Chai and Why?

THE TAU OF RAMANUJAN

August 1, 2010
Prithvi Theater

Eknath Ghate

School of Maths
TIFR, Mumbai
What is Mathematics?

Mathematics is an expression of the human mind that reflects the active will, the contemplative reason, and the desire for aesthetic perfection.

- Courant and Robbins, 1941
What is Mathematics?

Mathematics is an expression of the human mind that reflects the active will, the contemplative reason, and the desire for aesthetic perfection.

- Courant and Robbins, 1941

But, more simply....
Math is fun: Like Sudoku

There are 6,670,903,752,021,072,936,960 Sudoku puzzles.

Is there a puzzle with 16 starting entries?
Math is fun: Like Sudoku

There are 6,670,903,752,021,072,936,960 Sudoku puzzles.

▶ There are 6,670,903,752,021,072,936,960 Sudoku puzzles.
Math is fun: Like Sudoku

- There are 6,670,903,752,021,072,936,960 Sudoku puzzles.
- Is there a puzzle with 16 starting entries?
Math is challenging: Like the Himalayas
Math is challenging: Like the Himalayas

BSD Conjecture:

\[
\frac{L^{(r)}(E, 1)}{r!} = \frac{\#\Sha(E) \Omega_E R_E \prod_{p | N} c_p}{(\#E_{\text{Tor}})^2}
\]
Math is challenging: Like the Himalayas

BSD Conjecture:

\[
\frac{L^{(r)}(E, 1)}{r!} = \frac{\#\Sha(E)\Omega_E R_E \prod_{p|N} c_p}{(\#E_{\text{Tor}})^2}
\]
Math is challenging: Like the Himalayas

BSD Conjecture:

\[
\frac{L^{(r)}(E, 1)}{r!} = \frac{\#\text{Sha}(E)\Omega_E R_E \prod_{p|N} c_p}{(\#E_{\text{Tor}})^2}
\]

Everest Base Camp

And not without pitfalls
And math is beautiful: Like Chopin’s music
And math is beautiful: Like Chopin’s music

Quadratic reciprocity:

\[
\left(\frac{p}{q} \right) \left(\frac{q}{p} \right) = (-1)^{\frac{p-1}{2} \frac{q-1}{2}}
\]
And math is beautiful: Like Chopin’s music

Quadratic reciprocity:

\[
\left(\frac{p}{q} \right) \left(\frac{q}{p} \right) = (-1)^{\frac{p-1}{2} \frac{q-1}{2}}
\]

1810 - 1849 Fantasie Impromptu
Today our story starts with the mathematician Euler.
Euler

Today our story starts with the mathematician Euler.

1707 - 1783
Bridges of Königsberg

Citizens: Is it possible to walk over all the bridges, crossing each bridge only once?

At each vertex, # In = # Out, for there to be a path. So the number of edges meeting at every vertex must be EVEN.

Euler: There is NO such walk!

Topology is born.
Bridges of Königsberg

Citizens: Is it possible to walk over all the bridges, crossing each bridge only once?
Bridges of Königsberg

Citizens: Is it possible to walk over all the bridges, crossing each bridge only once?
Bridges of Königsberg

Citizens: Is it possible to walk over all the bridges, crossing each bridge only once?
Bridges of Königsberg

Citizens: Is it possible to walk over all the bridges, crossing each bridge only once?

At each vertex, \(\# \text{In} = \# \text{Out} \), for there to be a path.
Bridges of Königsberg

Citizens: Is it possible to walk over all the bridges, crossing each bridge only once?

At each vertex, \(\# \text{ In} = \# \text{ Out} \), for there to be a path. So the number of edges meeting at every vertex must be EVEN.
Bridges of Königsberg

Citizens: Is it possible to walk over all the bridges, crossing each bridge only once?

At each vertex, \(\# \text{ In} = \# \text{ Out} \), for there to be a path. So the number of edges meeting at every vertex must be EVEN.

Euler: There is NO such walk!
Bridges of Königsberg

Citizens: Is it possible to walk over all the bridges, crossing each bridge only once?

At each vertex, $\# \text{In} = \# \text{Out}$, for there to be a path. So the number of edges meeting at every vertex must be EVEN.

