Homotopical Height

Mahan Mj,
RKM Vivekananda University.
Joint with Indranil Biswas and Dishant Pancholi
Question

Given f.p. group G and a class \mathcal{C} of smooth manifolds (e.g. symplectic, contact, Kähler etc), what is the obstruction to constructing a $K(G, 1)$ manifold within the class \mathcal{C}?

Definition

G - finitely presented group;
\mathcal{C} - class of smooth manifolds of dimension greater than zero.
$ht_{\mathcal{C}}(G)$ is $-\infty$ if G is not the π_1 of some manifold in \mathcal{C}.
If $\pi_2(M) \neq 0$ for all $M \in \mathcal{C}$ with $\pi_1(M) = G$, then $ht_{\mathcal{C}}(G)$ is 2.
$ht_{\mathcal{C}}(G)$ is greater than or equal to n if there exists a manifold $M \in \mathcal{C}$ such that $\pi_1(M) = G$ and $\pi_i(M) = 0$ for every $1 < i < n$.
$ht_{\mathcal{C}}(G)$ is the maximum value of n such that $ht_{\mathcal{C}}(G)$ is greater than or equal to n.
Question

Given f.p. group G and a class \mathcal{C} of smooth manifolds (e.g. symplectic, contact, Kähler etc), what is the obstruction to constructing a $K(G, 1)$ manifold within the class \mathcal{C}?

Definition

G - finitely presented group;
\mathcal{C} - class of smooth manifolds of dimension greater than zero.
$ht_{\mathcal{C}}(G)$ is $-\infty$ if G is not the π_1 of some manifold in \mathcal{C}.
If $\pi_2(M) \neq 0$ for all $M \in \mathcal{C}$ with $\pi_1(M) = G$, then $ht_{\mathcal{C}}(G)$ is 2.
$ht_{\mathcal{C}}(G)$ is greater than or equal to n if there exists a manifold $M \in \mathcal{C}$ such that $\pi_1(M) = G$ and $\pi_i(M) = 0$ for every $1 < i < n$.
$ht_{\mathcal{C}}(G)$ is the maximum value of n such that $ht_{\mathcal{C}}(G)$ is greater than or equal to n.
Question

Given f.p. group G and a class \mathcal{C} of smooth manifolds (e.g. symplectic, contact, Kähler etc), what is the obstruction to constructing a $K(G, 1)$ manifold within the class \mathcal{C}?

Definition

G - finitely presented group;
\mathcal{C} - class of smooth manifolds of dimension greater than zero.
$ht_{\mathcal{C}}(G)$ is $-\infty$ if G is not the π_1 of some manifold in \mathcal{C}.
If $\pi_2(M) \neq 0$ for all $M \in \mathcal{C}$ with $\pi_1(M) = G$, then $ht_{\mathcal{C}}(G)$ is 2.
$ht_{\mathcal{C}}(G)$ is greater than or equal to n if there exists a manifold $M \in \mathcal{C}$ such that $\pi_1(M) = G$ and $\pi_i(M) = 0$ for every $1 < i < n$.
$ht_{\mathcal{C}}(G)$ is the maximum value of n such that $ht_{\mathcal{C}}(G)$ is greater than or equal to n.

Mahan Mj
Homotopical Height
Question

Given f.p. group G and a class \mathcal{C} of smooth manifolds (e.g. symplectic, contact, Kähler etc), what is the obstruction to constructing a $K(G,1)$ manifold within the class \mathcal{C}?

Definition

G - finitely presented group;
\mathcal{C} - class of smooth manifolds of dimension greater than zero.
$ht_{\mathcal{C}}(G)$ is $-\infty$ if G is not the π_1 of some manifold in \mathcal{C}.
If $\pi_2(M) \neq 0$ for all $M \in \mathcal{C}$ with $\pi_1(M) = G$, then $ht_{\mathcal{C}}(G)$ is 2.
$ht_{\mathcal{C}}(G)$ is greater than or equal to n if there exists a manifold $M \in \mathcal{C}$ such that $\pi_1(M) = G$ and $\pi_i(M) = 0$ for every $1 < i < n$.
$ht_{\mathcal{C}}(G)$ is the maximum value of n such that $ht_{\mathcal{C}}(G)$ is greater than or equal to n.

Mahan Mj
Homotopical Height
Motivation
Almost Complex Manifolds
Complex Manifolds
Complex Projective Manifolds

Question

Given f.p. group G and a class \mathcal{C} of smooth manifolds (e.g. symplectic, contact, Kähler etc), what is the obstruction to constructing a $K(G,1)$ manifold within the class \mathcal{C}?

Definition

G - finitely presented group;
\mathcal{C} - class of smooth manifolds of dimension greater than zero.
$ht_{\mathcal{C}}(G)$ is $-\infty$ if G is not the π_1 of some manifold in \mathcal{C}.
If $\pi_2(M) \neq 0$ for all $M \in \mathcal{C}$ with $\pi_1(M) = G$, then $ht_{\mathcal{C}}(G)$ is 2.
$ht_{\mathcal{C}}(G)$ is greater than or equal to n if there exists a manifold $M \in \mathcal{C}$ such that $\pi_1(M) = G$ and $\pi_i(M) = 0$ for every $1 < i < n$.
$ht_{\mathcal{C}}(G)$ is the maximum value of n such that $ht_{\mathcal{C}}(G)$ is greater than or equal to n.

Mahan Mj
Homotopical Height
Question

Given f.p. group G and a class \mathcal{C} of smooth manifolds (e.g. symplectic, contact, Kähler etc), what is the obstruction to constructing a $K(G, 1)$ manifold within the class \mathcal{C}?

Definition

G - finitely presented group;

\mathcal{C} - class of smooth manifolds of dimension greater than zero.

$ht_{\mathcal{C}}(G)$ is $-\infty$ if G is not the π_1 of some manifold in \mathcal{C}.

If $\pi_2(M) \neq 0$ for all $M \in \mathcal{C}$ with $\pi_1(M) = G$, then $ht_{\mathcal{C}}(G)$ is 2.

$ht_{\mathcal{C}}(G)$ is greater than or equal to n if there exists a manifold $M \in \mathcal{C}$ such that $\pi_1(M) = G$ and $\pi_i(M) = 0$ for every $1 < i < n$.

$ht_{\mathcal{C}}(G)$ is the maximum value of n such that $ht_{\mathcal{C}}(G)$ is greater than or equal to n.
Question

Given f.p. group G and a class \mathcal{C} of smooth manifolds (e.g. symplectic, contact, Kähler etc), what is the obstruction to constructing a $K(G, 1)$ manifold within the class \mathcal{C}?

Definition

G - finitely presented group;

\mathcal{C} - class of smooth manifolds of dimension greater than zero.

$ht_{\mathcal{C}}(G)$ is $-\infty$ if G is not the π_1 of some manifold in \mathcal{C}.

If $\pi_2(M) \neq 0$ for all $M \in \mathcal{C}$ with $\pi_1(M) = G$, then $ht_{\mathcal{C}}(G)$ is 2.

$ht_{\mathcal{C}}(G)$ is greater than or equal to n if there exists a manifold $M \in \mathcal{C}$ such that $\pi_1(M) = G$ and $\pi_i(M) = 0$ for every $1 < i < n$.

$ht_{\mathcal{C}}(G)$ is the maximum value of n such that $ht_{\mathcal{C}}(G)$ is greater than or equal to n.

Mahan Mj Homotopical Height
Motivation
Almost Complex Manifolds
Complex Manifolds
Complex Projective Manifolds

Question

Given f.p. group G and a class \mathcal{C} of smooth manifolds (e.g. symplectic, contact, Kähler etc), what is the obstruction to constructing a $K(G,1)$ manifold within the class \mathcal{C}?

Definition

G - finitely presented group;
\mathcal{C} - class of smooth manifolds of dimension greater than zero.

$ht_\mathcal{C}(G)$ is $-\infty$ if G is not the π_1 of some manifold in \mathcal{C}.
If $\pi_2(M) \neq 0$ for all $M \in \mathcal{C}$ with $\pi_1(M) = G$, then $ht_\mathcal{C}(G)$ is 2.
$ht_\mathcal{C}(G)$ is greater than or equal to n if there exists a manifold $M \in \mathcal{C}$ such that $\pi_1(M) = G$ and $\pi_i(M) = 0$ for every $1 < i < n$.

$ht_\mathcal{C}(G)$ is the maximum value of n such that $ht_\mathcal{C}(G)$ is greater than or equal to n.
Question

Given f.p. group G and a class \mathcal{C} of smooth manifolds (e.g. symplectic, contact, Kähler etc), what is the obstruction to constructing a $K(G, 1)$ manifold within the class \mathcal{C}?

Definition

G - finitely presented group;
\mathcal{C} - class of smooth manifolds of dimension greater than zero.
$ht_\mathcal{C}(G)$ is $-\infty$ if G is not the π_1 of some manifold in \mathcal{C}.
If $\pi_2(M) \neq 0$ for all $M \in \mathcal{C}$ with $\pi_1(M) = G$, then $ht_\mathcal{C}(G)$ is 2.
$ht_\mathcal{C}(G)$ is greater than or equal to n if there exists a manifold $M \in \mathcal{C}$ such that $\pi_1(M) = G$ and $\pi_i(M) = 0$ for every $1 < i < n$.
$ht_\mathcal{C}(G)$ is the maximum value of n such that $ht_\mathcal{C}(G)$ is greater than or equal to n.
Motivation
Almost Complex Manifolds
Complex Manifolds
Complex Projective Manifolds

Question

Given f.p. group G and a class \mathcal{C} of smooth manifolds (e.g. symplectic, contact, Kähler etc), what is the obstruction to constructing a $K(G, 1)$ manifold within the class \mathcal{C}?

Definition

G - finitely presented group;
\mathcal{C} - class of smooth manifolds of dimension greater than zero.
$ht_{\mathcal{C}}(G)$ is $-\infty$ if G is not the π_1 of some manifold in \mathcal{C}.
If $\pi_2(M) \neq 0$ for all $M \in \mathcal{C}$ with $\pi_1(M) = G$, then $ht_{\mathcal{C}}(G)$ is 2.
$ht_{\mathcal{C}}(G)$ is greater than or equal to n if there exists a manifold $M \in \mathcal{C}$ such that $\pi_1(M) = G$ and $\pi_i(M) = 0$ for every $1 < i < n$.
$ht_{\mathcal{C}}(G)$ is the maximum value of n such that $ht_{\mathcal{C}}(G)$ is greater than or equal to n.
Question

Given f.p. group G and a class \mathcal{C} of smooth manifolds (e.g. symplectic, contact, Kähler etc), what is the obstruction to constructing a $K(G, 1)$ manifold within the class \mathcal{C}?

Definition

G - finitely presented group;
\mathcal{C} - class of smooth manifolds of dimension greater than zero.

$ht_{\mathcal{C}}(G)$ is $-\infty$ if G is not the π_1 of some manifold in \mathcal{C}.
If $\pi_2(M) \neq 0$ for all $M \in \mathcal{C}$ with $\pi_1(M) = G$, then $ht_{\mathcal{C}}(G)$ is 2.

$ht_{\mathcal{C}}(G)$ is greater than or equal to n if there exists a manifold $M \in \mathcal{C}$ such that $\pi_1(M) = G$ and $\pi_i(M) = 0$ for every $1 < i < n$.

$ht_{\mathcal{C}}(G)$ is the maximum value of n such that $ht_{\mathcal{C}}(G)$ is greater than or equal to n.

Mahan Mj

Homotopical Height
Question

Given f.p. group G and a class \mathcal{C} of smooth manifolds (e.g. symplectic, contact, Kähler etc), what is the obstruction to constructing a $K(G, 1)$ manifold within the class \mathcal{C}?

Definition

G - finitely presented group;
\mathcal{C} - class of smooth manifolds of dimension greater than zero.
$ht_{\mathcal{C}}(G)$ is $-\infty$ if G is not the π_1 of some manifold in \mathcal{C}.
If $\pi_2(M) \neq 0$ for all $M \in \mathcal{C}$ with $\pi_1(M) = G$, then $ht_{\mathcal{C}}(G)$ is 2.
$ht_{\mathcal{C}}(G)$ is greater than or equal to n if there exists a manifold $M \in \mathcal{C}$ such that $\pi_1(M) = G$ and $\pi_i(M) = 0$ for every $1 < i < n$.
$ht_{\mathcal{C}}(G)$ is the maximum value of n such that $ht_{\mathcal{C}}(G)$ is greater than or equal to n.

