Consider the matrix: \[
\begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & \omega
\end{bmatrix}
\]

where \(\omega\) is a root of unity. Such a linear transformation \(T\) fixes the hyperplane. Let \(f\) be a polynomial map from \(\mathbb{C}^n \to \mathbb{C}\). Consider the function \(f \circ T\). Let \(x\) be a point on the fixed hyperplane. Then:

\[(f \circ T)(x) = f(T(x)) = f(x) - f(x) = 0.\]

\(\Rightarrow f \circ T\) vanishes on the hyperplane, thus \(f \circ T \in \mathfrak{h}\), where \((\mathfrak{h}) \triangleq \mathbb{C}[x_1, \ldots, x_n]\) is the ideal generated by \(\mathfrak{h}\).

Thus we have a general definition:

Let \(S = \bigoplus_{n=0}^{\infty} S_n\) be an \(\mathbb{C}\)-graded algebra over \(S_0 = \mathbb{C}\) and let \(G\) be a finite group acting on \(S\) by degree preserving \(\mathbb{C}\)-automorphisms.

Def: \(g \in G\) is a pseudo-reflection if there is a homogeneous element \(s_g \in S\) of degree, not a zero divisor such that

\[\forall s \in S, \ g(s) = \sigma \in s \sigma S.\]

Theorem: Let \(S = \bigoplus_{n=0}^{\infty} S_n\), \(G\) a finite group generated by pseudo-reflections and \(R = S_{Q}\). Then \(S\) is a finitely generated free module over \(R\).

(a) \(S\) is a finitely generated module over \(R\) because \(S\) is integral over \(R\). Hence \(S/S_{Q+}\) is a finitely generated module over \(R/R_{+}\). But \(R/R_{+} = \mathbb{C}\) so \(S/R_{+}S\) is a finite dimensional vector space over \(\mathbb{C}\).
(b) Let \(f_1, \ldots, f_k \) generate \(S/\mathfrak{m}S \) over \(R/\mathfrak{m} \), then we claim that \(f_1, \ldots, f_k \) generate \(S \) over \(R \).

Proof: we proceed by induction on the degree of \(f \); the element to be expressed at an element of \(\Sigma f_i \).

(i) Let \(\deg(f) = 0 \), then for first note that given a homogenous element \(f \) of \(S \), there exist \(\mathfrak{m} \)-primary ideals \(\mathfrak{a}_i \) such that \(f = \sum f_i = \sum s_i r_i \), where \(\deg(s_i) > 0 \) and \(\deg(s_i) < \deg(f) \).

(ii) Let \(\deg(f) = 0 \) then \(\deg(s_i) < 0 \Rightarrow s_i = 0 \Rightarrow f = \sum f_i \).

(ii) Assume the result for \(\deg(f) < n \). Let \(f \) be a homogenous element with \(\deg(f) = n \).

Then \(f = \sum s_i r_i + \sum c_i f_i \), where \(\deg(s_i) < n \).

\(\Rightarrow s_i \in \Sigma R f_i \); this proves the claim.

(c) We now have a candidate for the free basis of \(S \) over \(R \). To show that the above \(f_i \) indeed generate \(S \) over \(R \) as a free module we make the following observation:

Claim: If \(f_1, \ldots, f_n \) are homogenous elements and \(\sum f_i = 0 \), then \(f_i \in \mathfrak{m} \).

We assume this and prove:

(d) If \(f_1, \ldots, f_n \) are forms linearly independent over \(S/\mathfrak{m}S \) then they are linearly independent over \(S \) over \(R \).

We show: Not linearly independent in \(S \) over \(R \) \(\Rightarrow \) not linearly independent in \(S/\mathfrak{m}S \)
we proceed by induction on the number of forms k.

(i) if \(f_1 \cdot x_1 = 0 \) and \(x_1 \neq 0 \) then by the claim \(f_1 \in SR_+ \Rightarrow f_1 = 0 \)

(ii) Let's assume the result for \(k' < k \) and \(k > 1 \)

If \(\sum f_i x_i = 0 \) then by the eta \(x_1 \in (x_2, \ldots, x_k) \) or \(x_1 \in (x_2, \ldots, x_k) \)

If the second case is true then \(f_1 \in SR_+ \Rightarrow f_1 = 0 \) hence the set \(f_1, \ldots, f_k \) is linearly dependent.

therefore \(x_1 \in (x_2, \ldots, x_k) \) \(\Rightarrow x_1 = \sum x_i x_i' \ x_i' \in \mathbb{R} \).

\[\Rightarrow f_1 x_1 + f_2 x_2 + \cdots + f_k x_k = 0 \]

\[\Rightarrow (f_2 + f_1 x_2') x_2 + \cdots + (f_k + f_1 x_k') x_k = 0. \]

This by induction \(\frac{f_2}{f_1}, \frac{f_3}{f_1}, \ldots, \frac{f_k}{f_1} \) are linearly dependent \(\Rightarrow f_1, \ldots, f_k \) are linearly dependent.

we now prove

(c) Proof of claim:-

Let \(f_1, \ldots, f_k \) be forms in \(S \) such that \(\sum f_i x_i = 0 \) for \(x_i \in \mathbb{R} \)

If \(x_1 \notin (x_2, \ldots, x_k) \) then \(f_1 \in SR_+ \). We proceed by induction on the degree of \(f_1 \). If \(\deg(f_1) = 0 \) then

\[x_1 = \frac{1}{f_1} \sum_{i=2}^{k} f_i x_i \] applying the reynolds's operator

\[x_1 = \frac{1}{f_1} \sum P(f_i) x_i \]

\[\Rightarrow x_1 \in (x_2, \ldots, x_k) \rightarrow \Leftarrow \]
let \(\text{deg}(f_i) > 0 \) and \(\Sigma f_i x_i = 0 \). If \(g \in G \) is a pseudoreflection then \(\Sigma g_i (f_i) x_i = 0 \).

\[\Rightarrow \Sigma (f_i - g(f_i)) x_i = 0, \exists s g \in S \text{ of degree such that } f_i - g(f_i) = e_i s g, \text{ here } \text{deg}(e_i) < \text{deg}(f_i) \]

This \(\Sigma e_i x_i = 0 \) and \(\text{deg}(e_i) < \text{deg}(f_i) \Rightarrow e_i \in \text{CSR} \), so if \(g \) is a pseudoreflection then \(f_i - g(f_i) \in \text{CSR} \).

But \(G \) is generated by pseudoreflections, this means that \(f_i - g(f_i) \in \text{CSR} \), \(\forall g \in G \). Hence \(f_i - g(f_i) \in \text{CSR} \).

But \(f(f_i) \in \text{CSR} \) if \(\text{deg}(f_i) > 0 \) \(\Rightarrow f_i \in \text{CSR} \).

The main result allows us to prove the following corollary:

If \(G \) acts on \(\mathbb{C}[x_1, \ldots, x_n] \) such that \(\text{deg}(x_i) = \text{deg}(g(x_i)) \), \(\forall g \in G \), then the ring of invariants is a polynomial ring if \(G \) is generated by pseudo-reflections.

Proof: \(S = \mathbb{C}[x_1, \ldots, x_n] \) is regular, \(S^G \) is the ring of invariants. \(S \) is finitely generated free over \(S^G \), then since \(S \) is regular \(S^G \) is regular and a regular graded ring is a polynomial algebra.