Euler: There is NO such walk! Topology is born.
Infinite Sums

Euler was also interested in infinite sums.
Infinite Sums

Euler was also interested in infinite sums.

\[\sum_{n=1}^{\infty} \frac{1}{n} = \infty\]

Euler did all sums with even powers. Odd powers still open!
Infinite Sums

Euler was also interested in infinite sums.

\[
\sum_{n=1}^{\infty} \frac{1}{n} = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \cdots =
\]
Infinite Sums

Euler was also interested in infinite sums.

\[\sum_{n=1}^{\infty} \frac{1}{n} = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \cdots = \infty \]
Infinite Sums

Euler was also interested in infinite sums.

\[\sum_{n=1}^{\infty} \frac{1}{n} = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \cdots = \infty \]

\[\sum_{n=1}^{\infty} \frac{1}{n^2} = 1 + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \cdots = \pi^2/6 \]
Euler was also interested in infinite sums.

\[\sum_{n=1}^{\infty} \frac{1}{n} = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \cdots = \infty \]

\[\sum_{n=1}^{\infty} \frac{1}{n^2} = 1 + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \cdots = \frac{\pi^2}{6} \]
Infinite Sums

Euler was also interested in infinite sums.

\[\sum_{n=1}^{\infty} \frac{1}{n} = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \cdots = \infty \]

\[\sum_{n=1}^{\infty} \frac{1}{n^2} = 1 + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \cdots = \frac{\pi^2}{6} \]

\[\sum_{n=1}^{\infty} \frac{1}{n^3} = 1 + \frac{1}{2^3} + \frac{1}{3^3} + \frac{1}{4^3} + \cdots = \text{?} \]

Euler did all sums with even powers.
Odd powers still open!
Euler was also interested in infinite sums.

\[\sum_{n=1}^{\infty} \frac{1}{n} = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \cdots = \infty \]

\[\sum_{n=1}^{\infty} \frac{1}{n^2} = 1 + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \cdots = \frac{\pi^2}{6} \]

\[\sum_{n=1}^{\infty} \frac{1}{n^3} = 1 + \frac{1}{2^3} + \frac{1}{3^3} + \frac{1}{4^3} + \cdots = ? \]
Infinite Sums

Euler was also interested in infinite sums.

\[\sum_{n=1}^{\infty} \frac{1}{n} = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \cdots = \infty\]

\[\sum_{n=1}^{\infty} \frac{1}{n^2} = 1 + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \cdots = \frac{\pi^2}{6}\]

\[\sum_{n=1}^{\infty} \frac{1}{n^3} = 1 + \frac{1}{2^3} + \frac{1}{3^3} + \frac{1}{4^3} + \cdots = ?\]

\[\sum_{n=1}^{\infty} \frac{1}{n^4} = 1 + \frac{1}{2^4} + \frac{1}{3^4} + \frac{1}{4^4} + \cdots = \pi^4/90\]
Infinite Sums

Euler was also interested in infinite sums.

\[
\sum_{n=1}^{\infty} \frac{1}{n} = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \cdots = \infty
\]

\[
\sum_{n=1}^{\infty} \frac{1}{n^2} = 1 + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \cdots = \frac{\pi^2}{6}
\]

\[
\sum_{n=1}^{\infty} \frac{1}{n^3} = 1 + \frac{1}{2^3} + \frac{1}{3^3} + \frac{1}{4^3} + \cdots = ?
\]

\[
\sum_{n=1}^{\infty} \frac{1}{n^4} = 1 + \frac{1}{2^4} + \frac{1}{3^4} + \frac{1}{4^4} + \cdots = \frac{\pi^4}{90}
\]
Euler was also interested in infinite sums.

\[\sum_{n=1}^{\infty} \frac{1}{n} = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \cdots = \infty \]

\[\sum_{n=1}^{\infty} \frac{1}{n^2} = 1 + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \cdots = \frac{\pi^2}{6} \]

\[\sum_{n=1}^{\infty} \frac{1}{n^3} = 1 + \frac{1}{2^3} + \frac{1}{3^3} + \frac{1}{4^3} + \cdots = ? \]

\[\sum_{n=1}^{\infty} \frac{1}{n^4} = 1 + \frac{1}{2^4} + \frac{1}{3^4} + \frac{1}{4^4} + \cdots = \frac{\pi^4}{90} \]

etc.
Euler was also interested in infinite sums.

