending only o, & and
gle>0,& >0)width® = 27D + &)

Analogous result hold for curvilinear strips.



Lecture 14

Lemmas concerning
minimum modulus of
canonical products

We need certain lemmas to find minorization|©fw))| 82

_ W2 ]
Lemma 1. SupposeD: < oo. Let C(w) = H(l—?). Givene >

0, there exists an infinity of R/ oo such that forw| = R; we have
lcw)| > &R

2

Proof. We have{C(w) > ‘1— % , wherelw| = r. We apply Carleman’s

formula to the functiorC*(w) = [][1- %) in the upper half plane

v > 0. Then we have the following relation:

R
f log
-R

This relation implies that there exists an infinity Rf ,” co such that
log C*(Rj)| > —¢Rj;i.efor w| = RjIC(w)| > |C*(R))| > e R, O

Lemma 2 (H. Cartan) Supposes > 0 and M,,..., M, are n given
points in the complex plane. Then we can find m discs,mihe sum of

o d
c*(u)|u—;J — 0 )

81
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whose radii is2né in such a manner that if M is any poLnt outside these
discs the product of the distances MM.., MM, > (%6) .

Proof. Letk; be the largest integer such that there exists a disc of radius
k16 containing at leask; of the pointsMj, and letC, be such a disc.
Obviously C; contains exactlk; points Mj. Let us remove thesk;
points, and define in the same manner from the remaining points (if
there exist any ) a disC, of radiuskg, and so on: we get a finite number
ofdiscs, say;, ..., Cn, of radiikid, . .., knd, andki +- - -+kpn = n. Now,
letT'1,...,I'm be discs concentric witl; ... Cy, and of twice the radii.
From the construction o4, ..., Cn, it follows that, if a discf(M, ko)

of centerM and radiuks contains at leak pointsM;, then it contains

a pointMq € Cq with kg > k; thusM € I O

Suppose now ¢ Ur'j; then, everf(M, ko) contains at most — 1
pointsM;. Let the distanceM; be thatMM; < MM --- MM,,. Then
MMz > 6, MMy > 26,..., MM, > n¢, and

n_ (noy\"
MMy - MMy MM, > nl6 >(€)

that completes the proof.
Definitions. Given a finite set of pointgM;} and¢ > 0, we call{T'j} a
system of “Cartan discs relative {M;} ands”.

Let A be a sequence of points in the complex plane without finite
points of accumulation, antl> 0. By a system of “Cartan discs relative
to A and¢é”, we shall mean the union of the system of Cartan discs
relative toA and the annulus™- 1< |4 <2™-1(n=0,1,...,)

Lemma 3. Suppose the symmetrical sequendeas a density D. Given

e > 0ands > 0we havdC(w)| = []|1 - W?/4?| > e 4w for |w| Suffi-
ciently large, and w varying outside Cartan discs of a system relative to
A andé.

Proof. Write C(w) = [T[] where[T= [ (1-w?/13),y > 1to
1 2 1 r/y<|Al<yr
be chosen later to be near 1. Denotingrfs) the distribution function
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of {|1]}, we have the following relations:

rly
00 r.2
I log|1 - —|dn(A =
OgI]:[I> Of+fw [ogl —ldnd )](r )
r 2 1
n(—) log(y“ — 1) — n(yr) log (1 - —)
Y v2

r D(ru)du-— D(ru)du
er [ 20 fyuz_l()

17y
2 v+1
f o 1D(ru)du < log )Tl(D +0(1) (> x)

(o]

and f 22 D(ru)du < log 7L1(D +0(1)  — )
y ue-1 y-1

n(L) log(y? - 1) - n(yr) log (1 - iz) > 2logy.n(yr) > 0
Y Y

if y2 < 2. Thenlod [12| > —&/2 if ? < 2, andr large enough. Now 84
[11 is a product ofN terms,N < 2D((y — 1/v), if r is large enough.

Let []1 be the product of those terms, whose zeros are in use in the
annulus 2 -1 < |7 < 2™ - 1;T]; can be written a§] 1, . [T1n.1 for a
convenienn. Takew outside any Cartan disc and suppose (if necessary,
by changing the sign of) (w — 1| < |w + 4|; then

w 1 1 (M6
|]‘||>|‘[|1_3|>W];[|W_4|>W(?)M

1n 1n

: 1
whereM is the number of terms df[;,; M < N < 2Dr(y — =)
Y

m MM 6 &
Iog|l;[| > Mlogy—er = r?(?’y_e)> -"

if v is chosen near enough to 1. That completes the proof. ]
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Lemma 4. Suppos@% <ocoand Qw) = [](1 - \%). For almost all

Cre”) _

0, we havelim log
r—oo

Proof. We choose the set of “ Cartan discE; as in the previous lemma.
Let 0r be the angle which a circlé subtends at origin. Since the radius
of the circler” are of the from 86 with preciselyn pointsa in sidel’, we

1
havefr ~ > — and) |0p| < o O
Ael |/1|

—

If we consider only those circles far away from the origin, we have
> 16r] < &. Then outside of these anglés by the previous lemma,

log|C(w)|

we havelC(w)| > e ¢|w|. Thus we have Ilm— 0 almost every-
where.
One can prove, in the same manner, the following lemma.

Lemma. If D = O, thenlim M

outside of Cartan discs assomated with

= 0, when w— oo, w vary ing

Lemma 6. Let ®(w) and y(w) be two functions of exponential type.
Supposéd(w)| < [ (w)| < eM outside of discg’, each of which is of
radius 2ke(k = k(I'): an integer) and contains k zeros ¢f Then, for
syficiently smalle, |®(w)| < €V,

Proof. Let w belong to the frontier of &. Applying Jensen’s formula
to ¥ on a circleC of centerw and radius, we get

rk
(2ke)k

log [y (w)| < —f log (W) + re'?|do — log
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<|v|+gr—rl—(lo L<|v|—r
T r ngs

for r = kande small. Applying Cauchy’s theorem fdr(w) onC,

|D(w)| < €M for w € C. So |d(w)| < ¢
m]
Lemma 7. If A has a density D and if arg — 0, thenlim M =
D sing| for 8 # 0( modr). (Cf. Method of Carlson, lecturg0§1)

Lemma 8. If 1, are real, |C(re'?)| > 1if |9 + 51 < %. The proof is
obvious.






Lecture 15

Continuation Theorems

1 Theorems about negative sequences, or sequences
contained in a salient angle

In Lecture[1B, we have seen how the principle of continuation cangbe
applied when the sequengeconsists of only negative numbers. We

had to suppose that the canonical prodogt) = [](1 - \%)(/l € A)

satisfies the condition th Pg ()l is bounded, and that possesses

a density or, at least, a, mean upper density. Then, for a convejent
eachf e J7,(Q) can be “continued” in a certain half-plaxe> x,. It

is not a true continuation whe and the half plane have no common
points. Is it possible to consider the function, defined in the half plane,
as an analytic continuation éf? This question will be solved by the use
of result about minimum moduls &(w), and a representation 8f(w)

as a contour integral.

Suppose we fix arg to satisfy the condition thaargZ| < 7—2r—a, a >

0. Consider the contou€, formed of the linesi{e'™®), rel™+) 0
< r < R] and the circular areRe™*9|g| < o], and taken in the posi-
tive direction. Letw be outside the angle made by this cont@urBy
Cauchy’s formula, we have the following equation:

87
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C
A A A
eV Zdw et
) ~ = = = Ac(W)
2ni f Cw)(w—w) (“nszic;ec) C'(D)(w-2)

We now apply Lemma@&]1 to prove that the integral over the circular arc
of C tends to zero wheR tends to infinity, along a convenient sequence
{Rj}. We suppose that is chosen so thaZ|cos(arZ + 6) < -2 €<

0, for |6 — 7l < a. Then, by lemmall, there exists a sequeRgce” co
such thatC(w’)| > e <Ri for |[w'| = R;. But|e"' 4| < e 2*Ri and hence the
integral on the sector of radilg tends to zero wheR; — oo

1 [ evZgw
A+ [ .
set W)= 2 f CW)w-w)’
cog (T+a)
AfW) = f T _eaw
2ni Cw)w-w)’

If A* and A~ exist, thenR ImAc(w) = A(w) = AT(w) — A~ (w).
j—00

WhenXcosa + Y sina + % log|C(RE?)| >e> 0 for large values oR and
Z = X +iY,A*(w) (resp.A™(w)) defines a function analytic outside the
cone defined by the conto@and uniformly bounded iZ.

Whenw lies inside the cone defined &y i,e., when argw—n| < «
the same formula foA(w) will hold if we adjoin to the contou€ a small
cut ofvtwhze path of integration and a small circle encirclimgn which

e “dw = —Zni%. Such factors are uniformly bounded for

fC(W’)(W—W’) B
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W = Rj,|argw - | < . Thus we haveé\(w) satisfying our requirement

of lecture 13; BLL) it is uniformly bounded ibwhenw varies outside the

cone generated b@ or when|w| = R;,|argw — | < a; 2) it has polar

party, e?/C’(1)(w - 1), and 3) it is analytic everywhere except at these
A

poles) whereveZ satisfies the following conditions:

a) for a sequence of values ]‘ /" o, and for|§ — n| < @ we havelZ| 88
cos(ar@ + 6) — Rij log|C(R;e?)| < — €< 0;

b) for large values oR, we have
. 1 i .
X cosa + Ysina + = log IC(RE™*M)| >e> 0,(Z = X +iY).

We will be able to find the variability af satisfying these conditions
by making some more assumptions/sn

1. A possesses a density

By the lemma of Carlson, # # O( modx), we havdim
#D|sing. Using this and lemmial 3, we are led to consider only condi-
tion a) to determine the variability &. Moreover, by the continuation
developed in Lecture_13 for negative sequence we have the following
theorem:

logIC(RE’)| _
= =

Theorem. Suppose\ is a sequence of negative numbers having a den-
sity D andQ an open set containing the segméninD, izD). Then it
is possible to continue every functionef.s#; (Q) to be analytic in the
right half-plane x> 0. Moreover for|argZ| < 8 < g the continuation

yields us a function which is bounded and uniformly approximated by
linear combination of &, 1 € A. If A has a finite index of condensation
d, the continuation yields us a Dirichlet’s series convergent for X

The same statement holds for a sequefcgithout density, if we
replaceD by Dmax For there existe\” > A, A’ having a density, and
densityA” = DmaxA (see Appendix 1)

Corollary. The sum of a Dirichlet’s series whose sequence of exponents
possesses a maximum density;l) admits at least one singularity on
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every segment of length larger themDax 0n its abscissa of holomor-
phy.

2. A has a finite mean upper densityD:

In this case, by lemmi 8C(re'?)| > 1 for |6 + %| < E. So, we
are obliged to take into consideration both the conditions a) and b) to
determine the variability of. As before the continuation developed for
this case in Lecture_13, gives us a similar theorem for continuation of
f € 4 (Q), whereQ is an open set the containing the cirtde< 7D,
into that portion of the right half plane contained between the lihes
-_0-%. The index of condensatiahis replaced by the constaBt

3. A is contained in a salient angle
Suppose\ is a sequence contained in a salient angular region around
the negative real axis, i.e\, consists of pointd of the formre'(”+9_), 6] <

2 2218
B. Then usingCw)| < (1 + %) and|C(u)] < [TI1 - %| for
w2eZiB

locating the conjugate diagram and usi@gw)| > []]1 - m |2i,8|

2
g < argw < & — g for having the minorization ofC(w)| we can prove
similar theorems taking > 3

AT

AT

£
S

Case 3

Q
&
93]
o
—
Q
&
93]
o
o

2 Theorems for symmetric sequences

FirstletA be a real symmetric sequence having a der3ityhe canon-
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ical productC(w) = [T (1- \%) has for its conjugate diagram the seg-
AeA

ment CinD,izDA)A. LetQ be a domain containing this segment. The
conjugate diagrams @ (w)e"¢ andC(w)e ¢, c > 0, are two segments
parallel to the given segment and on either side of it.

