Contents

1 Basics 1
2 The Transversality Theorem 1
3 Transversality and Homotopy 2
4 Intersection Number Mod 2 4
5 Degree Mod 2 4

1 Basics

Definition. Let $f : M \to N$ be a smooth map from a manifold M with or without boundary to a manifold N. Let S be an embedded submanifold of N. We say that f is transversal to S if

$$df_p(T_pM) + T_{f(p)}S = T_{f(p)}N$$

for all $p \in f^{-1}(S)$.

Theorem 1.1. [GP10, pg. 28] Let $f : M \to N$ be a smooth map from a smooth manifold M to a smooth manifold N. If f is transversal to an embedded submanifold S of N, then $f^{-1}(S)$ is an embedded submanifold of M. Furthermore, the codimension of $f^{-1}(S)$ in M is same as the codimension of S in N.

Theorem 1.2. [GP10, pg. 60] Let $f : X \to N$ be a smooth map from a smooth manifold X with boundary to a smooth manifold N. Let S be an embedded submanifold of N such that $f : X \to N$ and $\partial f : \partial X \to N$ are both transversal to S. Then $f^{-1}(S)$ is an embedded submanifold with boundary of X. Further, $\partial(f^{-1}(S)) = f^{-1}(S) \cap \partial X$, and the codimension of $f^{-1}(S)$ in X is same as the codimension of S in N.

2 The Transversality Theorem

Theorem 2.1. The Transversality Theorem. Let M, A and N be smooth manifolds, and $F : M \times A \to N$ be a smooth map. If F is transversal to an embedded submanifold S of N, then the map $F_a : M \to N$ is transversal to S for almost all $a \in A$, where F_a is the map $M \to N$ which sends $p \in M$ to $F(p, a)$.

Proof. We know by Theorem 1.1 that $W := F^{-1}(S)$ is a submanifold of $M \times A$. Let $\pi_A : M \times A \to A$ and $\pi_M : M \times A \to M$ be the natural projections, and let $\rho : W \to A$ denote the restriction of π_A to W. We will show that whenever $a \in A$ is a regular value of ρ, then F_a is transversal to S.
Claim. If a is a regular value of ρ, and $(p, a) \in W$, then $T_{(p, a)}(M \times A) = T_{(p, a)}W + T_{(p, a)}(M \times \{a\})$.

Proof. Let $v \in T_{(p, a)}(M \times A)$ be arbitrary. Let $v_A = d\pi_A|_{(p, a)}(v)$ and $v_M = d\pi_M|_{(p, a)}(v)$. Then $v = v_A + v_M$. The assumption that a is a regular value of ρ implies that there is $w \in T_{(p, a)}W$ such that $d\rho_{(p, a)}(w) = v_A$. But $d\rho_{(p, a)}(w) = d\pi_A|_{(p, a)}(w)$. Therefore $v = d\pi_A|_{(p, a)}(w) + v_M$. Split $w = w_A + v_M$, just like we had split v, and note that $d\pi_A|_{(p, a)}(w_M) = 0$ and $d\pi_A|_{(p, a)}(w_A) = w_A$. Thus we have

$$v = w_A + v_M = (w_A + w_M) + (v_M - w_M) = w + (v_M - w_M)$$

But $v_M - w_M \in T_{(p, a)}(M \times \{a\})$, and the claim is proved.

Now from the fact that F is transversal to S, for any $(p, a) \in F^{-1}(S)$, we have

$$dF_{(p, a)}(T_{(p, a)}(M \times A)) + T_sS = T_sN$$

where $s = F(p, a)$. This gives

$$dF_{(p, a)}(T_{(p, a)}W) + dF_{(p, a)}(T_{(p, a)}(M \times \{a\})) + T_sS = T_sN$$

where we have used the claim. Now since $F(W) \subseteq S$, we have $dF_{(p, a)}(T_{(p, a)}W) \subseteq T_sS$, which leads to

$$dF_{(p, a)}(T_{(p, a)}(M \times \{a\})) + T_sS = T_sN$$

But $dF_{(p, a)}(T_{(p, a)}(M \times \{a\})) = dF_a|_p(T_pM)$. Thus

$$dF_a|_p(T_pM) + T_sS = T_sN$$

This shows that F_a is transversal to S. Now by Sard’s theorem, almost all $a \in A$ are regular values of ρ, and thus we have F_a is transversal to S for almost all $a \in A$, and we are done.

By a similar reasoning as in the above, we can prove

Theorem 2.2. The Transversality Theorem (Boundary Version). Let X be a smooth manifold with boundary, and A and N be smooth manifolds, and $F : X \times A \to N$ be a smooth map. If both F and ∂F are transversal to an embedded submanifold S of N, then the maps $F_a : X \to N$ and ∂F_a are transversal to S for almost all $a \in A$.