Mahan Mj
Homotopical Height
Question

Given f.p. group G and a class \mathcal{C} of smooth manifolds (e.g. symplectic, contact, Kähler etc), what is the obstruction to constructing a $K(G, 1)$ manifold within the class \mathcal{C}?

Definition

G - finitely presented group;
\mathcal{C} - class of smooth manifolds of dimension greater than zero.
$ht_{\mathcal{C}}(G)$ is $-\infty$ if G is not the π_1 of some manifold in \mathcal{C}.
If $\pi_2(M) \neq 0$ for all $M \in \mathcal{C}$ with $\pi_1(M) = G$, then $ht_{\mathcal{C}}(G)$ is 2.
$ht_{\mathcal{C}}(G)$ is greater than or equal to n if there exists a manifold $M \in \mathcal{C}$ such that $\pi_1(M) = G$ and $\pi_i(M) = 0$ for every $1 < i < n$.
$ht_{\mathcal{C}}(G)$ is the maximum value of n such that $ht_{\mathcal{C}}(G)$ is greater than or equal to n.
Motivation
Almost Complex Manifolds
Complex Manifolds
Complex Projective Manifolds

Question
Given f.p. group \(G \) and a class \(\mathcal{C} \) of smooth manifolds (e.g. symplectic, contact, Kähler etc), what is the obstruction to constructing a \(K(G, 1) \) manifold within the class \(\mathcal{C} \)?

Definition
\(G \) - finitely presented group;
\(\mathcal{C} \) - class of smooth manifolds of dimension greater than zero.
\(ht_{\mathcal{C}}(G) \) is \(-\infty\) if \(G \) is not the \(\pi_1 \) of some manifold in \(\mathcal{C} \).
If \(\pi_2(M) \neq 0 \) for all \(M \in \mathcal{C} \) with \(\pi_1(M) = G \), then \(ht_{\mathcal{C}}(G) \) is 2.
\(ht_{\mathcal{C}}(G) \) is greater than or equal to \(n \) if there exists a manifold \(M \in \mathcal{C} \) such that \(\pi_1(M) = G \) and \(\pi_i(M) = 0 \) for every \(1 < i < n \).
\(ht_{\mathcal{C}}(G) \) is the maximum value of \(n \) such that \(ht_{\mathcal{C}}(G) \) is greater than or equal to \(n \).
Question

Given f.p. group G and a class \mathcal{C} of smooth manifolds (e.g. symplectic, contact, Kähler etc), what is the obstruction to constructing a $K(G, 1)$ manifold within the class \mathcal{C}?

Definition

G - finitely presented group;
\mathcal{C} - class of smooth manifolds of dimension greater than zero.

$ht_\mathcal{C}(G)$ is $-\infty$ if G is not the π_1 of some manifold in \mathcal{C}.

If $\pi_2(M) \neq 0$ for all $M \in \mathcal{C}$ with $\pi_1(M) = G$, then $ht_\mathcal{C}(G)$ is 2.

$ht_\mathcal{C}(G)$ is greater than or equal to n if there exists a manifold $M \in \mathcal{C}$ such that $\pi_1(M) = G$ and $\pi_i(M) = 0$ for every $1 < i < n$.

$ht_\mathcal{C}(G)$ is the maximum value of n such that $ht_\mathcal{C}(G)$ is greater than or equal to n.

Mahan Mj
Homotopical Height
Question

Given f.p. group G and a class \mathcal{C} of smooth manifolds (e.g. symplectic, contact, Kähler etc), what is the obstruction to constructing a $K(G, 1)$ manifold within the class \mathcal{C}?

Definition

G - finitely presented group;
\mathcal{C} - class of smooth manifolds of dimension greater than zero.
$ht_{\mathcal{C}}(G)$ is $-\infty$ if G is not the π_1 of some manifold in \mathcal{C}.
If $\pi_2(M) \neq 0$ for all $M \in \mathcal{C}$ with $\pi_1(M) = G$, then $ht_{\mathcal{C}}(G)$ is 2.
$ht_{\mathcal{C}}(G)$ is greater than or equal to n if there exists a manifold $M \in \mathcal{C}$ such that $\pi_1(M) = G$ and $\pi_i(M) = 0$ for every $1 < i < n$.
$ht_{\mathcal{C}}(G)$ is the maximum value of n such that $ht_{\mathcal{C}}(G)$ is greater than or equal to n.
Motivation
Almost Complex Manifolds
Complex Manifolds
Complex Projective Manifolds

G is of type FP if it admits a finite $K(G, 1)$ space.

Hardness or softness (à la Gromov): Class C is of

Type 1: $ht_c(G) = \infty$ for all groups of type FP;
Type 2: if $ht_c(\{1\}) = \infty$ for the trivial group;
Type 3: if $ht_c(G) \geq 0$ for all groups of type FP;
Type 4: if $ht_c(G) = -\infty$ for some group of type FP.

Type 1 – softest; Type 4 – hardest
Type 2 and Type 3 are classes that exhibit intermediate behavior of different (and not quite comparable) kinds.
Motivation

Almost Complex Manifolds
Complex Manifolds
Complex Projective Manifolds

G is of type FP if it admits a finite $K(G, 1)$ space.

Hardness or softness (à la Gromov): Class C is of

Type 1: $ht_C(G) = \infty$ for all groups of type FP;
Type 2: if $ht_C(\{1\}) = \infty$ for the trivial group;
Type 3: if $ht_C(G) \geq 0$ for all groups of type FP;
Type 4: if $ht_C(G) = -\infty$ for some group of type FP.

Type 1 – softest; Type 4 – hardest
Type 2 and Type 3 are classes that exhibit intermediate
behavior of different (and not quite comparable) kinds.
G is of type FP if it admits a finite $K(G, 1)$ space.

Hardness or softness (à la Gromov): Class C is of

Type 1: $ht_C(G) = \infty$ for all groups of type FP;

Type 2: if $ht_C(\{1\}) = \infty$ for the trivial group;

Type 3: if $ht_C(G) \geq 0$ for all groups of type FP;

Type 4: if $ht_C(G) = -\infty$ for some group of type FP.

Type 1 – softest; Type 4 – hardest

Type 2 and Type 3 are classes that exhibit intermediate behavior of different (and not quite comparable) kinds.
Motivation
Almost Complex Manifolds
Complex Manifolds
Complex Projective Manifolds

G is of type FP if it admits a finite $K(G, 1)$ space.

Hardness or softness (à la Gromov): Class \mathcal{C} is of

Type 1: $ht_\mathcal{C}(G) = \infty$ for all groups of type FP;
Type 2: if $ht_\mathcal{C}(\{1\}) = \infty$ for the trivial group;
Type 3: if $ht_\mathcal{C}(G) \geq 0$ for all groups of type FP;
Type 4: if $ht_\mathcal{C}(G) = -\infty$ for some group of type FP.

Type 1 – softest; Type 4 – hardest
Type 2 and Type 3 are classes that exhibit intermediate behavior of different (and not quite comparable) kinds.
G is of type FP if it admits a finite $K(G, 1)$ space.

Hardness or softness (à la Gromov): Class \mathcal{C} is of

Type 1: $ht_\mathcal{C}(G) = \infty$ for all groups of type FP;

Type 2: if $ht_\mathcal{C}(\{1\}) = \infty$ for the trivial group;

Type 3: if $ht_\mathcal{C}(G) \geq 0$ for all groups of type FP;

Type 4: if $ht_\mathcal{C}(G) = -\infty$ for some group of type FP.

Type 1 – softest; Type 4 – hardest

Type 2 and Type 3 are classes that exhibit intermediate behavior of different (and not quite comparable) kinds.
G is of type FP if it admits a finite $K(G, 1)$ space. Hardness or softness (à la Gromov): Class C is of

Type 1: $ht_C(G) = \infty$ for all groups of type FP;
Type 2: if $ht_C(\{1\}) = \infty$ for the trivial group;
Type 3: if $ht_C(G) \geq 0$ for all groups of type FP;
Type 4: if $ht_C(G) = -\infty$ for some group of type FP.

Type 1 – softest; Type 4 – hardest
Type 2 and Type 3 are classes that exhibit intermediate behavior of different (and not quite comparable) kinds.
G is of type FP if it admits a finite $K(G, 1)$ space.

Hardness or softness (à la Gromov): Class C is of

Type 1: $ht_C(G) = \infty$ for all groups of type FP;
Type 2: if $ht_C(\{1\}) = \infty$ for the trivial group;
Type 3: if $ht_C(G) \geq 0$ for all groups of type FP;
Type 4: if $ht_C(G) = -\infty$ for some group of type FP.

Type 1 – softest; Type 4 – hardest
Type 2 and Type 3 are classes that exhibit intermediate behavior of different (and not quite comparable) kinds.
G is of type \(FP \) if it admits a finite \(K(G, 1) \) space.

Hardness or softness (à la Gromov): Class \(\mathcal{C} \) is of

Type 1: \(\text{ht}_{\mathcal{C}}(G) = \infty \) for all groups of type \(FP \);
Type 2: if \(\text{ht}_{\mathcal{C}}(\{1\}) = \infty \) for the trivial group;
Type 3: if \(\text{ht}_{\mathcal{C}}(G) \geq 0 \) for all groups of type \(FP \);
Type 4: if \(\text{ht}_{\mathcal{C}}(G) = -\infty \) for some group of type \(FP \).

Type 1 – softest; Type 4 – hardest
Type 2 and Type 3 are classes that exhibit intermediate behavior of different (and not quite comparable) kinds.
Examples relevant to this talk:

Type 1: Closed Almost Complex Manifolds: \mathcal{A}_C, $ht_{\mathcal{A}_C}(G) = \infty$ for all groups of type FP.

Type 2: Closed Complex Analytic Manifolds: $ht_{\mathcal{A}_A}({\{1\}}) = \infty$ for the trivial group (Calabi-Eckmann).

Type 3: Closed Complex Analytic Manifolds: $ht_{\mathcal{A}_A}(G) \geq 0$ for all groups of type FP (Gompf-Taubes).

Type 4: Smooth Complex Projective Manifolds: $ht_{\mathcal{P}}(G) = -\infty$ for some group of type FP.
Examples relevant to this talk:

Type 1: Closed Almost Complex Manifolds: \mathcal{AC}, $ht_{AC}(G) = \infty$ for all groups of type FP

Type 2: Closed Complex Analytic Manifolds: $ht_{CA}(\{1\}) = \infty$ for the trivial group (Calabi-Eckmann)

Type 3: Closed Complex Analytic Manifolds: $ht_{CA}(G) \geq 0$ for all groups of type FP (Gompf-Taubes);

Type 4: Smooth Complex Projective Manifolds: $ht_P(G) = -\infty$ for some group of type FP.

Mahan Mj
Homotopical Height
Examples relevant to this talk:

Type 1: Closed Almost Complex Manifolds: \mathcal{AC}, $ht_{AC}(G) = \infty$ for all groups of type FP

Type 2: Closed Complex Analytic Manifolds: $ht_{CA}(\{1\}) = \infty$ for the trivial group (Calabi-Eckmann)

Type 3: Closed Complex Analytic Manifolds: $ht_{CA}(G) \geq 0$ for all groups of type FP (Gompf-Taubes);

Type 4: Smooth Complex Projective Manifolds: $ht_{\mathbb{P}}(G) = -\infty$ for some group of type FP.
Examples relevant to this talk:

Type 1: Closed Almost Complex Manifolds: \mathcal{AC}, $ht_{\mathcal{AC}}(G) = \infty$ for all groups of type FP

Type 2: Closed Complex Analytic Manifolds: $ht_{\mathcal{CA}}(\{1\}) = \infty$ for the trivial group (Calabi-Eckmann)

Type 3: Closed Complex Analytic Manifolds: $ht_{\mathcal{CA}}(G) \geq 0$ for all groups of type FP (Gompf-Taubes);

Type 4: Smooth Complex Projective Manifolds: $ht_{\mathcal{P}}(G) = -\infty$ for some group of type FP.

Examples relevant to this talk:

Type 1: Closed Almost Complex Manifolds: \mathcal{AC}, $ht_{\mathcal{AC}}(G) = \infty$ for all groups of type FP

Type 2: Closed Complex Analytic Manifolds: $ht_{\mathcal{CA}}(\{1\}) = \infty$ for the trivial group (Calabi-Eckmann)

Type 3: Closed Complex Analytic Manifolds: $ht_{\mathcal{CA}}(G) \geq 0$ for all groups of type FP (Gompf-Taubes);

Type 4: Smooth Complex Projective Manifolds: $ht_{\mathcal{P}}(G) = -\infty$ for some group of type FP.
First, we show that the class \mathcal{AC} of Closed Almost Complex Manifolds is soft of Type I.