B

A

For suficiently smallc > 0, they are contained 2. Now we take
D(w) = C(w)Ch(cw)[2Ch(cw) = e"® + e in order that we get a
simultaneous majorization &' 4/D(W) (w — w’) on two circular arcs
of the contour of integration situated symmetrically.

We take the contou€ consisting of the linese'® andre'¢, -R <
r < Rand circular arcRée? and-Ré?, —a < 6 < a. Letw be a point
with |w — w'| > 1 for any pointw’ in the interior of this contour. By
Cauchy’s theorem we have

wZ
A = o [ g = 3 D= ),

c Dw)(w-w) AinsideC

Now, by Lemmd1L, we havi€(w)| > e Ri on an infinity of circles
of radii 1IR; /" co and so taking into account the majorization

‘eWZ/D(W')| < er(R| cos(a+9)|+e—c| cosﬁ|)
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whereZ = Reé¥, the integral on the circular arcs @f vanish when
R;j /" o if the following condition is satisfied:

{Rcos(a +6)+ € —C| cost| < — €’ forlg| < e, |§ — 7| < a. *)

If the condition &) is realized we can proceed along the same line of
argument as on negative sequence by considering the positive and neg
ative parts ofA separately and we will hav&(w) bounded and analytic
inside the angles andB as indicated in the figure,

/ A\
/ \ S ’
¢ —
C
_ \ /
¢ \ /

In order to satisfy the conditionx), the region of variability oZ

for a givena is a rhombus with diagonals-¢’,c’) and ¢id, id) with

€+¢ . . . . L
¢ = dtana = c - Sincea is arbitrary, the continuation is

possible along a bancdog(?ound the imaginary axis.

Such a problem of continuation was first consideredi\ldy. Leon-
tiev (Leontiev). Our method is fferent from that of Leontiev. The same
proof holds whenm\ is not necessarily real but accumulates near the real
axis, viz, arg £41,) — 0 whenl, — oo. Thus we have the following
theorem.

Theorem.Let A be a symmetric sequence accumulating near the real
axis and possessing a density D. Kebe an open domain containing
the segment-inD, ixD). Then every function &€ 573 (Q) cam be an-
alytically continued into a vertical bang?, (which may be degenerate
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into a half-plane or the whole plane) such that on each segment of length
larger than2zD on the boundary ofZ there is at least one singularity
of the function.

The last part of the theorem results from the relafion 73 (Q;) for 92
every translat€, of Q, such thaff is analytic along a chain of translates
joining Q, to Q (Lecture 12, 82). Moreover, one can prolve 7o (%)
(Kahane 1, p. 98).

Suppose now that is a symmetric sequence accumulating near the
real axis and having a mean upper dengity The above method can

be applied, if we taker > 7—2r by using lemmal8 instead of lemrh 7,
Lecture 14. This leads to the following result.

Theorem. Suppose\ is symmetric, accumulates near the real axis, and
possesses a mean upper denBity Take as2 an open set containing
the discl|z < nD-, and letQ. and Q_ be its translates by ¢ andc,

|argc| < % Then every fe /4 (Qc U Q_¢) can be continued in a

rectangle whose sides make angﬁes(mod 7—2r) with the real axis, and
having ¢ and-c as vertices.







Lecture 16

Further Theorems of
Continuation

1 Theorem of Schwartz

We have proved in Lecture 11,184 that\fis a negative sequenc&,= 93
{ = An} andz 1. = oo, thené\ (1) = €(I). Conversely |f2 1 < 00,
then@i(l) # CK(I) Let us recall that the function o

N W\ 1 SinTw/An
D(W) = ]_[ (1+ ﬁ_n) ]_[ Wi

1 N+1

satisfiesD(A) = 0,D(u) = 0(u—12) and |[D(w)| < K&, whereh =

712—

N+1 An
Supposd € GA(1), A = {-1,} and}, /l_ln < oo, Then we shall prove
that f can be continued to a half-plane at the right, above and below
We takel = (—h, h) andAz(w) = 3 e 4/D’(1)(w—21), whereD(1) =
0. The idea is still to defindz(w) as an integral. To do this, we take a

set of “Cartan circlesI” constructed for a givea> 0 andA (see Lecture
[14). Letw lie on a circlel’; concentric to circld” and of radius equal to

95
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€ + radius ofl". Consider the following expression:

A 1 eV Zdw
= — _, T
z (W) fD(W’)(W—W’) we onel’y

We have

Wl

—-h O] ¢ h
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When Z varies in an anglg¢argZ— €’)| << 7—2r(e’> 0), one can
chooses’” — and then thd”s so thatAz(w) is uniformly bounded in
Z on UI'1. Indeed if the “Cartan circlesl” are contained in an angles4
|argw - g| < a and if |argZ- €')| < 7/2 - @ we have a uniform
majorization. Also by constructiony — 0 whene— 0. Consider
W?Mz(w) = Az(W)D(W)w2. Outside the circleB; we havew?Mz(w)| <
K1w?D(w)|. If € is small enough, it follows, by lemnid 6, lectire 14,
that [w?Mz(w)| < Kze™ and also|Mz(w)| < K™ uniformly in Z.
Thus Mz(w) = A;(w)D(w) is the Fourier transform of a measure with
support in £h,h). This enables us to defing(Z) = f_hh f(Dduz(2).
Moreover, [ |duz| is bounded wheargZ- €)| < g —a. Sof(2)is
uniformly approximated in this angle by the same linear combinations
of % which approximate uniformly on (h, h).

. . . . 1
Theorem.If A is an imaginary sequendeln} such thatl, > 0, 3, = <

oo every fe €x(l) is an analytic function, continuable into each right
half - plane Rez o, X, in the interior of I. In each angldarge—x)| <

B < g(xo in the interior of I), | f(2)| < K sup|f(x)|, K depending only on
Xel

the angle.

Problem. It would be interesting to have a half-plaRez< X, instead
of the angle, in the last statement. This is certainly possible when
regular enough. Then, for a mean-periodic functiasf spectrumA we
would have

IM(X)| = sup|f(2)| = K sup|f(x+ &)
Rezx [él<n

a relation between the order of magnitude on the whole plane and on the
line.

2 Interpolation Results

Supposd € 74 (QcUQ ). We have seen thatX is real and with finite 95
D, Q. andQ_; being circles with centresc andc and radii larger than
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nl5~, we can continud into a rectangle with vertices aand—c.Results
of this type will give us some indications about the domain of existence
of the continued function.

Supposé(w) is an entire function of exponential type witl(A) =
0 and letQ be an open set containing the conjugate diagram.o¥Ve
take two translate§: andQ_. of Q. We try to construct a measure
dv = dvcz(2) with support inQ_c U Q. with the aid of the measune
such that we have'” = [ e'?dv wheneverl € A. Then we can define
f(2) = [ f(2dvcz(2). We takedv = duz = (5c — 6_c), wheres is the
Dirac measure.z(dv) = M(w)(e™"°) = 2M(w)SHcw). If we want
the conjugate diagram d¥l(w) in Q we should expecM(w) to have
the same majorization d&3(w). Let M(w) = D(W)A(w). We suppose
first thatD(w) andS Hcw) have no common zeros. We constriég)
bounded in circles of radiu’; and on certain directions avg= 6 € E.
Moreover, we want B(1)S Hc)A(1) = et for eachl € A. For that we
take the following form ofA(w):

ez - ginZ izn

D(w)SHew Zo,; DS MW= ) ™"~

log |D(re‘9)|
Let E be the set of points in [@x] where I|m inf ——— >e> 0.

In order to have the conjugate dlagraml\d)(w) in Q it is suficient
to haveE dense in [02r], arg(/c) € E andZ € [—c, C].

Here we give some results without details where this method is ap-
plicable.

Aw) =

Theorem.Let C(w) be an entire function of exponential type with
C(A) = 0 and the conjugate diagram of(@) contained inQ. Let the

log|C(re'?)|
set He) of pointsé for which I|m inf f — € be dense in
(0, 2r) for everye> 0. Then every function &€ 74 (Q_c U Q) can be
continued analytically along the segmént, c).

We takeD(w) = C(w) sin(e w)S e w) and apply the above method.
As a corollary, we get the following result: & = |J Q; and if
ey
f e 74 (G), f is analytically continuable in the convex closure/st
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A more interesting result is the following, which is mordfatiult to
prove.

Theorem. Suppose\ and Q satisfy the hypothesis of the last theorem.
Let % be a connected set containily and G = Ugen Q. If T €
J0(Q) and f € J2(G), f is analytically continuable in the convex
closure of%'.

From this theorem one can deduce that every analytic mean-periodic
function on the line is analytically continuable in a horizontal strip (per-
haps degenerated into a half-plane or the whole plane), such that every
segment of lengti. (mean period related ta) on the frontier of the
strip, contains at least one singularity fof

For the proofs, see (Kahane 1, p. 100-104).

3 Theorems of Leontiev

In (Leontiev) a method is given for the answer to the problem raise@din
lecture[ I8, viz. whether continuation along a chain of transiafesf

Q, with ¢ in a closed curve? containing 0, of a functiorf € J#; (Q),
implies thatf is analytically continuable in the interior &. The an-
swer is d@irmative whenQ2 is conveniently related ta. We sketch the
method of Leontiev.
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LetCW) = [] (1 _ ﬂj) — #(da) and let
1 A

n

cw) =[] (1 - %) — ¢(day).

n=k n

HeuristicallyCy(w) — 1 whenk — oo andday — Dirac measure.

More precisely,|Cy(w)| < Ke™™(P+9) and C(w) — 1 on every
compact set. Then, If is a curve around the disg < n(D-+ €) the
Laplace-Borel transform @@y (w), denoted by (2), tends uniformly on

I'to % Suppos& O T, andf € J#, (Q2); then the Dirichlet polynomial

fi(2) = % | fz+ 9)ex(¢)d¢ tends uniformly tof (z) when|Z is small
enough.
If we suppose alsd € J7(G),G = | €, thenfy(2) is defined by
ey

the same formula in a neighbourhood%t so it is bounded and tends
uniformly to f(z) on%#'. Hence

Theorem. Suppose\ is a symmetrical sequenge: 1,} such thalﬂ/ln|}
has a mean upper densiBy, Q is an open set containing| < nD-, %

is a closed curve passing through G = |J €, and H is the interior
(e

of #. Then, every fe 7, (Q2) which is analytically continuable in G

can be continued in H as a functiens#, (H).

Corollary. If /lﬂ — 0, the domain of existence of everyefs#; (H) is
simply—connecq[ed.

One can prove more, viz. the following result of Leontiev (stated
partly byG. Polya);

n . . .
Theorem.If — — 0, the domain of existence of everyef 4, (Q) is
convex. n

For the proof, see (Leontiev).



Lecture 17
Continuation on the line

1 Some definitions about positive sequencgs,} =
A

We give a few definitions with notations. We have already defined (lee-
ture 10)n(r)D(r), D, D., D(r), D-, D.. We define the following expres-
sions to make list complete.

Ao 1 (Tdnt) & N
D(r) = @fo — D. = lim SlerD(r), D. =lim |r;f D(r).