\[
\sum_{n=1}^{\infty} \frac{1}{n} = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \cdots = \infty
\]

\[
\sum_{n=1}^{\infty} \frac{1}{n^2} = 1 + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \cdots = \frac{\pi^2}{6}
\]

\[
\sum_{n=1}^{\infty} \frac{1}{n^3} = 1 + \frac{1}{2^3} + \frac{1}{3^3} + \frac{1}{4^3} + \cdots = ?
\]

\[
\sum_{n=1}^{\infty} \frac{1}{n^4} = 1 + \frac{1}{2^4} + \frac{1}{3^4} + \frac{1}{4^4} + \cdots = \frac{\pi^4}{90}
\]

etc.

Euler did all sums with even powers.
Infinite Sums

Euler was also interested in infinite sums.

\[
\sum_{n=1}^{\infty} \frac{1}{n} = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \cdots = \infty
\]

\[
\sum_{n=1}^{\infty} \frac{1}{n^2} = 1 + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \cdots = \frac{\pi^2}{6}
\]

\[
\sum_{n=1}^{\infty} \frac{1}{n^3} = 1 + \frac{1}{2^3} + \frac{1}{3^3} + \frac{1}{4^3} + \cdots = ?
\]

\[
\sum_{n=1}^{\infty} \frac{1}{n^4} = 1 + \frac{1}{2^4} + \frac{1}{3^4} + \frac{1}{4^4} + \cdots = \frac{\pi^4}{90}
\]

etc.

Euler did all sums with even powers. Odd powers still open!
Euler’s phi-function

Euler was also interested in infinite products.
Euler’s phi-function

Euler was also interested in infinite products.

\[\phi(n) = \prod_{\text{prime } p} \left(1 - \frac{1}{p}\right) \]

Here \(x \) is a formal variable.

To understand this consider the finite products:

\[(1 - x)(1 - x^2)= 1 - x - x^2 + x^3 \]
\[(1 - x)(1 - x^2)(1 - x^3) = 1 - x - 2x^2 + 2x^4 \]
Euler’s phi-function

Euler was also interested in infinite products.

\[\Phi(x) = \prod_{n=1}^{\infty} \left(1 - x^n\right) \]

Here \(x \) is a formal variable.

To understand this consider the finite products:

\[(1 - x)(1 - x^2)(1 - x^3)(1 - x^4) \cdots \]

It expands to:

\[1 - x - x^2 + x^3 - x^4 + x^5 - x^6 + \cdots \]
Euler’s phi-function

Euler was also interested in infinite products.

\[
\phi(x) = \prod_{n=1}^{\infty} (1 - x^n)
\]
Euler’s phi-function

Euler was also interested in infinite products.

\[\phi(x) = \prod_{n=1}^{\infty} (1 - x^n) = (1 - x)(1 - x^2)(1 - x^3)(1 - x^4) \cdots \]
Euler’s phi-function

Euler was also interested in infinite products.

$$\phi(x) = \prod_{n=1}^{\infty} (1 - x^n) = (1 - x)(1 - x^2)(1 - x^3)(1 - x^4) \cdots$$

Here x is a formal variable.
Euler’s phi-function

Euler was also interested in infinite products.

\[\Phi \phi \]

\[\phi(x) = \prod_{n=1}^{\infty} (1 - x^n) = (1 - x)(1 - x^2)(1 - x^3)(1 - x^4) \cdots \]

Here \(x \) is a formal variable.

To understand this consider the finite products:
Euler’s phi-function

Euler was also interested in infinite products.

\[\Phi \varphi \]

\(\phi(x) = \prod_{n=1}^{\infty} (1 - x^n) = (1 - x)(1 - x^2)(1 - x^3)(1 - x^4) \cdots \)

Here \(x \) is a formal variable.