Proof Idea:
Step 1: X is a finite $K(G,1)$. Embed X in \mathbb{R}^N for large N. Take regular neighborhood of X and let M be its boundary. Then M has higher homotopy groups vanishing till as far as one likes (taking N larger and larger). Also M is of codimension one in \mathbb{R}^N. Hence TM is stably trivial. Therefore $M \times \mathbb{R}^m$ has trivial tangent bundle for all large enough m. Hence $M \times \mathbb{R}^m$ is almost complex for all large enough m whenever $m + \text{dim}(M)$ is even.

i.e. Class \mathcal{ACO} of Open Almost Complex Manifolds is soft of Type 1.
First, we show that the class \mathcal{AC} of Closed Almost Complex Manifolds is soft of Type I.

Proof Idea:

Step 1: X is a finite $K(G,1)$. Embed X in \mathbb{R}^N for large N. Take regular neighborhood of X and let M be its boundary. Then M has higher homotopy groups vanishing till as far as one likes (taking N larger and larger).

Also M is of codimension one in \mathbb{R}^N. Hence TM is stably trivial. Therefore $M \times \mathbb{R}^m$ has trivial tangent bundle for all large enough m. Hence $M \times \mathbb{R}^m$ is almost complex for all large enough m whenever $m + \text{dim}(M)$ is even.

i.e. Class \mathcal{ACO} of Open Almost Complex Manifolds is soft of Type 1.
First, we show that the class \mathcal{AC} of Closed Almost Complex Manifolds is soft of Type I.

Proof Idea:

Step 1: X is a finite $K(\mathbb{G},1)$. Embed X in \mathbb{R}^N for large N. Take regular neighborhood of X and let M be its boundary. Then M has higher homotopy groups vanishing till as far as one likes (taking N larger and larger).

Also M is of codimension one in \mathbb{R}^N. Hence TM is stably trivial. Therefore $M \times \mathbb{R}^m$ has trivial tangent bundle for all large enough m. Hence $M \times \mathbb{R}^m$ is almost complex for all large enough m whenever $m + \text{dim}(M)$ is even.

i.e. Class \mathcal{ACO} of Open Almost Complex Manifolds is soft of Type 1.
First, we show that the class \(\mathcal{AC} \) of Closed Almost Complex Manifolds is soft of Type I.

Proof Idea:
Step 1: \(X \) is a finite \(K(G,1) \). Embed \(X \) in \(\mathbb{R}^N \) for large \(N \). Take regular neighborhood of \(X \) and let \(M \) be its boundary. Then \(M \) has higher homotopy groups vanishing till as far as one likes (taking \(N \) larger and larger).

Also \(M \) is of codimension one in \(\mathbb{R}^N \). Hence \(TM \) is stably trivial. Therefore \(M \times \mathbb{R}^m \) has trivial tangent bundle for all large enough \(m \). Hence \(M \times \mathbb{R}^m \) is almost complex for all large enough \(m \) whenever \(m + \text{dim}(M) \) is even.

i.e. Class \(ACO \) of Open Almost Complex Manifolds is soft of Type 1.
First, we show that the class \mathcal{AC} of Closed Almost Complex Manifolds is soft of Type I.

Proof Idea:
Step 1: X is a finite $K(G,1)$. Embed X in \mathbb{R}^N for large N. Take regular neighborhood of X and let M be its boundary. Then M has higher homotopy groups vanishing till as far as one likes (taking N larger and larger). Also M is of codimension one in \mathbb{R}^N. Hence TM is stably trivial. Therefore $M \times \mathbb{R}^m$ has trivial tangent bundle for all large enough m. Hence $M \times \mathbb{R}^m$ is almost complex for all large enough m whenever $m + \text{dim}(M)$ is even.

i.e. Class \mathcal{ACO} of Open Almost Complex Manifolds is soft of Type 1.
First, we show that the class \mathcal{AC} of Closed Almost Complex Manifolds is soft of Type I.

Proof Idea:
Step 1: X is a finite $K(G,1)$. Embed X in \mathbb{R}^N for large N. Take regular neighborhood of X and let M be its boundary. Then M has higher homotopy groups vanishing till as far as one likes (taking N larger and larger).
Also M is of codimension one in \mathbb{R}^N. Hence TM is stably trivial. Therefore $M \times \mathbb{R}^m$ has trivial tangent bundle for all large enough m. Hence $M \times \mathbb{R}^m$ is almost complex for all large enough m whenever $m + \text{dim}(M)$ is even.
i.e. Class \mathcal{ACO} of Open Almost Complex Manifolds is soft of Type 1.
First, we show that the class \mathcal{AC} of Closed Almost Complex Manifolds is soft of Type I.

Proof Idea:
Step 1: X is a finite $K(G,1)$. Embed X in \mathbb{R}^N for large N. Take regular neighborhood of X and let M be its boundary. Then M has higher homotopy groups vanishing till as far as one likes (taking N larger and larger).

Also M is of codimension one in \mathbb{R}^N. Hence TM is stably trivial. Therefore $M \times \mathbb{R}^m$ has trivial tangent bundle for all large enough m. Hence $M \times \mathbb{R}^m$ is almost complex for all large enough m whenever $m + \text{dim}(M)$ is even.

i.e. Class $A\mathcal{OC}$ of Open Almost Complex Manifolds is soft of Type 1.
First, we show that the class \mathcal{AC} of Closed Almost Complex Manifolds is soft of Type I.

Proof Idea:
Step 1: X is a finite $K(G,1)$. Embed X in \mathbb{R}^N for large N. Take regular neighborhood of X and let M be its boundary. Then M has higher homotopy groups vanishing till as far as one likes (taking N larger and larger).

Also M is of codimension one in \mathbb{R}^N. Hence TM is stably trivial. Therefore $M \times \mathbb{R}^m$ has trivial tangent bundle for all large enough m. Hence $M \times \mathbb{R}^m$ is almost complex for all large enough m whenever $m + \text{dim}(M)$ is even.

i.e. Class ACO of Open Almost Complex Manifolds is soft of Type 1.
First, we show that the class \mathcal{AC} of Closed Almost Complex Manifolds is soft of Type I.

Proof Idea:
Step 1: X is a finite $K(G,1)$. Embed X in \mathbb{R}^N for large N. Take regular neighborhood of X and let M be its boundary. Then M has higher homotopy groups vanishing till as far as one likes (taking N larger and larger).
Also M is of codimension one in \mathbb{R}^N. Hence TM is stably trivial. Therefore $M \times \mathbb{R}^m$ has trivial tangent bundle for all large enough m. Hence $M \times \mathbb{R}^m$ is almost complex for all large enough m whenever $m + \text{dim}(M)$ is even.

i.e. Class \mathcal{ACO} of Open Almost Complex Manifolds is soft of Type 1.
First, we show that the class \mathcal{AC} of Closed Almost Complex Manifolds is soft of Type I.

Proof Idea:
Step 1: X is a finite $K(G,1)$. Embed X in \mathbb{R}^N for large N. Take regular neighborhood of X and let M be its boundary. Then M has higher homotopy groups vanishing till as far as one likes (taking N larger and larger).
Also M is of codimension one in \mathbb{R}^N. Hence TM is stably trivial. Therefore $M \times \mathbb{R}^m$ has trivial tangent bundle for all large enough m. Hence $M \times \mathbb{R}^m$ is almost complex for all large enough m whenever $m + \text{dim}(M)$ is even.

i.e. Class ACO of Open Almost Complex Manifolds is soft of Type 1.
First, we show that the class \mathcal{AC} of Closed Almost Complex Manifolds is soft of Type I.

Proof Idea:
Step 1: X is a finite K(G,1). Embed X in \mathbb{R}^N for large N. Take regular neighborhood of X and let M be its boundary. Then M has higher homotopy groups vanishing till as far as one likes (taking N larger and larger).

Also M is of codimension one in \mathbb{R}^N. Hence TM is stably trivial. Therefore $M \times \mathbb{R}^m$ has trivial tangent bundle for all large enough m. Hence $M \times \mathbb{R}^m$ is almost complex for all large enough m whenever $m + \text{dim}(M)$ is even.

i.e. Class \mathcal{ACO} of Open Almost Complex Manifolds is soft of Type 1.
First, we show that the class \mathcal{AC} of Closed Almost Complex Manifolds is soft of Type I.

Proof Idea:
Step 1: X is a finite $K(G,1)$. Embed X in \mathbb{R}^N for large N. Take regular neighborhood of X and let M be its boundary. Then M has higher homotopy groups vanishing till as far as one likes (taking N larger and larger).
Also M is of codimension one in \mathbb{R}^N. Hence TM is stably trivial. Therefore $M \times \mathbb{R}^m$ has trivial tangent bundle for all large enough m. Hence $M \times \mathbb{R}^m$ is almost complex for all large enough m whenever $m + \text{dim}(M)$ is even.

i.e. Class \mathcal{ACO} of Open Almost Complex Manifolds is soft of Type 1.
First, we show that the class \mathcal{AC} of Closed Almost Complex Manifolds is soft of Type I.

Proof Idea:

Step 1: X is a finite $K(G,1)$. Embed X in \mathbb{R}^N for large N. Take regular neighborhood of X and let M be its boundary. Then M has higher homotopy groups vanishing till as far as one likes (taking N larger and larger).

Also M is of codimension one in \mathbb{R}^N. Hence TM is stably trivial. Therefore $M \times \mathbb{R}^m$ has trivial tangent bundle for all large enough m. Hence $M \times \mathbb{R}^m$ is almost complex for all large enough m whenever $m + \text{dim}(M)$ is even.

i.e. Class \mathcal{ACO} of Open Almost Complex Manifolds is soft of Type 1.
First, we show that the class \mathcal{AC} of Closed Almost Complex Manifolds is soft of Type I.

Proof Idea:
Step 1: X is a finite $K(G,1)$. Embed X in \mathbb{R}^N for large N. Take regular neighborhood of X and let M be its boundary. Then M has higher homotopy groups vanishing till as far as one likes (taking N larger and larger).
Also M is of codimension one in \mathbb{R}^N. Hence TM is stably trivial. Therefore $M \times \mathbb{R}^m$ has trivial tangent bundle for all large enough m. Hence $M \times \mathbb{R}^m$ is almost complex for all large enough m whenever $m + \text{dim}(M)$ is even.

i.e. Class \mathcal{ACO} of Open Almost Complex Manifolds is soft of Type 1.
Step 2: Hence the smooth real hypersurface $H = M \times S^{m-1}$ has a codimension one distribution carrying a complex structure. i.e. **Class ACR of Closed Almost CR Manifolds is soft of Type 1.**

Step 3: Finally, $H \times S^{2m-1}$ is almost complex (by combining the almost CR structures of H and S^{2m-1}).
Step 2: Hence the smooth real hypersurface $H = M \times S^{m-1}$ has a codimension one distribution carrying a complex structure. i.e. Class ACR of Closed Almost CR Manifolds is soft of Type 1.

Step 3: Finally, $H \times S^{2m-1}$ is almost complex (by combining the almost CR structures of H and S^{2m-1}).
Step 2: Hence the smooth real hypersurface $H = M \times S^{m-1}$ has a codimension one distribution carrying a complex structure. i.e. **Class ACR of Closed Almost CR Manifolds is soft of Type 1.**

Step 3: Finally, $H \times S^{2m-1}$ is almost complex (by combining the almost CR structures of H and S^{2m-1}).
Step 2: Hence the smooth real hypersurface $H = M \times S^{m-1}$ has a codimension one distribution carrying a complex structure. i.e. **Class ACR of Closed Almost CR Manifolds is soft of Type 1.**

Step 3: Finally, $H \times S^{2m-1}$ is almost complex (by combining the almost CR structures of H and S^{2m-1}).
Step 2: Hence the smooth real hypersurface $H = M \times S^{m-1}$ has a codimension one distribution carrying a complex structure. i.e. **Class ACR of Closed Almost CR Manifolds is soft of Type 1.**

Step 3: Finally, $H \times S^{2m-1}$ is almost complex (by combining the almost CR structures of H and S^{2m-1}).
Complex Manifolds

Calabi–Eckmann manifolds are complex with underlying real manifold $S^{2m+1} \times S^{2n+1}$. C_n is the Calabi–Eckmann manifold with underlying manifold $S^{2n+1} \times S^{2n+1}$. G – finite group. H – subgroup of G. M a complex manifold on which H acts freely by holomorphic automorphisms.