Corollary 2.3. General Position Lemma. Let M and S be smooth submanifolds of \mathbb{R}^n. Then for almost all $a \in \mathbb{R}^n$, we have that the manifold $M_a := \{p + a : p \in M\}$ is transversal to S.

Proof. Consider the map $F : M \times \mathbb{R}^n \to \mathbb{R}^n$ defined as $F(p, a) = p + a$. Then F is a submersion, and is hence transversal to S. Thus, by Theorem 2.1, we have $F_a : M \to \mathbb{R}^n$ is transversal to S for almost all $a \in \mathbb{R}^n$. This is same as saying that M_a is transversal to F_a for almost all $a \in \mathbb{R}^n$ and we are done.

3 Transversality and Homotopy

Theorem 3.1. ε-Neighborhood Theorem. Let N be a compact manifold in \mathbb{R}^n and let $\varepsilon > 0$. Let N^ε be the set of all the points in \mathbb{R}^n which are at a distance less than ε from N. If ε is sufficiently small, then there is a submersion $\pi : N^\varepsilon \to N$ such that π restricts to the identity on N.

Proof. Let $\rho : E \to N$ denote the normal bundle of N in \mathbb{R}^n. Define a map $f : E \to \mathbb{R}^n$ as $f(y, v) = y + v$ for all $(y, v) \in E$. It is clear that df is an isomorphism at each point $(y, 0) \in E$. Further, f maps $N \times \{0\}$ diffeomorphically onto N. Thus, by the inverse function theorem, there is a neighborhood of $N \times \{0\}$ in E which maps, under f, diffeomorphically onto a neighborhood of N in \mathbb{R}^n. By compactness of N, we

1Here F_a is the map $X \to N$ which sends $p \in X$ to $F(p, a)$ and similarly for ∂F_a.

can choose this neighborhood to be of ‘uniform thickness’\(^2\). So there exists \(\varepsilon > 0 \) small enough such that a neighborhood \(U \) of \(N \times \{0\} \) in \(E \) maps diffeomorphically onto \(N^\varepsilon \). Write \(h \) to denote \(f|_U : U \to N^\varepsilon \). Since \(\rho : U \to N \times \{0\} \) is a submersion, we have \(\rho \circ h^{-1} : N^\varepsilon \to N \times \{0\} \) is also a submersion. Identifying \(N \times \{0\} \) with \(N \), we see that \(\pi \) is the required submersion.

\[\text{Theorem 3.2. Transversality Homotopy Theorem.} \]

\(f : M \to N \) be a smooth map between smooth manifolds and \(S \) be an embedded submanifold of \(N \). Then there is a smooth map \(g : M \to N \) homotopic to \(f \) such that \(g \pitchfork S \).

Proof. We may assume that \(N \) is embedded in \(\mathbb{R}^n \). Since \(N \) is compact, by the \(\varepsilon \)-Neighborhood Theorem there is \(\varepsilon > 0 \) small enough such that \(\pi : N^\varepsilon \to N \) is a smooth submersion which restricts to the identity on \(N \). Let \(B \) be the unit ball in \(\mathbb{R}^n \), and define a map \(F : X \times B \to N \) as \(F(x,b) = \pi(f(x) + \varepsilon b) \).

Since \(F \) is the composite of two submersions, we see that \(F \) itself is a submersion, and is therefore transversal to \(S \). Thus, by Transversality Theorem, there is a \(b \in B \) such that \(g : M \to N \) defined as \(g(x) = F(x,b) \) is transversal to \(S \). Finally, the map \(H : X \times I \to N \) defined as \(H(x,t) = F(x, tb) \) is a homotopy between \(f \) and \(g \) and we are done.

\[\text{Lemma 3.3.} \]

\(f : X \to N \) be a smooth map, where \(X \) is a smooth manifold with boundary and \(N \) is a smooth manifold. Let \(S \) be a closed embedded submanifold of \(N \). Then the set of points \(x \in X \) where \(f \) is transversal to \(S \) is an open set of \(X \).

Proof. Let \(x \in X \) be such that \(f \) is transversal to \(S \) at \(x \). There are two cases. Assume first that \(x \notin f^\leftarrow(S) \). Since \(S \) is closed in \(N \), \(f^\leftarrow(S) \) is closed in \(X \), and thus there is a neighborhood of \(x \) in \(X \) which avoids \(f^\leftarrow(S) \), and \(f \) is vacuously transversal to \(S \) on this neighborhood.