Taking, / we shall consider lim sugf1—1,) and liminf(1,.1 —
An).

The maximum densitPmax (Minimum densityDmin) is the lower
bound (upper bound) of densities of sequences containing (coniajned
and having a density. They are given by the following formulas (the first
one is proved in appendix 1; the second one follows from the remark at
the end.

T n(r) — n(ér)
Dmax = lim lim sup—=—>,
Do = lim lim inf N0~ N

{—1-0r—0c0 r—¢&r

We call a sequenaegularif liminf( 1,1 — 4n) > 0, and a sequence
with densityD well distributedif 2, —nD = 0(1). (In general, we have
only A, — nD = o(n)).

101
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We define thaupper distribution density- (lower distribution den-
sity A.) to be the lower bound (upper bound) of densities of well dis-
tributed sequences containing (containedAn)We have the following
formulae to calculate them:

p = fim lim supE = ()

h—oor—co h

A. = lim fim inf "R =)

h—oo r—o0

. h) — :
Proof (for A'): setap = rI|m supw. For sdficiently small

e> 0 there exists a well distributed sequente > A and having a
densityDnh+ €. Thereforea- < liminf A,. On the other hand, ik* has a
densityD*, we haven*(r + h) — n*(r) = hD* + 0(1) andD* > A, — 0o(1).
Soa- > lim sup Ap. Thereforea® = lim Ap.

h—oo h—oo

Now A < co means that for an arbitrary given interval of length
there are only a bounded numberffin it. A. < oo implies that the
sequence is relatively dense in the sense of Bohr, i.e. there exists a well
distributed sequence contained in it. We have the following relations
between these densities:

1 - . R a
- <A.<DminsD.<D.<D.<D <D <D
lim sup{n+1 — An) mn

D. < Dmax <A

1
= minf(Anes = An)
One can prove D- < eD'(Mandelbrojt2 p.53).

If D = D.,D. = D' and SODmin = Dmax-

If A1+ Az = A, A having a densityD(A) = DmaxA1 * DminA2.

The definitions of well-distributed sequences, upper and lower dis-
tribution densities can be immediately translated in case of real non-
symmetric sequences. We shall make use of these notions in the next
paragraph.

2 A problem of continuation on the line

SupposeA to be real, and take the spaég(l). We are interested in
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finding conditions om\ andl in order that evenyf € &5 (1) is a restric-
tion of anf € &\. Moreover, ifon | f belongs to a specified class
of C*-functions, we are interested to know the related properties of its
continuation on the line.
It can be natural to expect thagif > 2tDmaxand if f € (1), then
f has a continuation so théte %,. We shall give an example at the end
of this lecture which shows that this is not true even wiienég, (1).
SupposeA is a real regular sequence and|l¢1> 2 . Can every
C>-functione % (l) be continued into &% - function iN%x?

Definition. The classC{M;} for a given sequencéM,} and a given
interval | is defined to be the set @*- functions onl which verify
the conditiongf™| < KM, whereK depends only orf. We define
C{Mn} = C(co,00){Mn}.

Theorem.Suppose fe €x(l) N Ci{My}, A real and regular, M,
[l| > 2zra-. Then f can be continued into a function belongington
C{Mp,p} for an integer p= p(A, ).

It is sufficient to prove theorem for well distributed sequences, since
we can findaA’ > A with [I| > 2rA-. We supposé to be symmetric
with respect to the origin.

Consider the canonical product

= w w
C(w) = (W—/lo)g(l—/l—n)(l—/l—n)

we use the following result oB. Levin aboutC(w). (Levin 1 and 2; 102
Mandelbrojt 3).C(w) is of typeIl, |C(u)| < K(1 + |u]N), and|C’(1,)| >
K’/(1 + |.N) whereK, K’ andN are dependent on the given sequence.
C(w) is not the transform of a measure but of a distribution. We want
to construct a distribution whose transfoivt{w) has the same type as
C(w) and satisfies the equatiai(w) — €"¥X = 0 wheneveW € A.
In order to construcM(w), we takeM(w) = C(w)A(w), A(w) having a
polar part~ ¥, {el4X)/C’(1n) (W — A,)}. To assure normal convergence

eunx
we takeM(w) = vvo(w)zn] oW1

This series is normally
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convergent outside circles of radiasround thet;sforq> N + 2. We
want to have a uniform majorization foMx(w). For this take a strip
around the real axis: in this strip we have (Phragmen Lindelof)| <

K’[1+wN; then in the strip minus these circlid,(w)| < K”'w|q)1+w|N

and (Cauchy)Mx (u)| < .

(1+uP)for peven,p> N+q+2. Thus
2
1+u b

Mx(U) = €(Tx), Tx = duy + %dvX has support i, and [ |dux| and

Ji |dw| are uniformly bounded.
Let us considerf € & (A) ; we can continud at the pointx by the
formula

f(X) = (fj, Te) = f(fdux + 1P dy).
|

By our standard argument, the continued function belongéyto
More over, ifM,  and f € % {M,}, then the continued functioa
€ {Mn+p}-

For a refinement of this result, see (Kahane 2).

In this type of resulta' is the good density to consider. Actually
we cannot get more if we replaee by Dmay. In order to show this we
construct an example af and f € @, (1), fa C*- function such that
f ¢ €A andA hasA =1 andD. = Dyax = 0.

We takeA to be a sequence of integers which are situated in such
a manner thatr2 of them are in an intervdl,, the intervalsl, being
disjoint and having lengths which increase indefinitely. To do this we
take p, = nK. k > 1 and the sequence is the union of the sety, —
n,pn—(Nn-1),..., pn + n}. Itis verified easily thaD = 0 anda- = 1.

We shall construct a functiofi € €x(l),] = [-7 + &,7— €] and not
continuable ing,, nor even in@l’\.

Let o(X) = 3 Cj€*. We can choos€; in such a manner that

Co=1 anda(x)_o\;anishes orl. By the theorem of Denjoy Carleman
we can haver(x) to be not in any quasi-analytic class (lecture 19, §2),
but in the clas€{n"} for @ > 1. Then|a®(x)| < k*k. As a®(x) =

()= Cjjke™je,|Cj| < Iaj(K)I_ Hence|C|| < mnmlr}? <el" o < 1.
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n ..
Also ¥ [Cj| < e™,B < 1. This majorizeSp(x) = >, C;é™* onl. Let
-n

[jl=n

f(x) = f} anePXSp(x). If 3 janle™ < o, f is continuous orl. We
n=1

can takea, such that); anpnme‘"g < oo for everym anda;, increasing
more rapidly than any polynomial ip,. On account of the construction
of a,, f(X) is infinitely differentiable in, but cannot be continued either
in & orin 7; (because, would be the Fourier cagcient of orderpy).






Lecture 18

Continuation on the Line and
Banach -Szidon Sequences

We have seen in the last lecture thatfife €z(1),|l1| > 2ra and if 104
f belongs to a class d&*- functions, thenf can be continued to a
functione %,. The answer without the assumption offdrentiability
is not known completely. But conditions ok can be given to have
the answer in particular cases. Supposis real, symmetric and very
lacunary in the sense that,1|.1, >> 3. Then we shall prove that every
function f € %x(l) is continuable intds,. We take a trigonometric
polynomialP(x) = . rn COS@nX + ¢n), |rn| > O.

n

For A, large en(;ugh the séi, is defined as the set of pointsatis-
fying the following conditions:

n/2—a+ 2kt < ApX+ ¢ <m/2+a+2knk=.-1,0,1,...)

. -2
The connected componentskf are intervals of Iengtlg/l—a.
n

If no is large enoughE,, has at least one connected component

. . A + 2 .
entirely inl, sayln,. Assuming /”;1 >1+ 2 20[, there is at least one
n T —2x

107
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connected component &, 1, sayln.1, inside a connected component
In of En (see fig.) ; we define, in that walyy 1. In 42, ..., TakeX € Nly;
thus

N
P(X) > sina )"y, (1)

LetA’ = A —{+A1,%o,...,xAn 1}

)

], = max|f(x)| and||f|| =

S, if f = 2 FnCOSQnX+¢n), 3. I'n = X |rn| < oo; they are respectively

norms in two Banach spaces, séyl) andAx . (1) proves the equiva-
lence of these norms for the polynomialsdi.(1): sina||P|| < |P|; <
IIPll. As the polynomiald? form a dense subset iy (1) and inAx/,

we can identify@’; (I) and A, : every f € € (1) can be expressed as
an element ofA,.. The same result holds by adding a finite number of
terms toA’ (because

no—1

feta(l) o f=fitffi= ) rmcos@x+en). febn().
1

Thus we have prove the following proposition:

Proposition. Suppose\ = { + 45} is a real symmetric sequence which is
lacunary in the sense that,.1/1, >> 3. Then every function & %(1)

is the sum of an absolutely convergent Fourier-series and f is continu-
able to%,.

A result of this type was considered by Szidon (Zygmund 1, chap.
VI 86.4) who has proved that a bounded periodic function whose spec-
trum A is lacunary in the sense of Hadamard, Vig,1/1, >> 1, has an
absolutely convergent Fourier series.

Definition. A sequence\ is said to be a Szidon sequence if for every
intervall, f € (1) = f = ¥, a()e™* andy; |a(1)| < .

We shall make a brief study of Szidon sequences and give alternate
definitions of them by a simple lemma on Banach spaces.
Let &1 and &> be two Banach spaces with norih$; and|| || and



109

let &1 be an algebraic subspaced&f. Moreover, for every € &1, let
IXll1 > [[X|l2. Then& is imbedded inf] by (X, X')1 = (X, X')2&, C &”.

By a theorem of Banach, #7 = &> then the norms are equivalent
andé"l’ = &. Conversely, iféal’ = &3, then is it true thaty = & ? But

x|l = ”shj<|ol|<x, X)L IIXll2 = SURp<1 [(X X)|- Sinces; = & and since
X<

IXll2 > K™YIx|l1, K > 0, we have|x||; < Ksup < |<x, x’>j = K|[X|2.
X1l
This means tha#} is closed in&. In order thatéy = & it is necessary

and stfficient thaté is dense in5>. That proves

Lemma. Let &1 and &> be two Banach spaces with northi and|| ||2;
supposes; is an algebraic subspace &b, 41 is dense ing, and||x||1 <
IX|l2 for every xe &7. If & = &, thenéy = &.

Definition. We define a sequenck to be aBanach sequencef for
every intervall and every sequend®l1) — O a_sﬂ(e A) — oo there
exists a functiorf € L(I) such thab(1) = fl feXdx( 1 e A).

We prove a theorem relating Banach sequences and Szidon sequen-
ces, by applying the lemma.
Let & be the space of sequendaél)} converging to zero endowed
with the norm/l{a()}ll> = supla(a)|.
A

Let &1 be the space of sequencéd®l)} with b(1) = fl feixdx,
where [ |f(x)|dx < co. The norm in&y is taken agi{b(A)}lly = inf [|f]
where the infimum is taken over dilfor whichb(1) = |/ e™*f(x)dx
&1 is isomorphic taL1(1)/H, whereH is the subspace df}(l) orthogo-
nal to{ex}.

&, is the space of absolutely convergent sequef€ey}, with the
bilinear form on&,x&7 as(a(d), C(1)) = X a(1)C(1). The norm in&;
is given by||C(1)[l2 = X C(1).&7 is isomorphic toA,. _

&7 is isomorphic to the subspa@ (1) of L(l) spanned byex},
with the norm of{d(1)} = ligllL=q) Whereg ~ ¥ d(2)e**. The bi-
linear form giving the duality is (b(1), d(1)) = fl fo, whereb(1) =
Ji fO9e xdx.