$[G : H] = N$. M^N is the space of maps from G/H to M. Then M^N can be naturally identified with the space of all H–equivariant maps from G to M. Diagonal action of H on M^N naturally extends to a G–action on M^N using the left–translation action of G on G/H.
Complex Manifolds

Calabi–Eckmann manifolds are complex with underlying real manifold $S^{2m+1} \times S^{2n+1}$. C_n is the Calabi–Eckmann manifold with underlying manifold $S^{2n+1} \times S^{2n+1}$.

Complex Manifolds

Calabi–Eckmann manifolds are complex with underlying real manifold $S^{2m+1} \times S^{2n+1}$. C_n is the Calabi–Eckmann manifold with underlying manifold $S^{2n+1} \times S^{2n+1}$.

Mahan Mj Homotopical Height
Complex Manifolds

Calabi–Eckmann manifolds are complex with underlying real manifold $S^{2m+1} \times S^{2n+1}$. C_n is the Calabi–Eckmann manifold with underlying manifold $S^{2n+1} \times S^{2n+1}$.

Mahan Mj
Homotopical Height
Complex Manifolds

Calabi–Eckmann manifolds are complex with underlying real manifold $S^{2m+1} \times S^{2n+1}$. C_n is the Calabi–Eckmann manifold with underlying manifold $S^{2n+1} \times S^{2n+1}$.

$[G : H] = N$. M^N is the space of maps from G/H to M. Then M^N can be naturally identified with the space of all H–equivariant maps from G to M. Diagonal action of H on M^N naturally extends to a G–action on M^N using the left–translation action of G on G/H.

Mahan Mj

Homotopical Height
Complex Manifolds
Calabi–Eckmann manifolds are complex with underlying real manifold $S^{2m+1} \times S^{2n+1}$. C_n is the Calabi–Eckmann manifold with underlying manifold $S^{2n+1} \times S^{2n+1}$.

$[G : H] = N$. M^N is the space of maps from G/H to M. Then M^N can be naturally identified with the space of all H–equivariant maps from G to M. Diagonal action of H on M^N naturally extends to a G–action on M^N using the left–translation action of G on G/H.

Mahan Mj
Homotopical Height
Complex Manifolds

Calabi–Eckmann manifolds are complex with underlying real manifold $S^{2m+1} \times S^{2n+1}$. C_n is the Calabi–Eckmann manifold with underlying manifold $S^{2n+1} \times S^{2n+1}$.

Complex Manifolds

Calabi–Eckmann manifolds are complex with underlying real manifold $S^{2m+1} \times S^{2n+1}$. C_n is the Calabi–Eckmann manifold with underlying manifold $S^{2n+1} \times S^{2n+1}$.

Mahan Mj

Homotopical Height
Complex Manifolds
Calabi–Eckmann manifolds are complex with underlying real manifold $S^{2m+1} \times S^{2n+1}$. C_n is the Calabi–Eckmann manifold with underlying manifold $S^{2n+1} \times S^{2n+1}$.

Mahan Mj
Homotopical Height
Complex Manifolds

Calabi–Eckmann manifolds are complex with underlying real manifold $S^{2m+1} \times S^{2n+1}$. C_n is the Calabi–Eckmann manifold with underlying manifold $S^{2n+1} \times S^{2n+1}$.

$[G : H] = N$. M^N is the space of maps from G/H to M. Then M^N can be naturally identified with the space of all H–equivariant maps from G to M. Diagonal action of H on M^N naturally extends to a G–action on M^N using the left–translation action of G on G/H.

Mahan Mj

Homotopical Height
Complex Manifolds
Calabi–Eckmann manifolds are complex with underlying real manifold $S^{2m+1} \times S^{2n+1}$. C_n is the Calabi–Eckmann manifold with underlying manifold $S^{2n+1} \times S^{2n+1}$.

Mahan Mj
Homotopical Height
Complex Manifolds
Calabi–Eckmann manifolds are complex with underlying real manifold $S^{2m+1} \times S^{2n+1}$. C_n is the Calabi–Eckmann manifold with underlying manifold $S^{2n+1} \times S^{2n+1}$.

$[G : H] = N$. M^N is the space of maps from G/H to M. Then M^N can be naturally identified with the space of all H–equivariant maps from G to M. Diagonal action of H on M^N naturally extends to a G–action on M^N using the left–translation action of G on G/H.
Complex Manifolds

Calabi–Eckmann manifolds are complex with underlying real manifold $S^{2m+1} \times S^{2n+1}$. C_n is the Calabi–Eckmann manifold with underlying manifold $S^{2n+1} \times S^{2n+1}$.

Mahan Mj
Homotopical Height
For any m, $\mathbb{Z}/m\mathbb{Z}$ acts freely by complex automorphisms on C_n. Hence for any non-trivial element $g \in G$, the cyclic group $\langle g \rangle \subset G$ acts freely by complex automorphisms on C_n.

$$i_g = [G : \langle g \rangle] = \text{index of } \langle g \rangle \text{ in } G.$$ There is an action of G on the Cartesian product C_n^{ig} by holomorphic automorphisms, such that the action of the subgroup $\langle g \rangle$ is free. Hence diagonal action of G on the product

$$W_n := \prod_{g \in G, g \neq 1} C_n^{ig}$$

is free and by holomorphic automorphisms. Let $V_n = W_n/G$ denote the quotient manifold. Then $\pi_1(V_n) = G$, and $\pi_i(V_n) = 0$ for $1 < i \leq 2n$. Hence $ht_{CA}(G) = \infty$ for any finite group G.
For any m, $\mathbb{Z}/m\mathbb{Z}$ acts freely by complex automorphisms on C_n. Hence for any non-trivial element $g \in G$, the cyclic group $\langle g \rangle \subset G$ acts freely by complex automorphisms on C_n. $i_g = [G : \langle g \rangle] = \text{index of } \langle g \rangle \text{ in } G$. There is an action of G on the Cartesian product $C^n_{i_g}$ by holomorphic automorphisms, such that the action of the subgroup $\langle g \rangle$ is free. Hence diagonal action of G on the product

$$W_n := \prod_{g \in G, g \neq 1} C^n_{i_g}$$

is free and by holomorphic automorphisms. Let $V_n = W_n/G$ denote the quotient manifold. Then $\pi_1(V_n) = G$, and $\pi_i(V_n) = 0$ for $1 < i < 2n$. Hence $ht_{CA}(G) = \infty$ for any finite group G.
For any m, $\mathbb{Z}/m\mathbb{Z}$ acts freely by complex automorphisms on C_n. Hence for any non-trivial element $g \in G$, the cyclic group $\langle g \rangle \subset G$ acts freely by complex automorphisms on C_n. $i_g = [G : \langle g \rangle] = \text{index of } \langle g \rangle \text{ in } G$. There is an action of G on the Cartesian product $C_n^{i_g}$ by holomorphic automorphisms, such that the action of the subgroup $\langle g \rangle$ is free. Hence diagonal action of G on the product

$$W_n := \prod_{g \in G, g \neq 1} C_n^{i_g}$$

is free and by holomorphic automorphisms. Let $V_n = W_n/G$ denote the quotient manifold. Then $\pi_1(V_n) = G$, and $\pi_i(V_n) = 0$ for $1 < i \leq 2n$. Hence $ht_{CA}(G) = \infty$ for any finite group G.

Mahan Mj Homotopical Height
For any m, $\mathbb{Z}/m\mathbb{Z}$ acts freely by complex automorphisms on C_n. Hence for any non-trivial element $g \in G$, the cyclic group $\langle g \rangle \subset G$ acts freely by complex automorphisms on C_n. $i_g = [G : \langle g \rangle] = \text{index of } \langle g \rangle \text{ in } G$. There is an action of G on the Cartesian product $C_n^{i_g}$ by holomorphic automorphisms, such that the action of the subgroup $\langle g \rangle$ is free. Hence diagonal action of G on the product

$$W_n := \prod_{g \in G, g \neq 1} C_n^{i_g}$$

is free and by holomorphic automorphisms. Let $V_n = W_n/G$ denote the quotient manifold. Then $\pi_1(V_n) = G$, and $\pi_i(V_n) = 0$ for $1 < i \leq 2n$. Hence $ht_{CA}(G) = \infty$ for any finite group G.
For any m, $\mathbb{Z}/m\mathbb{Z}$ acts freely by complex automorphisms on C_n. Hence for any non-trivial element $g \in G$, the cyclic group $\langle g \rangle \subset G$ acts freely by complex automorphisms on C_n.

$$i_g = [G : \langle g \rangle] = \text{index of } \langle g \rangle \text{ in } G.$$

There is an action of G on the Cartesian product $C_n^{i_g}$ by holomorphic automorphisms, such that the action of the subgroup $\langle g \rangle$ is free. Hence diagonal action of G on the product

$$W_n := \prod_{g \in G, g \neq 1} C_n^{i_g}$$

is free and by holomorphic automorphisms. Let $V_n = W_n/G$ denote the quotient manifold. Then $\pi_1(V_n) = G$, and $\pi_i(V_n) = 0$ for $1 < i \leq 2n$. Hence $ht_{CA}(G) = \infty$ for any finite group G.

Mahan Mj

Homotopical Height
For any \(m, \mathbb{Z}/m\mathbb{Z} \) acts freely by complex automorphisms on \(C_n \). Hence for any non-trivial element \(g \in G \), the cyclic group \(\langle g \rangle \subset G \) acts freely by complex automorphisms on \(C_n \).

\[
i_g = [G : \langle g \rangle] = \text{index of } \langle g \rangle \text{ in } G.
\]

There is an action of \(G \) on the Cartesian product \(C_n^{i_g} \) by holomorphic automorphisms, such that the action of the subgroup \(\langle g \rangle \) is free. Hence diagonal action of \(G \) on the product

\[
W_n := \prod_{g \in G, g \neq 1} C_n^{i_g}
\]

is free and by holomorphic automorphisms. Let \(V_n = W_n/G \) denote the quotient manifold. Then \(\pi_1(V_n) = G \), and \(\pi_i(V_n) = 0 \) for \(1 < i \leq 2n \).

Hence \(ht_{CA}(G) = \infty \) for any finite group \(G \).
For any m, $\mathbb{Z}/m\mathbb{Z}$ acts freely by complex automorphisms on C_n. Hence for any non-trivial element $g \in G$, the cyclic group $\langle g \rangle \subset G$ acts freely by complex automorphisms on C_n. $i_g = [G : \langle g \rangle] = \text{index of } \langle g \rangle \text{ in } G$. There is an action of G on the Cartesian product $C_n^{i_g}$ by holomorphic automorphisms, such that the action of the subgroup $\langle g \rangle$ is free. Hence diagonal action of G on the product

$$W_n \ := \ \prod_{g \in G, g \neq 1} C_n^{i_g}$$

is free and by holomorphic automorphisms. Let $V_n = W_n/G$ denote the quotient manifold. Then $\pi_1(V_n) = G$, and $\pi_i(V_n) = 0$ for $1 < i \leq 2n$. Hence $ht_{CA}(G) = \infty$ for any finite group G.

Mahan Mj

Homotopical Height
For any m, $\mathbb{Z}/m\mathbb{Z}$ acts freely by complex automorphisms on C_n. Hence for any non-trivial element $g \in G$, the cyclic group $\langle g \rangle \subset G$ acts freely by complex automorphisms on C_n. Let $i_g = [G : \langle g \rangle]$ be the index of $\langle g \rangle$ in G. There is an action of G on the Cartesian product $C_n^{i_g}$ by holomorphic automorphisms, such that the action of the subgroup $\langle g \rangle$ is free. Hence diagonal action of G on the product

$$W_n := \prod_{g \in G, g \neq 1} C_n^{i_g}$$

is free and by holomorphic automorphisms. Let $V_n = W_n/G$ denote the quotient manifold. Then $\pi_1(V_n) = G$, and $\pi_i(V_n) = 0$ for $1 < i \leq 2n$. Hence $ht_{CA}(G) = \infty$ for any finite group G.

Mahan Mj

Homotopical Height
For any m, $\mathbb{Z}/m\mathbb{Z}$ acts freely by complex automorphisms on C_n. Hence for any non-trivial element $g \in G$, the cyclic group $\langle g \rangle \subset G$ acts freely by complex automorphisms on C_n.

$\iota_g = [G: \langle g \rangle] = \text{index of } \langle g \rangle \text{ in } G$. There is an action of G on the Cartesian product $C_n^{i_g}$ by holomorphic automorphisms, such that the action of the subgroup $\langle g \rangle$ is free. Hence diagonal action of G on the product

$$W_n := \prod_{g \in G, g \neq 1} C_n^{i_g}$$

is free and by holomorphic automorphisms. Let $V_n = W_n/G$ denote the quotient manifold. Then $\pi_1(V_n) = G$, and $\pi_i(V_n) = 0$ for $1 < i \leq 2n$. Hence $ht_{CA}(G) = \infty$ for any finite group G.