Now assume that \(x \in f^\leftarrow(S) \). Consider a chart \((V,\psi) \) on \(N \) centered at \(f(x) \) such that \(\psi \) maps \(S \cap V \) to a slice in \(\mathbb{R}^n \), where \(n \) is the dimension of \(N \). Compose \(\psi \) by an appropriate projection \(\pi \) which collapses this slice to a point. Thus \(\pi \circ \psi \circ f \) is a submersion at \(x \), and therefore it remains a submersion in a neighborhood \(U \) of \(x \). It is easy to see that \(f \) is transversal to \(S \) on \(U \), and we are done.

\[\text{Theorem 3.4. Transversality Homotopy Theorem (Boundary Version).} \]

\(f : X \to N \) be a smooth map from a smooth manifold with boundary \(X \) to a smooth manifold \(N \). Assume \(N \) is compact. Let \(S \) be a closed embedded submanifold of \(N \). If \(\partial f : \partial X \to N \) is transversal to \(S \), then there is a smooth map \(g : X \to N \) homotopic to \(f \) such that \(g \pitchfork S \) and \(\partial g = \partial f \).

Proof. By Lemma 3.3 we see that there is a neighborhood \(U \) of \(\partial X \) in \(X \) such that \(f|_U \) is transversal to \(S \). Let \(\gamma : [0,1] \to [0,1] \) be a smooth map which is identically 1 outside \(U \) and is identically 0 in a neighborhood of \(\partial X \). Define \(\tau : X \to [0,1] \) by setting \(\tau = \gamma^2 \).

We may assume that \(N \) is embedded in \(\mathbb{R}^n \). Since \(N \) is compact, there is \(\varepsilon > 0 \) small enough such that \(\pi : N^\varepsilon \to N \) is a smooth submersion. Let \(B \) be the unit ball in \(\mathbb{R}^n \), and define a map \(F : X \times B \to N \) as \(F(x,b) = \pi(f(x) + \varepsilon b) \). Further define \(G : X \times B \to N \) as \(G(x,b) = F(x, \tau(x)b) \).

We show that \(G \) is transversal to \(S \). Let \((x,b) \in G^{-1}(S) \). If \(\tau(x) \neq 0 \), then \(G \) is a submersion at \((x,b) \), because the map \(B \to N \) defined as \(b \mapsto G(x, \tau(x)b) \) is a submersion, being the composite of the submersions \(b \mapsto \tau(x)b : B \to B \) and \(b \mapsto F(x,b) : B \to Y \). Thus \(G \) is transversal to \(S \) at \((x,b) \). So we may assume \(\tau(x) = 0 \). Thus \(d\tau_x = 0 \)\(^3\). Define \(\mu : X \times B \to X \times B \) as \(\mu(x,b) = (x, \tau(x)b) \). Then we have \(d\mu(x,b)(u,v) = (v, \tau(x)w + d\tau_x(v)b) \). By the chain rule applied to \(F \circ \mu \), we have \(dG(x,b)(v,w) = dF(x,0)(v,0) \), which is same as \(dF(x,0)(v) \). But since \(\tau(x) = 0 \), we have \(x \in U \), and since \(f|_U \) is transversal to \(S \), we have conclude that \(G \) is transversal to \(S \) at \((x,b) \). This completes the proof that \(G \) is transversal to \(S \).

Therefore, in particular, \(G \) restricted to \((X \times S) \setminus \partial(X \times S) \) is transversal to \(S \). Note that \((X \times S) \setminus \partial(X \times S) = (X \setminus \partial X) \times S \). Thus, by Theorem 2.1, there is a \(b \in B \) such that \(: X \setminus \partial X \to N \) defined as \(g(x) = G(x,b) \) is transversal to \(S \). Consider the extension \(\tilde{g} : X \to N \) of \(g \) defined as \(\tilde{g}(x) = G(x,b) \) for

\(^2\)This makes sense because the normal bundle is naturally equipped with a Riemannian metric.

\(^3\)This is the reason to consider the square of \(\gamma \).
all $x \in X$. Since τ vanishes identically at ∂X, we see that $\partial \tilde{g} = \partial f$. Thus \tilde{g} is transversal to S. The map $H : X \times I \to N$ defined as $H(x, t) = G(x, tb)$ is a homotopy between f and g and we are done. □

4 Intersection Number Mod 2

Let M and N be smooth manifolds and S be a submanifold of N. We say that M and S are of complementary dimension if $\dim M + \dim S = \dim N$. Now assume that S is closed in N, M is compact, and let $f : M \to N$ be a smooth map which is transversal to S. Then $f^{-1}(S)$ is a 0-dimensional closed submanifold of M, and is hence finite. We write $I_2(f, S)$ to denote $|f^{-1}(S)|$ mod 2. We call $I_2(f, S)$ the mod 2 intersection number of f with S.

Theorem 4.1. Let $f_0, f_1 : M \to N$ be smooth maps between smooth manifolds, both transversal to a closed submanifold S of N. Assume M is compact. If f_0 and f_1 are homotopic then $I_2(f_0, S) = I_2(f_1, S)$.