Now the sequenca is a Banach sequence if and onlyéif = &>, 107
and a Szidon sequence if and onl¥if = &7. A Banach sequence is
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a Szidon sequence. In order to see that a Szidon s equence be & Banac
sequence, it is ghicient to prove tha#; is dense ins». This is so since
every linear functional od’» which is zero oné; is zero. We can apply
again our lemma, takings{, £7) instead of £, £7).

&3 is the space of bounded sequengg(g)} with (C(1), &(1)) =
¥, c()e() and the normle(A)ll = sup|e(2)|.&] is isomorphic to the
quotient spacéM(1)/K whereM(l) is the space of measures with sup-
port in | andK is the subspace of it orthogonal g'}. {f(1)} € &
when f(1) = fler,u,d,u e M(I)/K and|b()|| = igff|d,u|. When

&1 = &, 8] = &'. Moreoverédy is dense ins] (because obviousif
is dense i6x(1)); thens] = & = &' = &'. We get the following
theorem:

Theorem. The definitions of Szidon sequences and Banach sequences
are equivalent, and equivalent to the following: for every integral | and
for every bounded sequenf®1)}(1 € A), there exists a measure:d

with supportin I, such that(@) = || e”*du(x)(1 € A).

We have given diicient conditions for a sequeng¢eAl,} to be a
Banach-Szidon sequence. Actually, Zygmund has shown (Zygmund 2)

that the condltlon;—Jr1 >> 1 is suficient. Necessary conditions involve

arithmetical proper?ies of,,, as it appears from the following proposi-
tion (proved in (Kahane 2) ).

Letés, ..., ép be areal numbers. Consid®gy +- - - +npép, Nj being
integers satisfying the inequalityy| + - - - + [np| < s. If A is a Banach-
Szidon sequence, there exists a constast A(1) such that among the
set ofniéy + - - - + npép there are onlyA, log(1 + s)] of them inA.

Examples.Takep = 1. We cannot have more than 0(lggpoints of A
in an arithmetical progression containiagerms.

Lets = 2, andp = 1,2,... Whatever be the sequen¢g}, we
cannot have im\ more than 0g) points among thep? points&j + &,
il < p, Ik < p.

The study of Banach-Szidon sequences is interesting in itself, but
can give only a partial answer to the following problem:
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Problem. Give a relation, betweeA andl, such that everyf € G (1)
is the restriction on of a functione %,.

This problem becomes easier and has pretty good solutions if we re-
place¥ by the space of functions which belongltbon every interval,
with the topology of the convergence i} on every interval ( (Paley -
Wiener), (Kahane 2)).






Lecture 19

Quasi-analytic classes of
functions (Quasi-analyticity
Dandl)

1 Quasi-analyticity and mean periodicity

We shall see presently that problems of quasi-analyticity appear irosa
natural way as problems on mean periodic functions.

1.

Consider the following problem. Given a fetconsider the closed
spantg(f) of translatesfy,y € E, of f. Find the conditions orf in
order thatrg(f) = 7(f). In other words, the problem, in a restricted
sense, is to find a relation betweErand the spectrur§(f) in order
thatre(f) = 7(f).

On the other hand, the above problem suggests the following one.
Let f be aC*- function and le®(f) be the closed span of the deriva-
tives of f. (WhenE is not a discrete sef(f) is a subset ofg(f)).

Find conditions abouf so thats(f) = 7(f). Here we require a
condition involving a class o€*- functions, i.e. a condition on
the class and the spectrusf), for example conditions of the type
{K{Mn}, S(F)}, f € K{Mn).

Definition. The classK{M;} is defined to be the class ©f°- functionsf
such that on every interva) | f™| < K;My, (0= 0,1,...), where{M,)

113
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is a given sequence and a constant depending drand f. C{M,} is
defined as a class @>- functions which satisfy the relatioff ™| <
KM, on the real lineK depending only orf.

The above two problems are closely related to quasi-analyticity.

1. In order thatg(f) = 7(f) itis necessary and flicient (condition

of Riesz) that every measudg orthogonal targ(f) be orthogonal
tor(f). Oragaing(y) = f f(x+y)du(—x) = O foreveryy e E =

g =0. Asf € %5 impliesg € %, we have an answer to this
problem if we have a relatioR{E, A} betweerE andA such that
{ge %r,0(y) =0,y € E} = g = 0. This is nothing but a problem
of uniqueness. We will be mainly interested in the case vwhen
an interval.

Definition. A class of functions is called an I-quasi-analytic class
if each function of the class is defined by its values ghbeing
an interval.

. By the condition of Riesz, denoting by

g(y) = inf f(x + y)du(—x),
we have §(f) =7(f) & [0 (©0)=0Vn=g=0].

Whenf has spectrum, g € €. Moreover iff € K{M,} theng
K{Mp} so thatg € K{Mp} N €x. Thus we have an answer to this
problem if we have a relatiof{Mp}, A} such thatg € K{M,} n
Ex, g™ (0) = OVn} = g = 0. The same is true in replaciti¢ My}
by C{Np}.

Definition. A class of C® - functions is defined as a D-quasi-
analytic class if the only functiog of the class all of whose
derivatives vanish at the origin is the zero function.

In Lecture 5 BR, we proved a result equivalent to the followitg:
is an l-quasi-analytic class jf| > mean-period related ta. We give
here a far stronger result.
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Theorem.Let A be a sequence of complex numbers such#has %,
and A* and A~ the parts ofA respectively to the right and to the left of
the imaginary axisé, is a quasi - analytic class whenever

11 > 22Dpmin(A™) or |1 > 27Dpmin(A7).

Proof. We use the notations of Lecture 8 €, f+du =0, f Lxdu =

g, F(w) = %,S(f) = spectrum off. Denoting by’ (du) and 3 (g)
the null-sets oM (w) andG(w), we haveS(f) = > (du) — >.(g) N > (dw).
Let L, and Ly be the lengths of the segments of supportsi@fand

g. According to Levinson’s theorent, = 2r density Y, =(du) (3 +

is the part of}; to the right (respectively to the left) of the imaginary
axis). Now we use the result that$; andS, are disjoint sequences,
andS = S; U S, has a density, densit$ = DmaxS1 + DminS2. Thus

L = 22DminS*(f) + 27Dmax(S*(9) N S*(duw)); L, < 27DminS*(f) + L.

If f=00n(1,0),thenLy <L - 1. Hence

DminS*(f) > (L, — Lg)/27 > 1/2n.

Soifl> 27DminS*(f) or 1> 27DninS™(f), f = 0. As a translation
of f does not chang8(f), the theorem is proved. O

The above theorem is stated in Levinson (Levinson, chigpwhen
A is a sequence of integers, i.eis a periodic function; then the proof
does not require the Carleman transfornf of

2 Theorem of Denjoy-Carleman

We first study D-quasi-analytic classes in which no conditionAois
involved. We shall prove a classical theorem of Denjoy-Carleman about
D-quasi-analytic classes. It is a local property and so can be stated for
an interval.

Definition. Let C,{M;} bee class ofC*- functions satisfying the condi-112
tions|f™M(x)| < KMy on aninterval, 0 € I, K depending only orf. We
say that it is a quasi-analytic classf#f?(0) = 0 for everyn = f = 0.
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Given a sequenciM,} let {Mﬁ} be the largest sequence which sat-
isfiesMf; < Mp andM¢ . /MS .

n+1
Theorem of Denjoy-Carleman C;{M,} is a quasi- analytic class

> M
= Q.
1 I\/Irg+1
A variant of this theorem (stated by Denjoy without proof) is that
© ]
Ci{Mp} is a quasi-analytic class = co0. The equivalence
|{ n} q Y % (Mﬁ)l/n o q

of these two follows from the inequality:

Z €n< Z(el )N < eZ en for ep\, 0.

(Cf. Hary-Littlewood-Polya: Inequalities, &. Mandelbrojt 2).

Interpretation of M. Consider in the plane the pointg [og M) and
construct the polygon of Newton on these points. It is a convex curve
m(u). The ordinate ah intersecting this curve gives ldds. The se-
quence{log M¢} is called the convex regularized sequence correspond-
ing to {log My}. (Mandelbrojt 2).

Proof of Theorem.We can suppose> [0,1],K = My = 1 andM,, =

M5. Considerp(x) = f(X)f(1—x)in 0 < x < 1 andy(X) = 0 elsewhere.

Since logM, is convex, My is the r_r<1a>(MiMn_i). Thus we have the
1<n

following majorization forp((x):
e ()] < MMy + (DMiMn_g + -+ + MaMo < 2"Mp,
and ¢ is null, with all its derivatives, at the origin. Consid®(w) =

7(p) = fol o(X)e™Wdw. Integrating by parts, we have

1 —iXW

_ () € p

O(W) fo o P(x) (iw)pdx and |D(w)| < 2°Mp/wIP.

Now we introduce the functiof (r) = supr®/Mp. Then|®Ww)| <
p

We apply Carleman’s formula fab(w) in the upper or lower

R log{®(u)D(-u)}
2

T(r/2)

half plane and gef du cannot tend to-c0. Since
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IogT(r)

low)| < T /2),, we have[™ dr < oo. Therefore[™ Iogr12'(r)
dr = oo |mpI|es quasi-analyticity (Ostrowskl s form).

We have lodl (¢”) = t(o) = mr:ao(n(r —logMp) = mfo(au - m(u)).
Moreover the relation betweetfo) and m(u) is reciprocal. Indeed
m(u) = max{uo — t(o)). Also the derivatived’(o”) andnY(u) are in-
verse functions in a sense made precise by the graph. First we suppose
m(u) — oo whenu — co. Now

X X
f e t(o)do = —*t(X) + f e ’t'(o0)do

log M,, = m(n) o|m'(u)

U W
[ )

B e
B ks S
P L &

— t'(o)e

n u

Thus we havel™ e t(o)do = o0 & [~ et/ (o)do = oo. 114
Sinceo = nY(u) andu = t’(o), we have the following relations:

T T
f e‘m(“)udrﬁ(u):—e‘m(T)T+f e MWy

f e 7t'(o)do =oo(:>f emldu=co

Betweenn < u < n+ 1,n7(u) = logMp;1 — log M, and—m'(u) =

log M
Mn+1

f e"Udu= 0 & Z M 00
n+1



118 19. Quasi-analytic classes of functions...

f I()gr#dr =00 & f € “t(o)do = oo.

Thus, finally we have the relation

* logT(r) *© ME
f r—zdrzm‘:’f e =

n+1

This relation still holds when (u) is bounded.
We have proved that if, M$/MC. | = oo, C/{M,} is a quasi-analytic

n+1

class. Supposg Mr?/Mﬁ+1 < oo, Then we construct &- function

with compact support which ig 0 and which satisfies the conditions
|f™| < MS and f(M(0) = O for everyn. To constructf it is convenient
to construct its transform.

. 2 .
o SInaijw
TakeF(w) = (S'”E W) i

ew n

1 ajw

. It is an entire function of ex-

sina;ju
ponential type ify, @j < co,aj > 0. We can majoris{a—uj| by 1 for
aj

j > N and we havéF (u)| < (sm € u) !

€eu 1 lejul’
We write F(w) = %(f), f(x) = % [ F(u)é"*du, sinceF(u) is

rapidly decreasing. Also we have the following relations:
f0(x) = % I ) F(u)(iu)"e™du

00 H 2
|f<”)(x)|<(a1---an)—1f_ (S'”e“) du

eu

We takeM§ = (a1---an) L, i.e.an = My /MS7™,
Thus our construction is complete.