To understand this consider the finite products:

\[(1 - x) = 1 - x \]
Euler’s phi-function

Euler was also interested in infinite products.

\[\Phi \phi \]

\[\phi(x) = \prod_{n=1}^{\infty} (1 - x^n) = (1 - x)(1 - x^2)(1 - x^3)(1 - x^4) \cdots \]

Here \(x \) is a formal variable.

To understand this consider the finite products:

\[(1 - x) = 1 - x \]
\[(1 - x)(1 - x^2) = 1 - x - x^2 + x^3 \]
Euler’s phi-function

Euler was also interested in infinite products.

\[
\Phi \varphi
\]

\[
\phi(x) = \prod_{n=1}^{\infty} (1 - x^n) = (1 - x)(1 - x^2)(1 - x^3)(1 - x^4) \cdots
\]

Here \(x \) is a formal variable.

To understand this consider the finite products:

\[
(1 - x) = 1 - x
\]
\[
(1 - x)(1 - x^2) = 1 - x - x^2 + x^3
\]
\[
(1 - x)(1 - x^2)(1 - x^3) = 1 - x - x^2 + x^4 + x^5 - x^6
\]
Computing some more we get:

1. \[= 1 - x \]
2. \[= 1 - x - x^2 + x^3 \]
3. \[= 1 - x - x^2 + x^4 + x^5 - x^6 \]
Computing some more we get:

1. \(= 1 - x \)
2. \(= 1 - x - x^2 + x^3 \)
3. \(= 1 - x - x^2 + x^4 + x^5 - x^6 \)
4. \(= 1 - x - x^2 + 2x^5 - x^8 - x^9 + x^{10} \)
Computing some more we get:

1. \(= 1 - x \)
2. \(= 1 - x - x^2 + x^3 \)
3. \(= 1 - x - x^2 + x^4 + x^5 - x^6 \)
4. \(= 1 - x - x^2 + 2x^5 - x^8 - x^9 + x^{10} \)
5. \(= 1 - x - x^2 + x^5 + x^6 + x^7 - x^8 - x^9 - x^{10} \ldots \)
Computing some more we get:

1. \(= 1 - x \)
2. \(= 1 - x - x^2 + x^3 \)
3. \(= 1 - x - x^2 + x^4 + x^5 - x^6 \)
4. \(= 1 - x - x^2 + 2x^5 - x^8 - x^9 + x^{10} \)
5. \(= 1 - x - x^2 + x^5 + x^6 + x^7 - x^8 - x^9 - x^{10} \ldots \)
6. \(= 1 - x - x^2 + x^5 + 2x^7 - x^9 - x^{10} \ldots \)
Computing some more we get:

1. \(= 1 - x \)
2. \(= 1 - x - x^2 + x^3 \)
3. \(= 1 - x - x^2 + x^4 + x^5 - x^6 \)
4. \(= 1 - x - x^2 + 2x^5 - x^8 - x^9 + x^{10} \)
5. \(= 1 - x - x^2 + x^5 + x^6 + x^7 - x^8 - x^9 - x^{10} \ldots \)
6. \(= 1 - x - x^2 + x^5 + 2x^7 - x^9 - x^{10} \ldots \)
7. \(= 1 - x - x^2 + x^5 + x^7 + x^8 - x^{10} \ldots \)
Computing some more we get:

1. \(= 1 - x \)
2. \(= 1 - x - x^2 + x^3 \)
3. \(= 1 - x - x^2 + x^4 + x^5 - x^6 \)
4. \(= 1 - x - x^2 + 2x^5 - x^8 - x^9 + x^{10} \)
5. \(= 1 - x - x^2 + x^5 + x^6 + x^7 - x^8 - x^9 - x^{10} \ldots \)
6. \(= 1 - x - x^2 + x^5 + 2x^7 - x^9 - x^{10} \ldots \)
7. \(= 1 - x - x^2 + x^5 + x^7 + x^8 - x^{10} \ldots \)
8. \(= 1 - x - x^2 + x^5 + x^7 + x^9 - x^{10} \ldots \)

The terms stabilize, so the infinite product makes sense. There are many cancellations, so that the coefficients are always +1, 0, or \(-1\).
Computing some more we get:

1. \(= 1 - x \)
2. \(= 1 - x - x^2 + x^3 \)
3. \(= 1 - x - x^2 + x^4 + x^5 - x^6 \)
4. \(= 1 - x - x^2 + 2x^5 - x^8 - x^9 + x^{10} \)
5. \(= 1 - x - x^2 + x^5 + x^6 + x^7 - x^8 - x^9 - x^{10} \cdots \)
6. \(= 1 - x - x^2 + x^5 + 2x^7 - x^9 - x^{10} \cdots \)
7. \(= 1 - x - x^2 + x^5 + x^7 + x^8 - x^{10} \cdots \)
8. \(= 1 - x - x^2 + x^5 + x^7 + x^9 - x^{10} \cdots \)
9. \(= 1 - x - x^2 + x^5 + x^7 - x^{10} \cdots \)
Computing some more we get:

1. \[= 1 - x\]
2. \[= 1 - x - x^2 + x^3\]
3. \[= 1 - x - x^2 + x^4 + x^5 - x^6\]
4. \[= 1 - x - x^2 + 2x^5 - x^8 - x^9 + x^{10}\]
5. \[= 1 - x - x^2 + x^5 + x^6 + x^7 - x^8 - x^9 - x^{10} \ldots\]
6. \[= 1 - x - x^2 + x^5 + 2x^7 - x^9 - x^{10} \ldots\]
7. \[= 1 - x - x^2 + x^5 + x^7 + x^8 - x^{10} \ldots\]
8. \[= 1 - x - x^2 + x^5 + x^7 + x^9 - x^{10} \ldots\]
9. \[= 1 - x - x^2 + x^5 + x^7 - x^{10} \ldots\]
10. \[= 1 - x - x^2 + x^5 + x^7 \ldots\]
Computing some more we get:

1. \(= 1 - x \)
2. \(= 1 - x - x^2 + x^3 \)
3. \(= 1 - x - x^2 + x^4 + x^5 - x^6 \)
4. \(= 1 - x - x^2 + 2x^5 - x^8 - x^9 + x^{10} \)
5. \(= 1 - x - x^2 + x^5 + x^6 + x^7 - x^8 - x^9 - x^{10} \ldots \)
6. \(= 1 - x - x^2 + x^5 + 2x^7 - x^9 - x^{10} \ldots \)
7. \(= 1 - x - x^2 + x^5 + x^7 + x^8 - x^{10} \ldots \)
8. \(= 1 - x - x^2 + x^5 + x^7 + x^9 - x^{10} \ldots \)
9. \(= 1 - x - x^2 + x^5 + x^7 - x^{10} \ldots \)
10. \(= 1 - x - x^2 + x^5 + x^7 \ldots \)

- The terms stabilize, so the infinite product makes sense.
Computing some more we get:

1. \(= 1 - x \)
2. \(= 1 - x - x^2 + x^3 \)
3. \(= 1 - x - x^2 + x^4 + x^5 - x^6 \)
4. \(= 1 - x - x^2 + 2x^5 - x^8 - x^9 + x^{10} \)
5. \(= 1 - x - x^2 + x^5 + x^6 + x^7 - x^8 - x^9 - x^{10} \ldots \)
6. \(= 1 - x - x^2 + x^5 + 2x^7 - x^9 - x^{10} \ldots \)
7. \(= 1 - x - x^2 + x^5 + x^7 + x^8 - x^{10} \ldots \)
8. \(= 1 - x - x^2 + x^5 + x^7 + x^9 - x^{10} \ldots \)
9. \(= 1 - x - x^2 + x^5 + x^7 - x^{10} \ldots \)
10. \(= 1 - x - x^2 + x^5 + x^7 \ldots \)

- The terms stabilize, so the infinite product makes sense.
- There are many cancellations, so that the coefficients are always +1, 0, or -1.
Infinite product

We get:

\[\phi(x) = 1 - x^1 - x^2 + x^5 + x^7 - x^{12} - x^{15} + x^{22} + x^{26} - x^{35} - x^{40} + x^{51} + x^{57} - x^{70} - x^{77} \ldots \]
Infinite product

We get:

\[\phi(x) = 1 - x^1 - x^2 + x^5 + x^7 - x^{12} - x^{15} + x^{22} + x^{26} - x^{35} - x^{40} + x^{51} + x^{57} - x^{70} - x^{77} \ldots \]