Proof. Let $F : M \times I \to N$ be a homotopy between f_0 and f_1. Note that ∂F is transversal to S. By the Transversality Homotopy Theorem (boundary version) we have a map $G : M \times I \to N$ homotopic to F such that G is transversal to S and $\partial G = \partial F$. Thus, by Theorem 1.2, $G^{-1}(S)$ is a compact 1-manifold K of $M \times I$ with boundary, such that

$$\partial K = G^{-1}(S) \cap \partial (M \times I) = (f_0^{-1}(S) \times \{0\}) \cup (f_1^{-1}(S) \times \{1\})$$

By classification of 1-manifolds, if $G^{-1}(S)$ has k-components, then the cardinality of $\partial G^{-1}(S)$ is $2k$, which is even. Therefore $|f_0^{-1}(S)| \equiv |f_1^{-1}(S)| \pmod{2}$. □

The above theorem allows us to define the mod 2 intersection number of an arbitrary smooth map $f : M \to N$ with S, where M is compact and S is a closed submanifold of N. For by the Transversality Homotopy Theorem, there is a smooth map $g : M \to N$ homotopic to f which is transversal to S. We define $I_2(f, S) := I_2(g, S)$. The above theorem guarantees that this is well defined.

Corollary 4.2. Let $f_0, f_1 : M \to N$ be any two homotopic maps from a compact smooth manifold M to a smooth manifold N. Let S be a closed submanifold of N. Then $I_2(f_0, S) = I_2(f_1, S)$.

Theorem 4.3. Boundary Theorem. Let $f : M \to N$ be a smooth map between smooth manifolds and assume that M is the boundary of some compact manifold X. If f can be extended smoothly to all of X then $I_2(f, S) = 0$ for any closed submanifold S in N of dimension complementary to M.

Proof. Let $F : X \to N$ be an extension of f. Let S be a closed embedded submanifold of N of complementary dimension to M. By the Transversality Theorem (Boundary Version) there is a map $G : X \to N$ homotopic to F such that both G and $g := \partial G$ are transversal to S. Thus we have f is homotopic to g, so we need to show that $I_2(g, S) = 0$. But by Theorem 1.2 we have $G^{-1}(S)$ is a 1-dimensional submanifold with boundary in X whose boundary is same as $G^{-1}(S) \cap M$, which is same as $g^{-1}(S)$. But the boundary of $G^{-1}(S)$ has an even number of points, and thus $I_2(g, S) = 0$, and we are done. □

5 Degree Mod 2

Theorem 5.1. Let M and N be smooth manifolds where M is compact and N is connected. Let $f : M \to N$ be a smooth map. If $\dim M = \dim N$, then $I_2(f, \{q\})$ is same for all $q \in N$. This common value is termed as the mod 2 degree of f, and we denote it by $\deg_2(f)$.

Proof. Assume $\dim M = \dim N > 1$. Let q and q' be two distinct points in N, and let S be the image of an embedding of a circle in N which passes through both q and q'. Let $g : M \to N$ be a map homotopic to f which is transversal to S, and well as both q and q'. Since M and N are of the same dimension, by Theorem 1.1 $g^{-1}(S)$ is an embedded submanifold of M of dimension 1. Thus $g^{-1}(S)$ is a disjoint union of
finitely many submanifolds of M, each diffeomorphic to S^1. This reduces the problem to the case where both M and N are S^1, in which case the proof is easy. An alternate proof can be found in [GP10] pg. 80].

Theorem 5.2. Homotopic maps have the same mod two degree.

Proof. Immediate from Theorem 4.1.

Theorem 5.3. Let M and N be smooth manifolds of the same dimension, where M is compact and N is connected. Assume that M is the boundary of a manifold X. Let $f : M \to N$ be a smooth map. If f is smoothly extendible to all of X, then $\deg_2(f) = 0$.

Proof. Immediate from the Boundary Theorem.

Corollary 5.4. S^1 is not simply-connected.

Theorem 5.5. No compact manifold other than the one point space is contractible.

Proof. Let M be a compact connected manifold of dimension at least 1. We want to show that M is not contractible. Suppose not. Fix a point $p \in M$. The contractibility of M implied that the identity map $\text{Id} : M \to M$ is homotopic to the constant map $c : M \to M$ whose image is $\{p\}$. Let $q \in M$ be different from p. Clearly, both the identity map and the constant map c are transversal to $\{q\}$. Thus we have $\deg_2(\text{Id}) = \deg_2(c)$. But $\deg_2(\text{Id}) = I_2(\text{Id}, \{q\}) = 1$, and $\deg_2(c) = I_2(c, \{q\}) = 0$. Thus we arrive at a contradiction, and therefore we must have the manifold M is not contractible.

Note. For any questions or comments please write to me at khetan@math.tifr.res.in

References