Lecture 20

New Quasi-analytic classes of
functions

We study quasi-analyticity o, with conditions involvingA. First we 115
recall a result o5. Mandelbrojt about periodic functions (Mandelbrojt
1).
f ~ z:(an COSAnX + by sinApx)
DU <0,0<o<1 LL-g

@ o o
f If| < Ke™@ ),a<a0,p>
o 1

-0

This signifies that if the spectrum is very lacunary, then it is not
possible to havefoa--- very small. This leads us to find conditions
involving {1y} andl (@) such thatfoa |f| < I(a) = f = 0. Such functions
form a clasd ().

Definition. Given a positive function(a) (@ > 0,1(a) ), a class of
C* - functions is defined to beldw) quasi-analytic class when the only
function of the class which satisfies the conditidﬁs}ﬂ < l(a)(a — 0)
is the zero function.

There is a connection betweéfwr) quasi-analyticity and quasi-
analyticity. Indeed iff € C;{My},0 € 1 andf™(0)=0,forn=0,1,...,

119
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then by Taylor’'s formula

Xn
f(x) = ﬁf(”)(ax),

n

0 < 6 < 1and so|f(x)| < %Mn which gives that [’ |f(x)|dx <
n+1 '

min a—'! Mp. So quasi-analyticity(«) implies quasi-analyticityD,

n (n+1)

whenl(a) = mnin

n+1Mn

(n+1)!
116  T(r) introduced in the last lecture, but it seems not possible to obtain the
Denjoy-Carleman theorem by consideri{g).

. This function is similar to the function

Our problem will be to define a relation betweanand I («) such
that &, is anl(a) quasi-analytic class. First we formulate the method
we shall use in this lecture (other methods will be explained in the next
one). Supposd € &, # & and the mean period correspondingAto
is zero; for convenience, supposezOA. Then for everya > 0 it is
possible to find a measudg, with support in[ — @/2, «/2] such that
f « du, = 0, and we can assume the conditiomp, = u,dx u, €
L, andfd,ua = M,(0) = 1. Letg = —f = du,. Then (notations of
Lecture 45,(w) = F(W)M,(w) andG,(0) = F(0). Suppose we have
foalf(X)I < I(@). Then|igulls < @)y lleo- AS |Ga(0)| < allgell, we
have|F(0)| < al(a)llull.. Suppose that, for an infinity of — 0, we
can choosely, in such a manner thatl (@)||u, |l — 0. ThenF(0) = 0.
This being true for anyf € %), we take primitives off instead off (x)
andF’(0) = 0 etc. Thug= = 0 andf = 0. Thus we are able to formulate
our condition as follows:

Suppose that to eaeh > 0 we associatg,, € L™ with support in

[ - %, %] such that[ 1, = 1 and [ €/, dx = 0 for everyd € A. If
liminf,_oal(a)llu,ll- = 0, thené, is anl(a) quasi-analytic class.
We shall use this condition in the following form.

117 Lemma. Suppose that to eaala > 0 we associate an entire function
M, (w) of exponential type< C—zy such that M(u) € L1, M,(0) = 1,
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My (A) = 0. If Iimigfal(a)f|Ma(u)| = 0, then%, is an I(a)- quasi-
analytic class.
We apply the above condition in the case wheis a real symmet-

. 1
ric sequenceA = {+1,} such that} N < oo. To construct the func-
n

tion M, (w) we take the canonical produc({w) = (1 - \jliz) and take

n

with 43 aj = . we take this additional

Mo (W) = C(W)H[
factor sinceC(w) does not behave well real axisl, (w) is a function of
exponential typeozf, sinceC(w) is of type 0. Now we have to construct

an in such a manner thadl,(u) € L. To do this we first try to majorise
M, (w). Supposel, < u < Ah+1. We have the following calculations:

N u? ) ® ( u2) ® (sina/ju)2
M, (u)| = — -1 1-—
[Ma (1) l_[(ﬂ [Tl o
2n

u min|1, ——
< 'Y
/l%-u/l% ai---a%uzn adu?

.. .. = sinaju .
(we already used such a majorization, f¢r uJ ,in Lect. 19, BP).
o} aj

00 1 00
fo |Mo(u)|du = fo + fl <(1+aig)(mr?)(/llal,...,/lnan))_z.

. o 1
This majorization is not useful i}, o= because the second
) K oK
_— > _1
(A1 4n) An
and the equiconvergence B, andy. (a1 - - - an)Y", which we stated in

Lect. 19 &2, leads to a contradiction). To get a result, we must suppose

1
Z— < oo. Choose a sequendk).ln — o, such thatyy® 2 < 5'—3

and takeozo = «/8,aj = lja/2j. Then 43,0 aj < oo and ma)(/llal 118
Anan) = mr§><(ll -In@™). This is finite sincd,, — oo. (The expression

member is» (if not, we would haved; - - - an)¥" >
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(mr§>(ll---lna”))‘2 is of the same form as ma&/M, which we have
seen already). Thus we have

f IM,| < Const(mr'lso(ll---Ina“))‘za‘z;

M, (W) = 0 on A and M, (w) is of type< a. Now the condition lim inf

a—0

al(a)f M, (u) = 0O follows from ”(Ulig‘f'(“)/“ mnin(ll ---lha"? = 0. By

changing the first; if necessary and by replacingby klj(k > 1) for
suficiently largej we have the following condition fo¥, to bel(a)
guasi-analytic.

&) 1 .
Theorem. SUppPosSe\ = {+1,},0 < A1 < Ap--- Y /l—” with 1, /" oo and
1 “1n
jiminf —— (@
=0 amin((ly---lha")2
n
class.

< co. Then%, is an I(a) quasi-analytic

When {4} is not a sequence of real numbers, but symmetric and
1 . " .
> N < o0, the same method can be used with the additional hypothesis
n
that|1;|/j**<" so as to have a good majorization[df|1 - u?/4?| and

2
in this casd [T(1 + I/llJ_|2)| < KmaxU)2"/|11 - - - 12 (see (Kahane 1)).
j

The conditiori/ljl/j1+€ /" is a condition of regularity.
Our condition ofl (@)-quasi-analyticity give$. Mandelbrojt’s the-

1
orem. Suppose_jF < 00,0< 0 <1 Take} = AL 7. Thus

n
a

Y 1/1700) < . Taked, S andso i A 117 /n -
1-o0

1.>n O
and
4 (Erore LoD,
max——— < maXx——————<e [I°
n Il...ln n (n!)(l—(f)/o’

1-0

119 Takinge = 1/r we have quasi-analyticity wheneviiy) < a’e o
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a,a'/ 1—6.

Again, we can derive a condition 8f-quasi-analyticity folC{Mp} N
%n. We have seen th&@{Mu} N %, is D-quasi-analytic witH (@) =

n+1

mniann. Thus it is stficient that rpimaZ”Mgn/(Zn + 1)) <

min(ly - - - 1na")? for an infinity of @, — 0. This means that the re-
vgrse inequality does not hold far > ao. In other words, taking

a = 1/r,maxr®(Mzn/(2n + 1)1)™1) < maxr®'(l; - - - 1,)~? does not hold

forr > ro.nNow we use the following Igmma.

Lemma. Let {A,} and{By} be two positive sequences with B/ B, .
Then

{Bn < Ay, (N> ng)} = {mrgxr”/Bn > mrgxr”/An}(r > o).

For the proofC f. (Mandelbrojt 3, p.7 and p. 18).

. _ I\/|2n
Taking An = G
I\/|2n

n+ 1)l > (I1---1n)? does not hold fon > n, (whatever we choose

No). ReplacingM,, by kM, we get:

By, = (I1---1,)? our condition becomes:

Theorem.We make the same assumptions ahaut,, 1, as in the
above theorem; | is an arbitrary interval.

If lim inf Mzn

06\ NC{M
noeo (204 1)!I(11---1,)2 > Uon 1{Mn}

is a D-quasi-analytic class.






Lecture 21

Applications of the Formula
of Jensen and Carleman

to quasi-analytic Classe®d
and | ()

1 Principle of the method

We give here an alternative method for obtaining conditions of quasi
analyticity. This method is applicable to bounded mean-periodic func-
tions (for quasi-analyticity(a) and for mean periodic functions belong-

ing to a classC{M} (for quasi-analyticityD). Moreover, it is easily

seen that the method can be applied to those classes of bounded func-
tions on the real line whose Carleman transforms (in the classical sense)
are meromorphic, either on the whole plane or at the right (left) of the
imaginary axis (for example, almost periodic functions whose spectrum
have no finite point of accumulation on the line (resp. on a half line ) ).

Following a method oB. Levin, we takd (a) = e '@ wherer(a)
is a decreasing function efwhich isco on [0, @] and continuous with
values fromeo t0 o 0N (@eo, @0], 0 < @eo < . We denotdg/a(r) the
inverse function, defined om{, ), such thatr () = @.

Let now ["[f] < 1(e) (0 < @ < ao); if @ # O, this meand =0 on

125
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[0, as]. Let F(w) be the Carleman transform é{Lect. G §3).

(o]
F(w) = f f(x)e™"dxfor v>0

F(w) = - f f(x)edx for v<O.
[0}

121 We have the following majorizations:
|F(w)|=|ff(x)e‘ixwdx| 5|f|+|f|
(o] (0] (01
@)+ KEy <0
< la) + V<
() v

[0}
| F(W) | sflf(x)lex"ldx<|vK|,v>O.

2
=2
&

Yofp-----

a(y)

[ (673 «

O

For a givenw we can choose as we want and we take = a(|v]),
V| = r(a). Thus the above majorization far< O reduces to the follow-
ing one:

[F(w)| < (1+ 5) gar@ < (1 + 5) g Ma(w))
v v
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This relation permits us to have the following lemma:

Lemma 1. The set of bounded functions#\ # % is an I(@) quasi-
analytic class, with (@) = e @as soon as the following relation is
satisfied:

log|F(w)| < —log|vi,v> 0 (W= u+iv = re')
\J

|1+ V|

F(w) meromorphic with simple poles at

log|F(w)| < —log ~—Va(r),v<0 $=F=0

Let now f € C{Mn} N Gr, 6 + € and f(M(0) = O for everyn.
ThenF(w) satisfies the following relations:

F(w):f £ (x)‘(ei;il—x)vnv dx v>0

(0]
KM KM
|F(W)|<|T|nn fevxdx= v rn” v>0

—0o0

K M
|F(W)|<Wrn” v<0

We have seen in Lecture 7 (sin€és bounded) thafE (w) is a mero-
morphic function with real simple poles at and from the above in-

» .. KM
equalities we haviF (w)| < inf,, v r”n'
Thus we have the following Lemma: 122

Lemma 2. The class6y N C{M,}, 6a # € is a D-quasi-analytic class
as soon as the following relation is satisfied:

F(w) if meromorphic with simple poles at
log|F(w)| < —logM - S(r) >F=0
with S(r) = mr?x(nlogr —logMp)
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2 Application of Jensen’s and Carleman’s formulae

Application of Jensen’s formula: Here we assuma = {+1,}. Defini-
tions ofn(r), D(r), D- are given in Lect. 10.[81.