Mahan Mj

Homotopical Height
For any \(m \), \(\mathbb{Z}/m\mathbb{Z} \) acts freely by complex automorphisms on \(C_n \). Hence for any non-trivial element \(g \in G \), the cyclic group \(\langle g \rangle \subset G \) acts freely by complex automorphisms on \(C_n \).

\[i_g = [G : \langle g \rangle] = \text{index of} \ \langle g \rangle \ \text{in} \ G. \]

There is an action of \(G \) on the Cartesian product \(C_n^{i_g} \) by holomorphic automorphisms, such that the action of the subgroup \(\langle g \rangle \) is free. Hence diagonal action of \(G \) on the product

\[W_n := \prod_{g \in G, g \neq 1} C_n^{i_g} \]

is free and by holomorphic automorphisms. Let \(V_n = W_n/G \) denote the quotient manifold. Then \(\pi_1(V_n) = G \), and \(\pi_i(V_n) = 0 \) for \(1 < i \leq 2n \).

Hence \(ht_{CA}(G) = \infty \) for any finite group \(G \).
For any \(m \), \(\mathbb{Z}/m\mathbb{Z} \) acts freely by complex automorphisms on \(C_n \). Hence for any non-trivial element \(g \in G \), the cyclic group \(\langle g \rangle \subset G \) acts freely by complex automorphisms on \(C_n \).

\[
i_g = [G : \langle g \rangle] = \text{index of } \langle g \rangle \text{ in } G.
\]

There is an action of \(G \) on the Cartesian product \(C_n^{i_g} \) by holomorphic automorphisms, such that the action of the subgroup \(\langle g \rangle \) is free. Hence diagonal action of \(G \) on the product

\[
W_n := \prod_{g \in G, g \neq 1} C_n^{i_g}
\]

is free and by holomorphic automorphisms. Let \(V_n = W_n/G \) denote the quotient manifold. Then \(\pi_1(V_n) = G \), and \(\pi_i(V_n) = 0 \) for \(1 < i \leq 2n \).

Hence \(ht_{CA}(G) = \infty \) for any finite group \(G \).
For any m, $\mathbb{Z}/m\mathbb{Z}$ acts freely by complex automorphisms on C_n. Hence for any non-trivial element $g \in G$, the cyclic group $\langle g \rangle \subset G$ acts freely by complex automorphisms on C_n. $i_g = [G : \langle g \rangle] = \text{index of } \langle g \rangle \text{ in } G$. There is an action of G on the Cartesian product $C_n^{i_g}$ by holomorphic automorphisms, such that the action of the subgroup $\langle g \rangle$ is free. Hence diagonal action of G on the product

$$W_n := \prod_{g \in G, g \neq 1} C_n^{i_g}$$

is free and by holomorphic automorphisms. Let $V_n = W_n/G$ denote the quotient manifold. Then $\pi_1(V_n) = G$, and $\pi_i(V_n) = 0$ for $1 < i \leq 2n$.

Hence $ht_{CA}(G) = \infty$ for any finite group G.

Mahan Mj

Homotopical Height
Complex Projective Manifolds

Question (Kollar)

Is a projective group G_1 commensurable to a group G, admitting a $K(G,1)$ space which is a smooth quasi-projective variety?

Dimca, Papadima and Suciu have furnished examples of finitely presented groups giving a negative answer to this Question.
Motivation
Almost Complex Manifolds
Complex Manifolds
Complex Projective Manifolds

Complex Projective Manifolds

Question (Kollar)

Is a projective group G_1 commensurable to a group G, admitting a $K(G, 1)$ space which is a smooth quasi-projective variety?

Dimca, Papadima and Suciu have furnished examples of finitely presented groups giving a negative answer to this Question.
Complex Projective Manifolds

Question (Kollar)

Is a projective group G_1 commensurable to a group G, admitting a $K(G, 1)$ space which is a smooth quasi-projective variety?

Dimca, Papadima and Suciu have furnished examples of finitely presented groups giving a negative answer to this Question.
Complex Projective Manifolds

Question (Kollar)

Is a projective group G_1 commensurable to a group G, admitting a $K(G,1)$ space which is a smooth quasi-projective variety?

Dimca, Papadima and Suciu have furnished examples of finitely presented groups giving a negative answer to this Question.
Subclass \mathcal{S} of \mathcal{P} consisting of smooth complex projective manifolds with Stein universal cover.

Tools:

- Group cohomology of PD groups,
- Hochschild-Serre spectral sequence,
- Topological Lefschetz Fibrations
- (Complex) Morse Theory.
Subclass \(S \) of \(P \) consisting of smooth complex projective manifolds with Stein universal cover.

Tools:

- Group cohomology of PD groups,
- Hochschild-Serre spectral sequence,
- Topological Lefschetz Fibrations
- (Complex) Morse Theory.
Subclass \mathcal{S} of \mathcal{P} consisting of smooth complex projective manifolds with Stein universal cover.

Tools:

1. Group cohomology of PD groups,
2. Hochschild-Serre spectral sequence,
3. Topological Lefschetz Fibrations
4. (Complex) Morse Theory.
Subclass \mathcal{S} of \mathcal{P} consisting of smooth complex projective manifolds with Stein universal cover. Tools:

1. Group cohomology of PD groups,
2. Hochschild-Serre spectral sequence,
3. Topological Lefschetz Fibrations
4. (Complex) Morse Theory.
Subclass \mathcal{S} of \mathcal{P} consisting of smooth complex projective manifolds with Stein universal cover.

Tools:

1. Group cohomology of PD groups,
2. Hochschild-Serre spectral sequence,
3. Topological Lefschetz Fibrations
4. (Complex) Morse Theory.
Subclass \mathcal{S} of \mathcal{P} consisting of smooth complex projective manifolds with Stein universal cover.

Tools:

1. Group cohomology of PD groups,
2. Hochschild-Serre spectral sequence,
3. Topological Lefschetz Fibrations
4. (Complex) Morse Theory.
Ingredient 1: Bieri’s Theorem on Poincaré Duality Groups:

Theorem

(Bieri) Let $1 \longrightarrow N \longrightarrow G \longrightarrow Q \longrightarrow 1$ be a short exact sequence of groups, with both G, Q PD groups. Further suppose that N is not a PD group of finite cohomology dimension $cd(G) − cd(Q)$. Then N is not of type FP. Hence, N cannot have a $K(G,1)$ space homotopy equivalent to a finite CW complex. In particular, N cannot have a quasiprojective $K(G,1)$ space.
Ingredient 1: Bieri’s Theorem on Poincaré Duality Groups:

Theorem

(Bieri) Let $1 \rightarrow N \rightarrow G \rightarrow Q \rightarrow 1$ be a short exact sequence of groups, with both G, Q PD groups. Further suppose that N is not a PD group of finite cohomology dimension $\text{cd}(G) - \text{cd}(Q)$. Then N is not of type FP. Hence, N cannot have a $K(G,1)$ space homotopy equivalent to a finite CW complex. In particular, N cannot have a quasiprojective $K(G,1)$ space.
Ingredient 1: Bieri’s Theorem on Poincaré Duality Groups:

Theorem

(Bieri) Let $1 \to N \to G \to Q \to 1$ be a short exact sequence of groups, with both G, Q PD groups. Further suppose that N is not a PD group of finite cohomology dimension $\text{cd}(G) - \text{cd}(Q)$. Then N is not of type FP. Hence, N cannot have a $K(G,1)$ space homotopy equivalent to a finite CW complex. In particular, N cannot have a quasiprojective $K(G,1)$ space.
Ingredient 1: Bieri’s Theorem on Poincaré Duality Groups:

Theorem

(Bieri) Let \(1 \to N \to G \to Q \to 1 \) be a short exact sequence of groups, with both \(G, Q \) PD groups. Further suppose that \(N \) is not a PD group of finite cohomology dimension \(cd(G) - cd(Q) \). Then \(N \) is not of type FP. Hence, \(N \) cannot have a \(K(G,1) \) space homotopy equivalent to a finite CW complex. In particular, \(N \) cannot have a quasiprojective \(K(G,1) \) space.
Ingredient 1: Bieri’s Theorem on Poincaré Duality Groups:

Theorem

(Bieri) Let $1 \rightarrow N \rightarrow G \rightarrow Q \rightarrow 1$ be a short exact sequence of groups, with both G, Q PD groups. Further suppose that N is not a PD group of finite cohomology dimension $cd(G) - cd(Q)$. Then N is not of type FP. Hence, N cannot have a $K(G,1)$ space homotopy equivalent to a finite CW complex. In particular, N cannot have a quasiprojective $K(G,1)$ space.
Ingredient 1: Bieri’s Theorem on Poincaré Duality Groups:

Theorem

(Bieri) Let $1 \rightarrow N \rightarrow G \rightarrow Q \rightarrow 1$ be a short exact sequence of groups, with both G, Q PD groups. Further suppose that N is not a PD group of finite cohomology dimension $\text{cd}(G) - \text{cd}(Q)$. Then N is not of type FP. Hence, N cannot have a $K(G,1)$ space homotopy equivalent to a finite CW complex. In particular, N cannot have a quasiprojective $K(G,1)$ space.
Ingredient 1: Bieri’s Theorem on Poincaré Duality Groups:

Theorem

(Bieri) Let \(1 \rightarrow N \rightarrow G \rightarrow Q \rightarrow 1 \) be a short exact sequence of groups, with both \(G, Q \) PD groups. Further suppose that \(N \) is not a PD group of finite cohomology dimension \(cd(G) - cd(Q) \). Then \(N \) is not of type FP. Hence, \(N \) cannot have a \(K(G,1) \) space homotopy equivalent to a finite CW complex. In particular, \(N \) cannot have a quasiprojective \(K(G,1) \) space.
Ingredient 1: Bieri’s Theorem on Poincaré Duality Groups:

Theorem

(Bieri) Let \(1 \rightarrow N \rightarrow G \rightarrow Q \rightarrow 1 \) be a short exact sequence of groups, with both \(G, Q \) PD groups. Further suppose that \(N \) is not a PD group of finite cohomology dimension \(cd(G) - cd(Q) \). Then \(N \) is not of type \(FP \). Hence, \(N \) cannot have a \(K(G,1) \) space homotopy equivalent to a finite CW complex. In particular, \(N \) cannot have a quasiprojective \(K(G,1) \) space.
Ingredient 1: Bieri’s Theorem on Poincaré Duality Groups:

Theorem

(Bieri) Let $1 \rightarrow N \rightarrow G \rightarrow Q \rightarrow 1$ be a short exact sequence of groups, with both G, Q PD groups. Further suppose that N is not a PD group of finite cohomology dimension $\text{cd}(G) - \text{cd}(Q)$. Then N is not of type FP. Hence, N cannot have a $K(G,1)$ space homotopy equivalent to a finite CW complex. In particular, N cannot have a quasiprojective $K(G,1)$ space.
Ingredient 2: Hochschild-Serre spectral sequence:

Theorem

Suppose

a) M is a closed orientable $2n$–dimensional manifold,

b) \tilde{M} is homotopy equivalent to a wedge of n–spheres.

(e.g. any smooth complex projective variety M realizing $ht_S(G)$ or a hyperplane section of M)

Then

- $H^p(G, \mathbb{Z}G) = 0$ for $0 < p < n$,
- there is an exact sequence of G-modules,

\[
0 \rightarrow H^n(G, \mathbb{Z}G) \rightarrow H^n(M, \mathbb{Z}G) \rightarrow (H^n(\tilde{M}, \mathbb{Z}G))^G \rightarrow H^{n+1}(G, \mathbb{Z}G) \rightarrow 0,
\]
Ingredient 2: Hochschild-Serre spectral sequence:

Theorem

Suppose

a) M is a closed orientable $2n$–dimensional manifold,
b) \tilde{M} is homotopy equivalent to a wedge of n–spheres.
(e.g. any smooth complex projective variety M realizing $ht_S(G)$ or a hyperplane section of M) Then

- $H^p(G, \mathbb{Z}G) = 0$ for $0 < p < n$,
- there is an exact sequence of G-modules,

$$0 \rightarrow H^n(G, \mathbb{Z}G) \rightarrow H^n(M, \mathbb{Z}G) \rightarrow (H^n(\tilde{M}, \mathbb{Z}G))^G \rightarrow H^{n+1}(G, \mathbb{Z}G) \rightarrow 0.$$
Ingredient 2: Hochschild-Serre spectral sequence:

Theorem

Suppose

a) M is a closed orientable $2n$–dimensional manifold,

b) $	ilde{M}$ is homotopy equivalent to a wedge of n–spheres.