We suppose thaE(w) satisfies the majorizations of Lemrh 1 and
thatF(w) # 0. First, Jensen’s formula gives the following majorization:
(Lecture 10.ER)

r ‘ 1 2n
-2 f o 4 < —f log|F(re'”) | do — log | F(0) |
t 2n
(0]

(o]

Division of F(w) by wP will not alter the conditions of Lemnid 1 and
so we can také&(0) # 0. Using the majorizations of Lemnia 1 in the
above inequality, we have

—2rD(r) < 1 ra(r) - % log r +0(1)
T

and sox(r) < 27r|5(r) for suficiently larger.
This relation gives us the following theorem:

Theorem 1. The set of bounded functions@f # ¢ is an I(e) quasi-
analytic class, with (@) = €@ as soon asy(r) > 27D(r) for an
infinity of values of r— oo.

Remarks. 1) If a(c0) > 27D, the above theorem gives that the set of
bounded functions o, # ¢ is a quasi-analytic class || = 1,
whenever 1> 2zD.. This result is contained in Levinson’s theorem
(Lecture 19.81).

2) If D(r) < D. for an infinity of values of — o itis sufficient to have
a(o0) = 27D. to apply the above theorem and thus, in this case, we
get a precision of Levinson’s theorem.

3) The above Remark (2) applies to the case of odd integers where we

haveD. = =, then also the case of even integers. But if we add
+1 to A the result ceases to apply. Indeed, there exists a function
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f(X) = sinx + §] Cn €25 which vanishes on [r], f(x) £ O.

Adding {+1} to A, we addlog to D(r). Thus we cannot replace

5(r) by 5(r) + IO% in the above theorem. In this sense the above

theorem is a precise one for sequenteashose distribution is nearly
the same as that of integers.

123456 7

Let nowF(w) satisfy the conditions of Lemnia 2 and let us see what
happens when we suppoBéw) # 0. Applying Jensen’s formula and
using the conditions of Lemnid 2, we obtain, as before, the following
inequality:

—21 D(r) < =S(r) - log r + O(1)

where S(r) = max (nlogr — log Mp).
n
r
— dN(t rn
As r D(r) = N(r)log r - IJ = log
A1+ An
o
if An <r < An+ 1, the last inequality can be written 124
I,2n+1 2n+1
max——— > K max (K >0).
noAT-- AR 2n+1

Using the lemma stated at the end of last lecture, the above inequal-
ity Mans1 > K|A3--- 22] whereK is a constant. Thus in order to have
F(w) = 0 it is suficient to have the reverse inequality for an infinity of
values of n, which gives the following theorem:
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Theorem 2. ¥4 N C{Mp} is a D -quasi-analytic class as soon as the
following condition is satisfied:

. M
lim inf —2*1 — 0.
n—co /15...,1%

Remark. The above condition is simpler and more precise than the con-
dition of D - quasi-analyticity obtained in the last lecture. However, this
condition is applicable only whef is real and it involve€{M,} instead

of C{My}. But the latter inconvenience can be suppressed whenever
A = 0, by the use of the theorem of continuation of Lecfure 17.

Using a result proved in the next lecture, we can obtain that the
above condition is also necessary forquasi-analyticity, whem is
suficiently lacunary.

Application of Carleman’s formula: We assume now nothing about
the negative part ok; the functionan*(r), D*(r) are related to the posi-
tive part ofA.

Suppose-(w) satisfies the condition of Lemria 7 and Kw) = O.

The application of Carleman’s formula in the right half-plane gives

f (1/t - t/r?) dn*(t) > % f (1/V? — 1/r?)va(v) dv+ O(L).

Now, if D*(r) is bounded, integrating by parts, this reduses

r
+ —
fw dt> 0(1).
Thus we have the following theorem:

Theorem 3. The class of bounded functions#¥ # ¢ is an I(«) quasi-
analytic class, with (@) = e '@ when D < 0 and

lim sup a() - 2rD7(Y)

—oo t

dt = oo.
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Suppose now thafF(w) satisfies the conditions of Lemn& 2 and
F(w) £ 0. Setw = ie"™w2, with % < a< 1. We takeFy(w) =
F(w).F1(w") is meromorphic in the right half-plane having poles only
on the line argw = g — na and the distribution of these poles is

1
Ni(p) = N+(p5). Moreover we have

0 —
2a

log|F1(w)| < —log|ps sin 2 |- S(82).

(W = p €%). Carleman’s formula applied tB1(W + 1) in the right
half-plane gives us the following inequality:
P
limsup | (S(r2) - nsinraN*(r3)

p%OO

dr

‘E<
00
T2

This relation gives us the following theorem:

Theorem 4. €, N C{My} is a D - quasi - analytic class when

;
S(t) — msinraN*(t)
dt= o0

N*(r) = 0(r?) and lim sup Ta

r—oo

with S(r) = max,(nlogr — log Mp), % <ac<l

Remarks.1) Fora =1, we get the condition of Denjoy-Carleman. 126

00 N[+
2) If '\:3/g[)dt < 00,%x N C{M,} is D-quasi-analytic ifC{ M} is

D-quasi - analytic.

WhenF(w) is not meromorphic in a right or left half-plane we can-
not apply either Carleman’s or Jensel’s formula. Partial results in this
direction can be got by applying a formula due to Mandelbrojt and Mac-
Lane (Kahane 1).






Lecture 22

Reciprocal theorems about
guasi-analyticity D and | (@)

In the LectureE 20 arild 21, we gavefatient conditions in order th&f, 127
should be an(a) quasi-analytic class, & N C,{Mp} respéx N C{Mp}

a D-quasi-analytic class. We stated thatAifis suficiently lacunary,
some of these conditions are necessary. In order to know whether our
suficiency conditions are good (i.e., whether it is not possible to relax
them very much), and, if possible, to find necessary afidcgent con-
ditions, we shall construct a functidne %, “as small as possible” near

the origin. Actually, we want first to havE™(0) = O(n = 0,1,...) and
sup(| f™(x)|} increasing as slowly as possible.

We saw in the Lecturie 21 that the smallness at infinity f), the
Carleman transform df, is related to the smallness bhear the origin.
Therefore, it is natural to takE(w) “as small as possible” at infinity.
Suppose\ = {+4n} to be symmetric and real. Then the Carleman trans-

form of everyf e %, is the product ofFo(w) = [](1 - Vf) 1 by an

entire function. With convenient hypothesis anwe shaII construct
fo € En, whose Carleman transformbg(w). It is natural to expect that
fg is the function we want.

We supposeA = {+1,} to be symmetric, real and lacunary in the

An+1
same thatn—+ > K > 1. We denote b)E(i - i) the polar
AN W—Ax  +Ak

133
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part of Ro(w) = [](1 - —) 1 thenA = —? H(l— ) 1. We define
J#

J
fo(X) = 2 Acsindk X; mdeed if), |Axl < oo (and the following calcu-
lation proves that it is realisedly,o(w) is the Carleman transform d§.
We now try to get a majorization f¢fé”)(x)|.

1101 < 22 AR

2... 2 k1 g2 oo 2\71
. /1 A% A

_ l T 1k
=SB E T ] 2 )
A2 < C/@ e /lﬁ_ll/lﬁ

1Y <2c Y 2 a2 4200

k=1
5 ) n-1 /li(n k) l |/12
_ n+
=204 A (Z Az—] +1+Z e
1 k+1 AR n+1
<C1A2--- 22

and| fézn)l < C1 A%+ 22 An,1 by a similar calculation. We takiélon-1 =
A2--- 23 andMan = A2+ -+ A3 Ane1. Then we have, € C{My}.

Moreoverfé”)(O)(n =0,1,...). For, if N were the first integer such
that f{"(0) # 0, we would have, fov > 0.

(N) FNeD) gy 2 _
Folw) = f(oiw)(g): (C;W)Ngl)Jrf 1B09 (i)™ e dx

2
and lim (-NF(=iv) = fN(0) # 0; since[T(1 + %) increases more

rapidly than any polynomial, this is impossible
In Lecturd 21, we found that lim |nf7 0is a sifficient

2.
=0 - ABAna1
condition for theD-quasi-analyticity of6y N C{M;}. The properties of

f gives us the following result:
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Theorem 1. If A = {£A,} is real, symmetric and lacunary in the sense9
/ln+l

that

EAN C?Mn} should be D-quasi-analytic is that either

> K > 1, necessary and gfcient condition in order that

1) lim nlﬂ]; =z

2) 6x NC{Mp} does contain the function, 'wvhose Carleman transform
. w2
is Fo(w) = [1(1 - =)™
A7

Using Taylor's formula as in Lectute R0, § 1, we have

X2n1 ) 2n ’ )
f|f0|<C1f(2 _1)| < Apdx= Cl(z)lfll"‘/ln
Hence
. a
[ 1 < Camintaes: -8 &)
(0]

. . . I
We saw (Lect[20) that, is anl(«) quasi-analytic class if, z” <
oo and

I ()

lim inf 2
a—co amin(ly - - - lna")? @
(@) shows that this condition cannot be very much relaxed; for ex-

/ln+l

I
ample, we cannot repla@;ﬂ <oobyl, =

If An+1/4n is bounded, the condition is invariant by a changd gf
into {ln.p}, and also intdln.p}; then, if it holds withl () it still holds
with @2 | (). That is no longer true if we assume

An
< o0 3
Z /ln+1 ( )

For, we can take if{2), = I,_1; but, according to[{1), we cannot
In = Ane1. This remark will lead us tu show thdg is “the smallest”
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functione % near the origin, in the sense that

f € %, lim inf0f|f|/f|f0|<oo @)
(o] (o]

implies f = K fg, K constant.
We supposed (3) andl(4). Singeis a sequence of Banach - Szidon,
f is bounded. LeE(w) be the Carleman transform 6f we haveF ((u+

iv)| < 5 (Lect.[1); hence

[F(W) (W= 2An) (W= Ans1)l < K(Ane1 — An)

on the circle of diametenif, An.1), andF(w) is uniformly bounded out-
side the discs of radius 1 around the,. Supposef/f, is not a con-
stant. ThenA(w) = F(w)/Fq(w) is an entire function which is not a
constant. Sinc&;! is of exponential type zero, arfélis bounded out-
side our discsA(w) is also of exponential type zero; therefore, it has
at least one zero;. Let F(w) = (w— wj) F1(w). Without restriction,
we can suppos€(0) = 0; then the dierential equatiorf = if] +w;f;
has one solution such th&t(0) = f,(0) = 0 and, using the formulae of
Lecture 6, 82, we see thkt (w) is the Carleman transform df. Now,

using the trivial inequality[ | f1| < o [|f;], we get, fore small enough,
(o] (o]
a

a a , (04 1 a , l
[ias [ie-w [1n>5 [is0> 5 [
(0] (0] (0] (0] (0]

This inequality, together with {4), shows thiy f, is not a consis-
tent. We can iterate our argument and et G, fz € G, f3 £ 0

f|f|>Zf”lbﬁflbb@flfsl
o] (o] o] (o]

Taking into accoun{(1) andl(4), we get

2n3

lim inf_ f’fgl/mln &n )I 2...29))

I
o
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which is in contradiction with the fact th&d, is anl(a) quasi-analytic 131
. I
class whenever liminf,, - (a) = 0. We conclude that
amin(dy - - - Apa™1)2
f/fo must be a constant. We express the result in the following way.

Theorem 2. If A = {£A,} is real, symmetric and very lacunary in the
A . o

sense thap —— < oo, a necessary and gicient condition in order
n+1

that ¥, should be an () quasi-analytic class is

lim Jﬂto[l(a)/fﬁd]zo, fo

being defined in Theorefin Every time fe €, and

lim inf (f|f|/f|fo|)<oo,f/fo
a—0
(o] o

is a constant.