(e.g. any smooth complex projective variety M realizing $ht_S(G)$ or a hyperplane section of M) Then

- $H^p(G, \mathbb{Z}G) = 0$ for $0 < p < n$,
- there is an exact sequence of G-modules,

$$0 \rightarrow H^n(G, \mathbb{Z}G) \rightarrow H^n(M, \mathbb{Z}G) \rightarrow (H^n(\tilde{M}, \mathbb{Z}G))^G \rightarrow H^{n+1}(G, \mathbb{Z}G) \rightarrow 0,$$
Ingredient 2: Hochschild-Serre spectral sequence:

Theorem

Suppose

a) *M* is a closed orientable $2n$–dimensional manifold,

b) *M* is homotopy equivalent to a wedge of n–spheres.

(e.g. any smooth complex projective variety *M* realizing $ht_S(G)$ or a hyperplane section of *M*) Then

- $H^p(G, \mathbb{Z}G) = 0$ for $0 < p < n$,
- there is an exact sequence of G-modules,

$$
0 \rightarrow H^n(G, \mathbb{Z}G) \rightarrow H^n(M, \mathbb{Z}G) \rightarrow (H^n(\tilde{M}, \mathbb{Z}G))^G \rightarrow H^{n+1}(G, \mathbb{Z}G) \rightarrow 0.
$$
Ingredient 2: Hochschild-Serre spectral sequence:

Theorem

Suppose

a) M is a closed orientable $2n$–dimensional manifold,

b) \tilde{M} is homotopy equivalent to a wedge of n–spheres.

(e.g. any smooth complex projective variety M realizing $ht_S(G)$ or a hyperplane section of M) Then

1. $H^p(G, \mathbb{Z}G) = 0$ for $0 < p < n$,

2. there is an exact sequence of G-modules,

\[
0 \rightarrow H^n(G, \mathbb{Z}G) \rightarrow H^n(M, \mathbb{Z}G) \rightarrow (H^n(\tilde{M}, \mathbb{Z}G))^G \rightarrow H^{n+1}(G, \mathbb{Z}G) \rightarrow 0,
\]
Ingredient 2: Hochschild-Serre spectral sequence:

Theorem

Suppose

a) \(M \) is a closed orientable \(2n \)-dimensional manifold,

b) \(\tilde{M} \) is homotopy equivalent to a wedge of \(n \)-spheres.

(e.g. any smooth complex projective variety \(M \) realizing \(h_{\mathbb{S}}(G) \) or a hyperplane section of \(M \)) Then

1. \(H^p(G, \mathbb{Z}G) = 0 \) for \(0 < p < n \),
2. there is an exact sequence of \(G \)-modules,

\[
0 \to H^n(G, \mathbb{Z}G) \to H^n(M, \mathbb{Z}G) \to (H^n(\tilde{M}, \mathbb{Z}G))^G \to H^{n+1}(G, \mathbb{Z}G) \to 0,
\]
Ingredient 2: Hochschild-Serre spectral sequence:

Theorem

Suppose

- a) M is a closed orientable $2n$–dimensional manifold,
- b) \tilde{M} is homotopy equivalent to a wedge of n–spheres.

(e.g. any smooth complex projective variety M realizing $ht_S(G)$ or a hyperplane section of M) Then

- $H^p(G, \mathbb{Z}G) = 0$ for $0 < p < n$,
- there is an exact sequence of G-modules,

$$0 \rightarrow H^n(G, \mathbb{Z}G) \rightarrow H^n(M, \mathbb{Z}G) \rightarrow (H^n(\tilde{M}, \mathbb{Z}G))^G \rightarrow H^{n+1}(G, \mathbb{Z}G) \rightarrow 0,$$
Ingredient 2: Hochschild-Serre spectral sequence:

Theorem

Suppose

a) M is a closed orientable $2n$–dimensional manifold,
b) \tilde{M} is homotopy equivalent to a wedge of n–spheres.
(e.g. any smooth complex projective variety M realizing $ht_\mathcal{S}(G)$ or a hyperplane section of M) Then

- $H^p(G, \mathbb{Z}G) = 0$ for $0 < p < n$,
- there is an exact sequence of G-modules,

$$0 \to H^n(G, \mathbb{Z}G) \to H^n(M, \mathbb{Z}G) \to (H^n(\tilde{M}, \mathbb{Z}G))^G \to H^{n+1}(G, \mathbb{Z}G) \to 0.$$
Ingredient 2: Hochschild-Serre spectral sequence:

Theorem

Suppose
a) M is a closed orientable $2n$–dimensional manifold,
b) \tilde{M} is homotopy equivalent to a wedge of n–spheres.
(e.g. any smooth complex projective variety M realizing $ht_{\mathcal{S}}(G)$
or a hyperplane section of M)

Then

1. $H^p(G, \mathbb{Z}G) = 0$ for $0 < p < n$,

there is an exact sequence of G-modules,

$$0 \rightarrow H^n(G, \mathbb{Z}G) \rightarrow H^n(M, \mathbb{Z}G) \rightarrow \left(H^n(\tilde{M}, \mathbb{Z}G) \right)^G \rightarrow H^{n+1}(G, \mathbb{Z}G) \rightarrow 0,$$
Ingredient 2: Hochschild-Serre spectral sequence:

Theorem

Suppose

a) M is a closed orientable $2n$–dimensional manifold,

b) \tilde{M} is homotopy equivalent to a wedge of n–spheres.

(e.g. any smooth complex projective variety M realizing $h_{S}(G)$ or a hyperplane section of M) Then

1. $H^{p}(G, \mathbb{Z}G) = 0$ for $0 < p < n$,

There is an exact sequence of G-modules,

\[
0 \rightarrow H^{n}(G, \mathbb{Z}G) \rightarrow H^{n}(M, \mathbb{Z}G) \rightarrow (H^{n}(\tilde{M}, \mathbb{Z}G))^{G} \rightarrow H^{n+1}(G, \mathbb{Z}G) \rightarrow 0,
\]
Ingredient 2: Hochschild-Serre spectral sequence:

Theorem

Suppose

a) M is a closed orientable $2n$–dimensional manifold,

b) \tilde{M} is homotopy equivalent to a wedge of n–spheres.

(e.g. any smooth complex projective variety M realizing $ht_S(G)$ or a hyperplane section of M)

Then

1. $H^p(G, \mathbb{Z}G) = 0$ for $0 < p < n$,

2. there is an exact sequence of G-modules,

$$
0 \longrightarrow H^n(G, \mathbb{Z}G) \longrightarrow H^n(M, \mathbb{Z}G) \longrightarrow (H^n(\tilde{M}, \mathbb{Z}G))^G \longrightarrow H^{n+1}(G, \mathbb{Z}G) \longrightarrow 0,
$$
Ingredient 2: Hochschild-Serre spectral sequence:

Theorem

Suppose

1. M is a closed orientable $2n$–dimensional manifold,
2. \tilde{M} is homotopy equivalent to a wedge of n–spheres.

(e.g. any smooth complex projective variety M realizing $ht_S(G)$ or a hyperplane section of M) Then

1. $H^p(G, \mathbb{Z}G) = 0$ for $0 < p < n$,
2. there is an exact sequence of G-modules,

\[
0 \rightarrow H^n(G, \mathbb{Z}G) \rightarrow H^n(M, \mathbb{Z}G) \rightarrow (H^n(\tilde{M}, \mathbb{Z}G))^G \rightarrow H^{n+1}(G, \mathbb{Z}G) \rightarrow 0,
\]
Ingredient 2: Hochschild-Serre spectral sequence:

Theorem

Suppose

a) M is a closed orientable $2n$–dimensional manifold,
b) \tilde{M} is homotopy equivalent to a wedge of n–spheres.
(e.g. any smooth complex projective variety M realizing $ht_S(G)$
or a hyperplane section of M).

Then

1. $H^p(G, \mathbb{Z}G) = 0$ for $0 < p < n$,
2. there is an exact sequence of G-modules,

\[
0 \longrightarrow H^n(G, \mathbb{Z}G) \longrightarrow H^n(M, \mathbb{Z}G) \longrightarrow (H^n(\tilde{M}, \mathbb{Z}G))^G \longrightarrow H^{n+1}(G, \mathbb{Z}G) \longrightarrow 0,
\]
Ingredient 3: Topological Lefschetz fibration:

Definition

A topological Lefschetz fibration on a smooth, closed, oriented $2n$–manifold M consists of the following data:

1. a closed orientable 2-manifold S,
2. a finite set of points $K = \{b_i\} \subset M$ called the critical set,
3. a smooth map $f : M \longrightarrow S$ whose differential df is surjective outside K,
4. for each critical point x of f, there are orientation preserving coordinate charts about x and $f(x)$ (into \mathbb{C}^n and \mathbb{C}, respectively) in which f is given by $f(z_1, \cdots, z_n) = \sum_{i=1}^{n} z_i^2$, and
5. f is injective on the critical set $K \subset X$.

Mahan Mj

Homotopical Height
Ingredient 3: Topological Lefschetz fibration:

Definition

A topological Lefschetz fibration on a smooth, closed, oriented $2n$–manifold M consists of the following data:

1. A closed orientable 2-manifold S,
2. A finite set of points $K = \{b_i\} \subset M$ called the critical set,
3. A smooth map $f : M \to S$ whose differential df is surjective outside K,
4. For each critical point x of f, there are orientation preserving coordinate charts about x and $f(x)$ (into \mathbb{C}^n and \mathbb{C}, respectively) in which f is given by $f(z_1, \cdots, z_n) = \sum_{i=1}^{\cdots} z_i^2$, and
5. f is injective on the critical set $K \subset X$.

Mahan Mj
Homotopical Height
Ingredient 3: Topological Lefschetz fibration:

Definition

A topological Lefschetz fibration on a smooth, closed, oriented $2n$–manifold M consists of the following data:

1. a closed orientable 2-manifold S,
2. a finite set of points $K = \{ b_i \} \subset M$ called the critical set,
3. a smooth map $f : M \to S$ whose differential df is surjective outside K,
4. for each critical point x of f, there are orientation preserving coordinate charts about x and $f(x)$ (into \mathbb{C}^n and \mathbb{C}, respectively) in which f is given by $f(z_1, \ldots, z_n) = \sum_{i=1}^{n} z_i^2$, and
5. f is injective on the critical set $K \subset X$.
Ingredient 3: Topological Lefschetz fibration:

Definition

A topological Lefschetz fibration on a smooth, closed, oriented $2n$–manifold M consists of the following data:

1. a closed orientable 2-manifold S,
2. a finite set of points $K = \{b_i\} \subset M$ called the critical set,
3. a smooth map $f : M \to S$ whose differential df is surjective outside K,
4. for each critical point x of f, there are orientation preserving coordinate charts about x and $f(x)$ (into \mathbb{C}^n and \mathbb{C}, respectively) in which f is given by $f(z_1, \cdots, z_n) = \sum_{i=1}^n z_i^2$, and
5. f is injective on the critical set $K \subset X$.
Ingredient 3: Topological Lefschetz fibration:

Definition

A topological Lefschetz fibration on a smooth, closed, oriented $2n$–manifold M consists of the following data:

1. a closed orientable 2-manifold S,
2. a finite set of points $K = \{b_i\} \subset M$ called the critical set,
3. a smooth map $f : M \to S$ whose differential df is surjective outside K,
4. for each critical point x of f, there are orientation preserving coordinate charts about x and $f(x)$ (into \mathbb{C}^n and \mathbb{C}, respectively) in which f is given by $f(z_1, \cdots, z_n) = \sum_{i=1}^{n} z_i^2$, and
5. f is injective on the critical set $K \subset X$.

Mahan Mj

Homotopical Height
Ingredient 3: Topological Lefschetz fibration:

Definition

A **topological Lefschetz fibration** on a smooth, closed, oriented $2n$–manifold M consists of the following data:

1. a closed orientable 2-manifold S,
2. a finite set of points $K = \{b_i\} \subset M$ called the critical set,
3. a smooth map $f : M \rightarrow S$ whose differential df is surjective outside K,
4. for each critical point x of f, there are orientation preserving coordinate charts about x and $f(x)$ (into \mathbb{C}^n and \mathbb{C}, respectively) in which f is given by $f(z_1, \cdots, z_n) = \sum_{i=1}^{n} z_i^2$, and
5. f is injective on the critical set $K \subset X$.