Remark. It is easy to extend this result. Indeed, fif € 4, and
a a

liminf o (o [ |f|/ [fol) < oo, f is a linear combination (with con-
(o] (o]

stant coéicients) of f,, fol, e, fép). It means not only thaf, is “the
smallest” functione %, near the origin, but also the linear combina-
tions of fo and its derivatives are “smaller” than any ottieg €.






Lecture 23

Mean Periodic Functions of
Several Variables

In the case of several variables instead of considering continuouas fag2
tion, we consideC*-functions. It would also be possible to consider
distributions.

We consider the spacgé = &(R"), f € &, f(X) = f(X1,..., %), X =
(X1,...,%) € R". The monomial exponentials are of the foxh- - - X7
gllxa++dnx) and the polynomial exponentials are of the fdPxy, . . .,

Xn) ei(/11X1+---+/lan).

A function f is mean periodic ift(f) # &(R"). An equivalent defi-

nition is thatf is mean periodic if there existgee &, u # 0,u* f = 0.

Problem 1.1f f is mean periodic, can we assert tHabelongs to the
span of monomial exponentials belonginge(d)?

The answer is in the negative (Ehrenpreis 1)Rfnlet f = x; + xo.
The monomial exponentials ir{f) are constants.

Problem 2.Let f € 1 c &, 1 a closed subspace invariant under transla-
tions. Isf € span of polynomial exponentiadst?

Solution is not known.

Problem 3.Supposef «u = 0,u € §’(R,). Is f € span of polynomial

139
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exponential with Q = u = 0?

This is answered in theflirmative (Malgrange 1).

Let V(u) denote the set of linear combinations of polynomial expo-
nentials verifying the equatio = u = 0.

Lety be the distribution symmetric to the distributienlf v Q=0
for every polynomial exponentid verifying the equatiorQ = u = 0
andf = u = 0, then isv « f = 0? This problem is put in the following
form:

(Ve (V@)?t), f+u=0=vxf=0.

Theorem 1. f xu = 0= f € V(u). This theorem follows from partg a
and @ of the following theorem (MalgrangB.

Theorem 2. The following conditions are equivalent:

a) v e [V@*

b) Every exponential polynomid) satisfying the equatio® = u = 0
also satisfies the equati@= v = 0. In other wordsyY (i) c V(v).

c) ¥ (u)/%(v) is an entire function

d) € (u)/%(v) is an entire function of exponential type

e) ve ux &’ = closed ideal generated ly

We recall thatF (w) is of exponential type ifF (W)] < A eBW |w| =
lwi| + - - + |wy|. We prove the theorem in four steps, inserting the lem-
mas and propositions which we require in the four steps, inserting the
lemmas and propositions which we require in the proof of each step.

1. a) = b). Indeedy € [Vw]* = ¥.Q = 0 for every exponential
polynomial Q satisfyingQ = u = 0, and sov € VW] =
Vx 12Q = 0 for every translate,Q of Q.

In other wordsy € [V(u)]* < Q= v = 0 for every exponential
polynomial Q satisfyingQ = u = 0.
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2. b= c). LetB(u) = M(w);w = (W,...,W,). According to
Schwartz’s theory of the Fourier transforms of distributidnss
equivalent to the relatio% (u)¢'(Q) = 0 = ¢ (v)%(Q) = 0}. So
c) — b).

Now %’(Q) is a distribution with support at and we denote it by 134
D,. b) gives us tham.D, = 0 = N.D, = 0, whereM.D, is the product
of the distributiondVl andD, and so alsdN.D,. To prove thab) = c)
we use the following lemma:

Lemma. Let M and N be analytic at the origin. In order that/M be
analytic at the origin it is necessary andjgaient that for every distri-
bution D with support at origin MD = 0= N.D = 0.

Necessity is obvious. To prove thefSaiency, consider the ring/
of formal power-series ai1,~~~inX'11 ... X", It is a topological ring with
the simple convergence of the d¢beients. It is locally convex and its
dual .z’ = & is the space of distributions with support at the origin.

The scalar product is given by

(D, > )= > @i (D, - X

We use the following result proved in (CartXnp.7).
N . . N
] is analytic at = M ed.

Thus we have to prove that e Mo, the ideal generated dyl. We
use the fact that this ideal is closed (Car¥dnp.7). Thenitis stficient
to prove thaD € (M«)* = (D, N) = 0. But(D, MK) = (M.D, K}), so
thatD € (M¥) &< M.D = 0. As we assumdl.D = 0 = N.D = 0,
and(D, N) = (N.D, 1), we have provedl € M7, thenN/M is analytic
at the origin.

Sinceb) gives thatM.D, = 0 = N.D, = 0 we have, by the above
lemma,N/M analytic at every point.

3. ¢) < d) is a consequence of the following theorem: (Mal-
grange) (Ehrenpreis 1).

Theorem of Lindelof-Malgrange-Ehrenpreis: If F and G are funt3s
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tions of exponential type and/& is entire, then IFG is also a function
of exponential type

In this proof, L. Ehrenpreis used a theorem on minimum modules.
On the other hand, Malgrange’s proof is directly inspired from that of
Lindelof.

We have to return to analytic functions of one variable.

Suppose (W) = wPea""fo[(l — w/2;)eV4i. This form of F(w) need
1

not imply thatF(w) is of exponential type. For example, the inverse
of the classical- function is not of exponential type. Lindelof gave a
characterization of entire functions of exponential type. Let the zdros o
F(w) be arranged in such a fashion that,,| > |1j|. ThenF(w) is of

: . .n
exponential type if and only P|f/l_| =0(1)and > 1/4; = 0(1) forall

n [i|<|K

K. Using this characterization, one proves in the case of one variable
that F(w)/G(w) is of exponential type. Malgrange gave a refinement of
this characterization.

Proposition 1. Let F(w) be an entire function with @) # 0 and
IF(w)| < A 8" and let, be the zeros of @). Then

n

n C 1 D
a—<——,bla+ —| < ==
)30 < For P22 1< Fop

C=C(A B),D = D(A B).

N P 1
Conversely, If/l_ <eandla+ X /1—| < D for everyn andp, then
n 14

Fw) =& | (1 - ﬂ) eV/Ai
1 4

is an entire function and
IF(W)| = |F(w)/F(0) < A ™, A = A(c, D) andB = B(C, D).

136 For the first part of the propositioa) follows easily from Jensen’s
formula: b) is more involved. The second part follows from some cal-
culations (Malgrange).
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Proposition 2. Let [F(w)] < A €™ with F(0) = 1 and let|G(w)| <

A B with G(0) = 1. Suppose k) = F(w)/G(w) is an entire func-
tion. ThenH(w)| < A”e®’™ with A” and B’ depending only on AV, B

and B.

Propositiol 2 is an immediate consequence of Proposition 1.

Now the proof of Lindelof theorem for several variables follows eas-
ily from Propositior 2.

SupposeF (W1 e Wn)l < A eB(|W1|+“'|Wn|),

IG(W, ..., Wn)| < A ¥ Mal+=+MhD and H(w) = F(w)/G(w)

is an entire function. We fiw; - - - w, such thatw| = |wq|+---+|wp| = 1
and takeF(6) = F(6wa, ..., W), Gw(6) = G(6wy, ..., owWy). Then by
Propositiod 2 |Hy(8)| < A”eB"l,

Hence, for anyw = (Wi, ..., W), we havelH(w)| < A”eB'™ (pbe-
causeH(w) = Hywi(IW)).






Lecture 24

Mean Periodic Functions of
Several Variables
(Continuation)

We complete the proof of the main theorem of the last leciurd) 4= 137
e
d) €(v)/% (u) is an entire function of exponential type.
e)v e ux &', the closed ideal generated hyn &”.
Now e) < c) is evident and since) < d),e) = d). The proof
of d) = e) is involved.
Let Q%" be the space of Fourier-transforms of distributiong’n
Let M,N € Q#” and suppos@&/M is of exponential type. Moreover

suppose it is possible to show th%\lvtM N € G(u = &”’). Then we can

1
prove thatd) = e) because we can iterate the same process with each
variable and ge?— N € €' (u* &) etc., and finally P(X)u) = v €

u = &', for every ponnomlaIP(x). Using the result that it # 0 itis
possible to find a sequen¢B(x)} andA € R" such that(X)u — 6, we

, _— — . OM
find thatd, « v € ux &', i.e. v € u = &’. Now we can erte(,mN =

10M
Mg_N M. To prove thatg—N € € (u = &) itis suficient to prove

Wy
the foIIowmg conjecture (true in the case of one variable).

145
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10M
Conjecture. MG_NM € Q%’, whenM.N € Q%" and— is entire.

Unfortunately we are not able to prove this conjecture. But to prove that
d) = ¢) it is suficient (as indicated by Malgrange) to prove only the
following proposition:

” L 1
138 Proposition 1. PR € Q%" and P'Q entire implies that—ﬂ P Q@

Qowy
O,wy,...,w,) € Q%".

- . .1 ,
The idea of the proof is to maJorlsgg—WQ in the same way as
1
M, I .y
M((WV\;) in Lecture 5, Ell, and to use Propositioh 1 of the last lecture

(B.Malgrange).

Definition. H(w) is the set of distribution such that = v € u % &7, for
everyy with €(v)/% (u) entire.

Theorem. H(u) is dense in§”.

Suppose this theorem is proved. Allowing— 6 we haverv =
lim t=xvandveux=d&’. Thus we have) = e).

teH (1)
-0

Definition. Let o € &’. H(u, o) is the set of distributions such that
T+ 0 € H(w).

We say thaH (u, o) € (6p)(i.e. has the propertyy) if there exists
a set of distributiongry, ..., o such thatrix, ...« oy € H(u, o) with
% (o j) depending only omp variables.

Proposition 2. Let0 < p < n. If H(u, o) € (6p), then Hu, o)is dense
in &”.

This will prove our theorem, foH(u) = H(u, ) € (6,). We prove
Proposition 2 by induction. For this we need the following proposition:

Proposition 3. Lett € &’ be such thats'(t) depends only on p 1
variables. Suppos€(t) = T = T(Wy, ..., Wps1). If

Mo 9) € (0. then Hieocr + x19) € 6).
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Proof. (o1 *---% o =10 *v) € u* &' gives, by taking the Fourier
transform that$;---S;, T S NM) € Q#”. We takeQ = T andP =
T S;---S;SN/M in Propositiori 1L, and get 139

0T _, N ,
a_\NlT (O,W,"' ,W)Sl"'Sr SMEQ@

Now T2(0,ws, . .., W) is the Fourier transform of a distribution and
depends only omp variables. SdH(u, o * X11) € (6p). O

Proof of Proposition 2.H(u,o) € (6,) means that € H(u,o) and
S0, sinceH(u, o) is an ideal iné”, it is dense ing”’. Suppose that the
proposition is true fop. Let H(u, o) € (6p+1). Then there exist (o)
depending onf§+ 1) variables such that; =- - - x o x o v € ux &, for
everyv satisfying the condition(v)/% (u) entire. ThereforeH(u, o1 *
—xopx0) = & and soe (6p). Applying successively Propositidh 3, we
getthatH(u, P1oy*- - -Prorx07) € (6p), whatever be the polynomials
depending only on thosg for which thew; occurs in¢’(o). According
to the hypothesisid (u, P10y # ...« Proy * o) is dense ins”; this means
thatPio1 = - -+ % Pror € H(u, o). It is possible to choosBy, --- , Py in
such a manner th&jor — d,, = 1,...,r. Therefore

Say %+ %6, € Hu, o) and soH(u, o) = &
That achieves the proof of the theorem.

We give a few complements wheris a partial diferential operator
with constant cofficients. Solutions of = f = 0 are the solutions of the
homogeneous equatidh= f = 0. Considers’(2), Q an set oR".

Theorem.LetQ be an open convex set i Rnd let D« f = 0. Then fe 140
span in&'(Q) of the polynomial exponential Q satisfying the equation
D«Q=0.

Indeed,%’(D) is a polynomialP(wy, - - - ,w,) and% (v) = N(wa, ...,
wnh). We can suppose (perhaps after a change of variaBl@s), . . .,
Wn) = W'+ ApW™ 4+ A, Ag, Ao, ..., A being functions ofs, . . .,
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Wn. Then, by Cartan’s lemma (Lect. 14, Lema 2)

N(W1+§,W2,...,Wn)

N
’E(Wl,...,wn) < sup

I{1<2¢c

so that#'(v)[¢(D) € @%” and hence = D = u,u € &”. Moreover, the
support ofu is in the convex closure of the supportgfwhich is inQ.
Thenv«f=u=D=« f =0and(y, f) = 0.

Problem 1.Is it possible to replac® convex byQ connected or simply
connected?

Theorem.{Q convex, openand B f = 0} = f espan of polynomials
P satisfyingD = P = 0 is valid if and only if the irreducible factors of
% (D) are all zero at0

For example, whe® = A, the Laplacian, every harmonic func-
tion is the limit of polynomials. We indicate the idea of the Proof
(Malgrange). From the fact tha’(v)/%(D) is holomorphic at 0, we

will have ‘K(v)/%(D) entire. Indeed ifR = ¥(D) = R;...R and
Vj = {(WRj(w) = 0}, the polar manifold of&’(V)/% (D) is the union
of V;. If 0 ¢ wV; and if €(v)/¢ (D) is holomorphic at 0, the polar
manifold is void.

We conclude with the consideration of analytic mean periodic func-
tions. Instead of’(R") we take.7#(C") with the topology of compact
convergence ilR?". The dual.”#” is a quotient space of the space of
measures.

Let € (u) = (u, eMat-+Wamy e 7#7. € (u) is of exponential type.

Theorem (Malgrange - Ehrenpreis).If M(w) = M(wy---wy) is an
entire function of exponential type, then(\W) = €' (u), u € 7.

.....

lwi| + - - - + [wp| gives the following majorization:

i1+-+in

|ay,..i,| < Const

iyl in!
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Consider the linear fornD, f), f € 77 defined by

8i1+---+in
(D, fy = a,..;; —— f(0).
v O

It is a continuous linear functional and se7#”’. Moreover,
M(W) — (D er_Zl+---+WnZn>.

Now it is possible to extenD to a measure such thit(w) = & (u).
Then it is easy to prove (Malgrange):

Theorem.Let f € 77(C"),u € 7#’(C"). If f = u = 0O, then f belongs to
the span of polynomial exponentials satisfying the same equation.

These considerations suggest the following problem. Condider
u = 0 as a class of partial fierential equations of infinite order. Then

(9'1+ “+in

Zal.n oo 1@=0

gives a homogeneous partialigrential equation. This cannot be det42
fined for everyz € Q whenf € s2(Q). The only case whep = f is
defined in the same open setfais that when the Fourier transform of
the operator is of type of zero. In that case, we say/itiatof minimal

type.

Problem 2. Wheny is of minimal type,f € 5#(Q) andu = f = 0, will
this imply thatf € span of exponential polynomials satisfying Q = 0
in its domain of existence?

In the case of one variable we know, by the method of A.F.Leontiev,
that the domain of existence is convex aind 7, (Q).
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APPENDIX |
On the maximum density of Polya

143 Let A be a positive sequence andiét) = >, 1,1 € A.
A<r

Definition. DmaxA = infA5A{D’(A")}, A" being a sequence having den-
sity D’.

We have the following relation:

D’ > Dmax <= {N"(R) —=n'(r) > n(R) = n(r),R>r, FI{im =D’'}.

1. An inequality for Dmax.

Fork > 1, n (klz — ? () > n(kl2 — :](r). As the first members D’

. n(kr) — n(r
whenr — oo, we have for everk > 1, Dpax = lim sup%.
r—oo -

Therefore we have following inequality:

Dmax > lim suplim supM = lim sup (k) *)
KNI roo kr—r K\ 1
n(kr) — n(r)

wheregp(k) = Ilrrn_)s(xl’Jp -

2. Study of p(k)
Using the fact thap+ p’/q+ ¢’ lies betweerp/gandp’/g we have

kr—r = Vkr=r  kr— vkr

Therefore we take k> 1 and consider the quantitydefined by

n(kr) —n(r) _ sup{ n(vkn) - n(r) ngkr) -~ n( ‘/ﬁ)} and sop(K) < ¢( VK).

A = lim ¢(kp) wherekp = k2. (**)

P—oo

A exists becausg(kp) is monotone wheip — co.

3 Construction of A* o A, A* having density A.
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Supposesy, €, ..., €q, ... IS a sequence of positive numbers 0.
In what follows we use the following notatiork, = k2* andky =
ki = k2. Thenkj* = kq.k;. Using the definition ofp(k) we are able
to determine a sequence of even intedeyswith ig,1 > 2ig in such a
manner that the following conditions are satisfied:

n(ki +1) _ n(ki)

for i>iy, <o+ e, K1 -K)t<e;  (a)

ki+l — ki
i+1
for i>ig, % < g(kg)+ €q. (gt — k)t <eq  (b)

. . 1.
The set of segmentk}{, k};l) fori=ig,..., (élqﬂ -1),9=12,...

are disjoint and cover the semi-axiét[ co].
In order to determin@* we definenx (r) taking only integral values
and satisfying the following conditions:

nx«=(R) —nx(r)=nR) —n(r),R>r Q)
n (kiq+1) - n s (I_<i(]) +0(1)
kg™ — kg

.. 1 : . .
wheneveig <i < §|q+1. Indeed (1) is equivalent td* > A and (2) will
show us how many points we must addAtén order to getA*. Now in
view of the inequalitiesd) and @) above, the definition ah* (or again

that ofn = (r)) satisfying conditions (1) and (2) can always be achieved.
nx=(b) —nx*(a) we

= o(k)+ €3,0<0(1) <1 (2)

The density ofAx on an interval §, b) being

b-1 ’
(K1) — n % (K
setD* [k, ki) — n (k;jnz — E{q () and we have, by (2)
¢(kq) < D= [k k™) < o(kg)+ €q - (**)

1
Consider the density &f* on an interval Ikp kq) withig <i < Slar

andq > p. It lies between the lower and upper bound of densities on
the intervals K, ki'1) situated to the right ok}. But by ¢ = =) all 145
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these densities fier fromA by a quantity which tends to zero with
Finally, consider the density af* on an interval I[('F')O rwithky <r <

k{;l andig <i < %iqﬂ. Let this density be denoted B¢ (r). We have

| ki‘_kipp i+1 kiqﬂ_kip?
Xp(kg)——5 < X X B I
p(kq)k{fl—k'pp < Xp(r) < Xp(ky )ki(,—k'g’
*i_*ip *_*ip *i+1_*ip
ince THR-KD) @) nh - k)
Kt — kg r— kP K, — kP

Whenr — oo, we have limsuXp(r) < A+ €}, liminf Xp(r) >
A— e’p, with F!im e;,: 0. ThereforeA™ has density.

From 1, 2, 3, we get the following result:
Dmax(A) = A = lim supe(k)
K\, 1

and there exists a sequencA™ > A, having a density equal to
Dmax(A)-

4. A new expression forDmax.
We use two simple inequalities ap(k'™®) — ¢(Kk), a being small
enough:

1°) as k - 1), ¢(K) is an increasing function,

kl—oz _
oK) 2 (k) T < k(1K)

2°) from the equality

n(kr) — n(r) = n(kr) — n(k*r) + n(k*r) — n(r)

we get ¢(k) < - — (k) + T 1lso(k") < (k) + ap(K?)
and —aA < kYY) — (k) < ka A. (%)

Suppose now II(i\mlinf,p(k) = A’. There exists a sequenkg \, 1
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log logk;,
log2
a sequence which is convergent modulo 1; we can suppose the sequenc
log logk!
itself convergent mod. 1, viz.o?o—g” = —On + h+ € (en— 0).
Definingk = exp(2') and 1+ ay, = 2%, we havek), = ké:“”. Using the
inequality &), we haven lime(ky) — ¢(kg,)) = 0, thenA” = A. That

proves the following equality:

such thatp(k;,) — A’. From the sequen } one can extract

o T n(kr) — n(r)
Dmax(A) = L'{“l“’(k) = E{"l"r,”ji’p =



154 24. Mean Periodic Functions of Several Variables (Contd.)

APPENDIX I
Construction of a sequence with density zero and
Mean-period infinity

147 We shall use the following fact, which is a simple consequence of
Carleman’s theorem: IIF(w) is an entire function of exponential type
bounded on the real axis, then

R d
im_ [ TloglFFC-uIT )

exists and is finite (see for example, (Levins@26). We shall con-
struct the sequence in such a manner that no entire function of expo-
nential type, vanishing on, can satisfy this condition; thus the mean-
period ofA is infinity.

Let {ux} be a rapidly increasing sequence of positive numbers (we
shall specify later), andlx} a sequence of integers withh =ex ux =
o(u)(k = 1,2,...). We take as\ the sequencéux}, eachuy counted
vk times. LetF be, if possible, an entire function of exponential type

. . F ,
bounded on the real axis; then, eithgw) + F(—-w) or % is even,
and, by means of a trivial change, we can suppose

) W2 Vi oo W2
- 1[1-2) Fife-2)
L) L
Whatever b, we have (withr = |w])
w2\ > r2) r2
1-—=| F 1+ — 1+ —|<e®
|[ ﬂi] (W)Islj[ +’u12)1:l( +|Wj|2)<e

148 The last inequality holds iB is large enough, according to the cal-
culation of Mandelbrojt (Lecture 10[ 81 does not depend da Thus

2ui t +t2
log|F (uk + 1)) < B(u + t) + vk log '“k—;'

Hi
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1 2B
Setty = SHk exp(—e—) (= o(ux)) and O< t < ti; then
k

2upt + t2 2t 2B
ik > ~ Vk|0g— < ——V= —ZBuk.
My Hk Hk

vk log

Hence
1 2t
log |F (uk + t)| < (E +0o(1))vk Ioglu— (0O<t<ty
K

if k> Kk, large enough

t dt 1w, (% 2tdt
log |F (u + t <=0 [ Tg ==
; 9 1F (kuc )|(,uk+t)2 2k J, 9
1 [ 2tk
=~ e X log =X
4K k geuk
< ex 2B
p &

Now we shall choosg¢ey} in such a manner tha],ﬁm Ioguﬁdu

= —oo; as log F(u) is bounded, we cannot have) (finite, and the
existence ofF leads to a contradiction. It is ficient to takeex=
(log (logk)~: then

[ losE,
1 u
= _ dt B w 2B
< % |Og |F(/J + t)lm < —Z ;exp(—e—k) = —00

(The first inequality holds ifix, 1 > uk + tk, what is true ifuy is rapidly
increasing).

And now we can choosu} as rapidly increasing as we want149
in particular, we can choose it in order that the densityAads zero,
i.e.Z'i vk = o(uy) (for examplevk =€k ux = 2X). ThusA has density
zero, and mean period infinity.
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We have constructed as a sequence of multiple points. Now we
can replace the pointy countedvy times, byyy points near enough to
Uk, and the result still holds.

It would be interesting to know if such an example can be con-
structed with a “regularA; for example, for a sequence of distinct inte-
gers.
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