Mahan Mj

Homotopical Height
Ingredient 3: Topological Lefschetz fibration:

Definition

A topological Lefschetz fibration on a smooth, closed, oriented $2n$–manifold M consists of the following data:

1. a closed orientable 2-manifold S,
2. a finite set of points $K = \{b_i\} \subset M$ called the critical set,
3. a smooth map $f : M \to S$ whose differential df is surjective outside K,
4. for each critical point x of f, there are orientation preserving coordinate charts about x and $f(x)$ (into \mathbb{C}^n and \mathbb{C}, respectively) in which f is given by $f(z_1, \cdots, z_n) = \sum_{i=1}^{n} z_i^2$, and
5. f is injective on the critical set $K \subset X$.
Ingredient 3: Topological Lefschetz fibration:

Definition

A topological Lefschetz fibration on a smooth, closed, oriented $2n$-manifold M consists of the following data:

1. a closed orientable 2-manifold S,
2. a finite set of points $K = \{b_i\} \subset M$ called the critical set,
3. a smooth map $f : M \rightarrow S$ whose differential df is surjective outside K,
4. for each critical point x of f, there are orientation preserving coordinate charts about x and $f(x)$ (into \mathbb{C}^n and \mathbb{C}, respectively) in which f is given by $f(z_1, \cdots, z_n) = \sum_{i=1}^{n} z_i^2$, and
5. f is injective on the critical set $K \subset X$.
Ingredient 4: (Complex) Morse Theory gives the following topological generalization of a Theorem of Dimca-Papadima-Suciu:

Theorem

Let $f : M \to S$ be an irrational topological Lefschetz fibration that is not a Kodaira fibration, with $\dim M = 2n + 2$, $n \geq 2$. Let K be the finite critical set of f. Further suppose that \tilde{M} is contractible. Let F denote the regular fiber and $N = \pi_1(F)$. Then

a) $\pi_k(F) = 0$ for $1 < k < n$,

b) $\pi_n(F)$ is a free $\mathbb{Z}N$-module, with generators in one-to-one correspondence with $K \times \pi_1(S)$,

c) \tilde{F} is homotopy equivalent to a wedge of n–spheres.
Ingredient 4: (Complex) Morse Theory gives the following topological generalization of a Theorem of Dimca-Papadima-Suciu:

Theorem

Let $f : M \to S$ be an irrational topological Lefschetz fibration that is not a Kodaira fibration, with $\dim M = 2n + 2$, $n \geq 2$. Let K be the finite critical set of f. Further suppose that \tilde{M} is contractible. Let F denote the regular fiber and $N = \pi_1(F)$. Then

a) $\pi_k(F) = 0$ for $1 < k < n$,

b) $\pi_n(F)$ is a free $\mathbb{Z}N$-module, with generators in one-to-one correspondence with $K \times \pi_1(S)$,

c) \tilde{F} is homotopy equivalent to a wedge of n–spheres.
Ingredient 4: (Complex) Morse Theory gives the following topological generalization of a Theorem of Dimca-Papadima-Suciu:

Theorem

Let $f : M \rightarrow S$ be an irrational topological Lefschetz fibration that is not a Kodaira fibration, with $\dim M = 2n + 2$, $n \geq 2$. Let K be the finite critical set of f. Further suppose that \tilde{M} is contractible. Let F denote the regular fiber and $N = \pi_1(F)$. Then

a) $\pi_k(F) = 0$ for $1 < k < n$,

b) $\pi_n(F)$ is a free $\mathbb{Z}N$-module, with generators in one-to-one correspondence with $K \times \pi_1(S)$,

c) \tilde{F} is homotopy equivalent to a wedge of n–spheres.
Ingredient 4: (Complex) Morse Theory gives the following topological generalization of a Theorem of Dimca-Papadima-Suciu:

Theorem

Let $f : M \to S$ be an irrational topological Lefschetz fibration that is not a Kodaira fibration, with $\dim M = 2n + 2$, $n \geq 2$. Let K be the finite critical set of f. Further suppose that \tilde{M} is contractible. Let F denote the regular fiber and $N = \pi_1(F)$. Then

a) $\pi_k(F) = 0$ for $1 < k < n$,

b) $\pi_n(F)$ is a free $\mathbb{Z}N$-module, with generators in one-to-one correspondence with $K \times \pi_1(S)$,

c) \tilde{F} is homotopy equivalent to a wedge of n–spheres.
Ingredient 4: (Complex) Morse Theory gives the following topological generalization of a Theorem of Dimca-Papadima-Suciu:

Theorem

Let $f : M \to S$ be an irrational topological Lefschetz fibration that is not a Kodaira fibration, with $\dim M = 2n + 2$, $n \geq 2$. Let K be the finite critical set of f. Further suppose that \tilde{M} is contractible. Let F denote the regular fiber and $N = \pi_1(F)$. Then

a) $\pi_k(F) = 0$ for $1 < k < n$,

b) $\pi_n(F)$ is a free $\mathbb{Z}N$-module, with generators in one-to-one correspondence with $K \times \pi_1(S)$,

c) \tilde{F} is homotopy equivalent to a wedge of n–spheres.
Ingredient 4: (Complex) Morse Theory gives the following topological generalization of a Theorem of Dimca-Papadima-Suciu:

Theorem

Let \(f : M \to S \) be an irrational topological Lefschetz fibration that is not a Kodaira fibration, with \(\dim M = 2n + 2, \ n \geq 2 \). Let \(K \) be the finite critical set of \(f \). Further suppose that \(\tilde{M} \) is contractible. Let \(F \) denote the regular fiber and \(N = \pi_1(F) \). Then

a) \(\pi_k(F) = 0 \) for \(1 < k < n \),

b) \(\pi_n(F) \) is a free \(\mathbb{Z}N \)-module,

with generators in one-to-one correspondence with \(K \times \pi_1(S) \),

c) \(\tilde{F} \) is homotopy equivalent to a wedge of \(n \)-spheres.
Ingredient 4: (Complex) Morse Theory gives the following topological generalization of a Theorem of Dimca-Papadima-Suciu:

Theorem

Let $f : M \to S$ be an irrational topological Lefschetz fibration that is not a Kodaira fibration, with $\dim M = 2n + 2$, $n \geq 2$. Let K be the finite critical set of f. Further suppose that \tilde{M} is contractible. Let F denote the regular fiber and $N = \pi_1(F)$.

Then
a) $\pi_k(F) = 0$ for $1 < k < n$,
b) $\pi_n(F)$ is a free $\mathbb{Z}N$-module, with generators in one-to-one correspondence with $K \times \pi_1(S)$,
c) \tilde{F} is homotopy equivalent to a wedge of n–spheres.
Ingredient 4: (Complex) Morse Theory gives the following topological generalization of a Theorem of Dimca-Papadima-Suciu:

Theorem

Let $f : M \to S$ be an irrational topological Lefschetz fibration that is not a Kodaira fibration, with $\dim M = 2n + 2$, $n \geq 2$. Let K be the finite critical set of f. Further suppose that \tilde{M} is contractible. Let F denote the regular fiber and $N = \pi_1(F)$. Then

a) $\pi_k(F) = 0$ for $1 < k < n$,

b) $\pi_n(F)$ is a free $\mathbb{Z}N$-module, with generators in one-to-one correspondence with $K \times \pi_1(S)$,

c) \tilde{F} is homotopy equivalent to a wedge of n–spheres.
Ingredient 4: (Complex) Morse Theory gives the following topological generalization of a Theorem of Dimca-Papadima-Suciu:

Theorem

Let $f : M \to S$ be an irrational topological Lefschetz fibration that is not a Kodaira fibration, with $\dim M = 2n + 2$, $n \geq 2$. Let K be the finite critical set of f. Further suppose that \tilde{M} is contractible. Let F denote the regular fiber and $N = \pi_1(F)$. Then

a) $\pi_k(F) = 0$ for $1 < k < n$,

b) $\pi_n(F)$ is a free $\mathbb{Z}N$-module, with generators in one-to-one correspondence with $K \times \pi_1(S)$,

c) \tilde{F} is homotopy equivalent to a wedge of n–spheres.
Ingredient 4: (Complex) Morse Theory gives the following topological generalization of a Theorem of Dimca-Papadima-Suciu:

Theorem

Let $f : M \to S$ be an irrational topological Lefschetz fibration that is not a Kodaira fibration, with $\dim M = 2n + 2$, $n \geq 2$. Let K be the finite critical set of f. Further suppose that \tilde{M} is contractible. Let F denote the regular fiber and $N = \pi_1(F)$. Then

a) $\pi_k(F) = 0$ for $1 < k < n$,

b) $\pi_n(F)$ is a free $\mathbb{Z}N$-module, with generators in one-to-one correspondence with $K \times \pi_1(S)$,

c) \tilde{F} is homotopy equivalent to a wedge of n–spheres.
Ingredient 4: (Complex) Morse Theory gives the following topological generalization of a Theorem of Dimca-Papadima-Suciu:

Theorem

Let $f : M \to S$ be an irrational topological Lefschetz fibration that is not a Kodaira fibration, with $\dim M = 2n + 2$, $n \geq 2$. Let K be the finite critical set of f. Further suppose that \tilde{M} is contractible. Let F denote the regular fiber and $N = \pi_1(F)$.

Then

a) $\pi_k(F) = 0$ for $1 < k < n$,

b) $\pi_n(F)$ is a free $\mathbb{Z}N$-module, with generators in one-to-one correspondence with $K \times \pi_1(S)$,

c) \tilde{F} is homotopy equivalent to a wedge of n–spheres.
Ingredient 4: (Complex) Morse Theory gives the following topological generalization of a Theorem of Dimca-Papadima-Suciu:

Theorem

Let $f : M \longrightarrow S$ be an irrational topological Lefschetz fibration that is not a Kodaira fibration, with $\dim M = 2n + 2$, $n \geq 2$. Let K be the finite critical set of f. Further suppose that \tilde{M} is contractible. Let F denote the regular fiber and $N = \pi_1(F)$. Then

a) $\pi_k(F) = 0$ for $1 < k < n$,

b) $\pi_n(F)$ is a free $\mathbb{Z}N$-module, with generators in one-to-one correspondence with $K \times \pi_1(S)$,

c) \tilde{F} is homotopy equivalent to a wedge of n–spheres.
Ingredient 4: (Complex) Morse Theory gives the following topological generalization of a Theorem of Dimca-Papadima-Suciu:

Theorem

Let $f : M \to S$ be an irrational topological Lefschetz fibration that is not a Kodaira fibration, with $\dim M = 2n + 2$, $n \geq 2$. Let K be the finite critical set of f. Further suppose that \tilde{M} is contractible. Let F denote the regular fiber and $N = \pi_1(F)$. Then

a) $\pi_k(F) = 0$ for $1 < k < n$,

b) $\pi_n(F)$ is a free $\mathbb{Z}N$-module, with generators in one-to-one correspondence with $K \times \pi_1(S)$,

c) \tilde{F} is homotopy equivalent to a wedge of n–spheres.
Theorem

d) N cannot be of type FP; in particular, there does not exist a quasiprojective $K(N, 1)$ space.

Sketch of Proof:
Note that $\pi_1(M)$ and $\pi_1(S)$ are PD groups of dimension $(2n + 2)$ and 2 respectively. To show that N cannot be of type FP, it suffices (by Theorem 4) to show that N cannot be a $PD(2n)$ group. Spectral Sequence Proposition gives

\[
0 \longrightarrow H^n(N, \mathbb{Z}N) \longrightarrow H^n(F, \mathbb{Z}N) \longrightarrow H^n(\widetilde{F}, \mathbb{Z}N)^N \\
\longrightarrow H^{n+1}(N, \mathbb{Z}N) \longrightarrow \cdots
\]
Theorem

d) N cannot be of type FP; in particular, there does not exist a quasiprojective $K(N, 1)$ space.

Sketch of Proof:
Note that $\pi_1(M)$ and $\pi_1(S)$ are PD groups of dimension $(2n + 2)$ and 2 respectively.
To show that N cannot be of type FP, it suffices (by Theorem 4) to show that N cannot be a PD$(2n)$ group.
Spectral Sequence Proposition gives

\[
0 \rightarrow H^n(N, \mathbb{Z}N) \rightarrow H^n(F, \mathbb{Z}N) \rightarrow H^n(\tilde{F}, \mathbb{Z}N)^N \rightarrow H^{n+1}(N, \mathbb{Z}N) \rightarrow \cdots
\]
Theorem

d) N cannot be of type FP; in particular, there does not exist a quasiprojective $K(N, 1)$ space.

Sketch of Proof:
Note that $\pi_1(M)$ and $\pi_1(S)$ are PD groups of dimension $(2n + 2)$ and 2 respectively.
To show that N cannot be of type FP, it suffices (by Theorem 4) to show that N cannot be a PD(2n) group.
Spectral Sequence Proposition gives

\[
0 \to H^n(N, \mathbb{Z}N) \to H^n(F, \mathbb{Z}N) \to H^n(\tilde{F}, \mathbb{Z}N)^N \to H^{n+1}(N, \mathbb{Z}N) \to \cdots
\]
Theorem

d) N cannot be of type FP; in particular, there does not exist a quasiprojective $K(N, 1)$ space.

Sketch of Proof:

Note that $\pi_1(M)$ and $\pi_1(S)$ are PD groups of dimension $(2n + 2)$ and 2 respectively.

To show that N cannot be of type FP, it suffices (by Theorem 4) to show that N cannot be a PD(2n) group.

Spectral Sequence Proposition gives

$$
0 \longrightarrow H^n(N, \mathbb{Z}N) \longrightarrow H^n(F, \mathbb{Z}N) \longrightarrow H^n(\tilde{F}, \mathbb{Z}N)^N
$$

$$
\longrightarrow H^{n+1}(N, \mathbb{Z}N) \longrightarrow \cdots
$$
Theorem

d) N cannot be of type FP; in particular, there does not exist a quasiprojective $K(N, 1)$ space.

Sketch of Proof:
Note that $\pi_1(M)$ and $\pi_1(S)$ are PD groups of dimension $(2n + 2)$ and 2 respectively.
To show that N cannot be of type FP, it suffices (by Theorem 4) to show that N cannot be a PD(2n) group.
Spectral Sequence Proposition gives

$$0 \rightarrow H^n(N, \mathbb{Z}N) \rightarrow H^n(F, \mathbb{Z}N) \rightarrow H^n(\tilde{F}, \mathbb{Z}N)^N$$

$$\rightarrow H^{n+1}(N, \mathbb{Z}N) \rightarrow \cdots$$
Motivation
Almost Complex Manifolds
Complex Manifolds
Complex Projective Manifolds

Theorem

d) N cannot be of type FP; in particular, there does not exist a quasiprojective $K(N, 1)$ space.

Sketch of Proof:
Note that $\pi_1(M)$ and $\pi_1(S)$ are PD groups of dimension $(2n + 2)$ and 2 respectively.
To show that N cannot be of type FP, it suffices (by Theorem 4) to show that N cannot be a PD(2n) group.

Spectral Sequence Proposition gives

\[0 \rightarrow H^n(N, \mathbb{Z}N) \rightarrow H^n(F, \mathbb{Z}N) \rightarrow H^n(\tilde{F}, \mathbb{Z}N)^N \rightarrow H^{n+1}(N, \mathbb{Z}N) \rightarrow \cdots \]
Theorem

d) N cannot be of type FP; in particular, there does not exist a quasiprojective $K(N, 1)$ space.

Sketch of Proof:
Note that $\pi_1(M)$ and $\pi_1(S)$ are PD groups of dimension $(2n + 2)$ and 2 respectively.
To show that N cannot be of type FP, it suffices (by Theorem 4) to show that N cannot be a PD(2n) group.
Spectral Sequence Proposition gives

$$
0 \rightarrow H^n(N, \mathbb{Z}N) \rightarrow H^n(F, \mathbb{Z}N) \rightarrow H^n(\tilde{F}, \mathbb{Z}N)^N \\
\rightarrow H^{n+1}(N, \mathbb{Z}N) \rightarrow \cdots
$$
Theorem

d) N cannot be of type FP; in particular, there does not exist a quasiprojective $K(N, 1)$ space.

Sketch of Proof:
Note that $\pi_1(M)$ and $\pi_1(S)$ are PD groups of dimension $(2n + 2)$ and 2 respectively.
To show that N cannot be of type FP, it suffices (by Theorem 4) to show that N cannot be a PD(2n) group.
Spectral Sequence Proposition gives

\[
0 \rightarrow H^n(N, \mathbb{Z}_N) \rightarrow H^n(F, \mathbb{Z}_N) \rightarrow H^n(\tilde{F}, \mathbb{Z}_N)^N \\
\rightarrow H^{n+1}(N, \mathbb{Z}_N) \rightarrow \ldots
\]
Theorem

d) N cannot be of type FP; in particular, there does not exist a quasiprojective $K(N, 1)$ space.

Sketch of Proof:
Note that $\pi_1(M)$ and $\pi_1(S)$ are PD groups of dimension $(2n + 2)$ and 2 respectively.
To show that N cannot be of type FP, it suffices (by Theorem 4) to show that N cannot be a PD(2n) group.
Spectral Sequence Proposition gives

\[
0 \longrightarrow H^n(N, \mathbb{Z}N) \longrightarrow H^n(F, \mathbb{Z}N) \longrightarrow H^n(\tilde{F}, \mathbb{Z}N)^N \\
\longrightarrow H^{n+1}(N, \mathbb{Z}N) \longrightarrow \cdots
\]
If N is PD(2n) group, then $H^n(N, \mathbb{Z}N) = H^{n+1}(N, \mathbb{Z}N) = 0$ because $n \geq 2$. Hence $H^n(F, \mathbb{Z}N) = H^n(\tilde{F}, \mathbb{Z}N)^N$.

Now, by Poincaré Duality and the Hurewicz’ Theorem, we have,

$$H^n(F, \mathbb{Z}N) = H^n_c(\tilde{F}) = H_n(\tilde{F}) = \pi_n(\tilde{F}) = \bigoplus_I \mathbb{Z},$$

$$H^n(\tilde{F}, \mathbb{Z}N)^N = (\text{Hom}_\mathbb{Z}(H_n(\tilde{F}), \mathbb{Z}N))^N = (\text{Hom}_\mathbb{Z}(\pi_n(\tilde{F}), \mathbb{Z}N))^N =$$

$$\text{Hom}_{\mathbb{Z}N}(\pi_n(\tilde{F}), \mathbb{Z}N) = \text{Hom}_{\mathbb{Z}N} \left(\bigoplus_I \mathbb{Z}, \mathbb{Z}N \right) = \prod_I \mathbb{Z}N,$$

where $\prod_I \mathbb{Z}N$ denotes direct product of a collection of copies of $\mathbb{Z}N$ indexed by I.
If N is PD$(2n)$ group, then $H^n(N, \mathbb{Z}N) = H^{n+1}(N, \mathbb{Z}N) = 0$ because $n \geq 2$.

Hence $H^n(F, \mathbb{Z}N) = H^n(\widetilde{F}, \mathbb{Z}N)^N$.

Now, by Poincaré Duality and the Hurewicz’ Theorem, we have,

$$H^n(F, \mathbb{Z}N) = H^c_n(\widetilde{F}) = H_n(\widetilde{F}) = \pi_n(\widetilde{F}) = \bigoplus_I \mathbb{Z},$$

$$H^n(\widetilde{F}, \mathbb{Z}N)^N = (\text{Hom}_\mathbb{Z}(H_n(\widetilde{F}), \mathbb{Z}N))^N = (\text{Hom}_\mathbb{Z}(\pi_n(\widetilde{F}), \mathbb{Z}N))^N =$$

$$\text{Hom}_{\mathbb{Z}N}(\pi_n(\widetilde{F}), \mathbb{Z}N) = \text{Hom}_{\mathbb{Z}N} \left(\bigoplus_I \mathbb{Z}, \mathbb{Z}N \right) = \prod_I \mathbb{Z}N,$$

where $\prod_I \mathbb{Z}N$ denotes direct product of a collection of copies of $\mathbb{Z}N$ indexed by I.

Mahan Mj

Homotopical Height
If N is PD($2n$) group, then $H^n(N, \mathbb{Z}N) = H^{n+1}(N, \mathbb{Z}N) = 0$ because $n \geq 2$.
Hence $H^n(F, \mathbb{Z}N) = H^n(\tilde{F}, \mathbb{Z}N)^N$.
Now, by Poincaré Duality and the Hurewicz’ Theorem, we have,

$$H^n(F, \mathbb{Z}N) = H^n_c(\tilde{F}) = H_n(\tilde{F}) = \pi_n(\tilde{F}) = \bigoplus_I \mathbb{Z},$$

$$H^n(\tilde{F}, \mathbb{Z}N)^N = (\text{Hom}_\mathbb{Z}(H_n(\tilde{F}), \mathbb{Z}N))^N = (\text{Hom}_\mathbb{Z}(\pi_n(\tilde{F}), \mathbb{Z}N))^N = \bigoplus_I \mathbb{Z},$$

where $\prod_I \mathbb{Z}N$ denotes direct product of a collection of copies of $\mathbb{Z}N$ indexed by I.
If N is PD(2n) group, then $H^n(N, \mathbb{Z}N) = H^{n+1}(N, \mathbb{Z}N) = 0$ because $n \geq 2$.
Hence $H^n(F, \mathbb{Z}N) = H^n(\tilde{F}, \mathbb{Z}N)^N$.
Now, by Poincaré Duality and the Hurewicz’ Theorem, we have,

$$H^n(F, \mathbb{Z}N) = H^n_c(\tilde{F}) = H_n(\tilde{F}) = \pi_n(\tilde{F}) = \bigoplus_I \mathbb{Z},$$

and

$$H^n(\tilde{F}, \mathbb{Z}N)^N = (\text{Hom}_\mathbb{Z}(H_n(\tilde{F}), \mathbb{Z}N))^N = (\text{Hom}_\mathbb{Z}(\pi_n(\tilde{F}), \mathbb{Z}N))^N = \text{Hom}_{\mathbb{Z}N}(\pi_n(\tilde{F}), \mathbb{Z}N) = \text{Hom}_{\mathbb{Z}N} \left(\bigoplus_I \mathbb{Z}, \mathbb{Z}N \right) = \prod_I \mathbb{Z}N,$$

where $\prod_I \mathbb{Z}N$ denotes direct product of a collection of copies of $\mathbb{Z}N$ indexed by I.
If N is PD(2n) group, then $H^n(N, \mathbb{Z}N) = H^{n+1}(N, \mathbb{Z}N) = 0$ because $n \geq 2$.

Hence $H^n(F, \mathbb{Z}N) = H^n(\tilde{F}, \mathbb{Z}N)^N$.

Now, by Poincaré Duality and the Hurewicz’ Theorem, we have,

$$H^n(F, \mathbb{Z}N) = H^n_c(\tilde{F}) = H_n(\tilde{F}) = \pi_n(\tilde{F}) = \bigoplus_{I} \mathbb{Z},$$

where $\bigoplus_{I} \mathbb{Z}$ denotes the direct sum of copies of \mathbb{Z} indexed by I.

$$H^n(\tilde{F}, \mathbb{Z}N)^N = (\text{Hom}_{\mathbb{Z}}(H_n(\tilde{F}), \mathbb{Z}N))^N = (\text{Hom}_{\mathbb{Z}}(\pi_n(\tilde{F}), \mathbb{Z}N))^N = \prod_{I} \mathbb{Z}N,$$

where $\prod_{I} \mathbb{Z}N$ denotes the direct product of a collection of copies of $\mathbb{Z}N$ indexed by I.
Hence

\[\bigoplus_I \mathbb{Z} = \prod_I \mathbb{Z}^N. \]

Since \(f : M \to S \) is irrational, \(I \) is countably infinite. Therefore, \(\bigoplus_I \mathbb{Z} \) is countable and \(\prod_I \mathbb{Z}^N \) is uncountable and the two cannot be equal. A contradiction.
Hence
\[\bigoplus_I \mathbb{Z} = \prod_I \mathbb{Z}^N. \]

Since \(f : M \to S \) is irrational, \(I \) is countably infinite.

Therefore, \(\bigoplus_I \mathbb{Z} \) is countable and \(\prod_I \mathbb{Z}^N \) is uncountable and the two cannot be equal.

A contradiction.
Hence

\[\bigoplus_I \mathbb{Z} = \prod_I \mathbb{Z}^N. \]

Since \(f : M \to S \) is irrational, \(I \) is countably infinite. Therefore, \(\bigoplus_I \mathbb{Z} \) is countable and \(\prod_I \mathbb{Z}^N \) is uncountable and the two cannot be equal.

A contradiction.
Hence

$$\bigoplus I \mathbb{Z} = \prod I \mathbb{Z}N.$$

Since $f : M \rightarrow S$ is irrational, I is countably infinite. Therefore, $\bigoplus I \mathbb{Z}$ is countable and $\prod I \mathbb{Z}N$ is uncountable and the two cannot be equal.

A contradiction.