- There are lots of zeros (and a few \(-\) and \(\+)
 signs)
Infinite product

We get:

\[\phi(x) = 1 - x^1 - x^2 + x^5 + x^7 - x^{12} - x^{15} + x^{22} + x^{26} \]
\[-x^{35} - x^{40} + x^{51} + x^{57} - x^{70} - x^{77} \ldots \]

- There are lots of zeros (and a few \(-\) and \(+\) signs)
- Always get two \(-\) signs followed by two \(+\) signs
Infinite product

We get:

\[\phi(x) = 1 - x^1 - x^2 + x^5 + x^7 - x^{12} - x^{15} + x^{22} + x^{26} - x^{35} - x^{40} + x^{51} + x^{57} - x^{70} - x^{77} \ldots \]

- There are lots of zeros (and a few $-$ and $+$ signs)
- Always get two $-$ signs followed by two $+$ signs
- The difference between the numbers in each pair is 1, 2, 3, 4, \ldots
Infinite product

We get:

\[\phi(x) = 1 - x^1 - x^2 + x^5 + x^7 - x^{12} - x^{15} + x^{22} + x^{26} - x^{35} - x^{40} + x^{51} + x^{57} - x^{70} - x^{77} \ldots \]

- There are lots of zeros (and a few $-$ and $+$ signs)
- Always get two $-$ signs followed by two $+$ signs
- The difference between the numbers in each pair is $1, 2, 3, 4, \ldots$
- The first number in each pair are the numbers $1, 5, 12, 22, 35, \ldots$
Infinite product

We get:

$$
\phi(x) = 1 - x^1 - x^2 + x^5 + x^7 - x^{12} - x^{15} + x^{22} + x^{26} - x^{35} - x^{40} + x^{51} + x^{57} - x^{70} - x^{77} \ldots
$$

- There are lots of zeros (and a few – and + signs)
- Always get two – signs followed by two + signs
- The difference between the numbers in each pair is 1, 2, 3, 4, \ldots
- The first number in each pair are the numbers 1, 5, 12, 22, 35, \ldots

But what are these last numbers? Are they interesting?
Pentagonal numbers

The numbers 1, 5, 12, 22, 35, ... are exactly the pentagonal numbers $3n^2 - n$ for $n = 1, 2, 3, ...$
Pentagonal numbers

The numbers 1, 5, 12, 22, 35, ... are exactly the pentagonal numbers

\[
\frac{3n^2 - n}{2}
\]

for \(n = 1, 2, 3, \ldots \)
Pentagonal number identity

Theorem (Euler)

\[\prod_{n=1}^{\infty} (1 - x^n) = \sum_{n=-\infty}^{\infty} (-1)^n x^{\frac{3n^2-n}{2}}. \]
Pentagonal number identity

Theorem (Euler)

\[
\prod_{n=1}^{\infty} (1 - x^n) = \sum_{n=-\infty}^{\infty} (-1)^n x^{\frac{3n^2-n}{2}}.
\]

Infinite product gives pentagonal numbers with $+$ and $-$ signs!
Application to Partitions

A partition of a number is the obvious thing. For example:

\[5 = 1 + 1 + 1 + 1 + 1 \]
\[= 1 + 1 + 1 + 2 \]
\[= 1 + 2 + 2 \]
\[= 1 + 1 + 3 \]
\[= 2 + 3 \]
\[= 1 + 4 \]
\[= 5 \]

Let \(p(n) \) be the number of partitions of \(n \).

\(p(5) = 7. \)

So not a good idea to count partitions by brute force!
Application to Partitions

A partition of a number is the obvious thing. For example:

\[5 = 1 + 1 + 1 + 1 + 1 \]
Application to Partitions

A partition of a number is the obvious thing. For example:

\[5 = 1 + 1 + 1 + 1 + 1 \]
\[= 1 + 1 + 1 + 2 \]
Application to Partitions

A partition of a number is the obvious thing. For example:

\[
5 = 1 + 1 + 1 + 1 + 1 \\
= 1 + 1 + 1 + 2 \\
= 1 + 2 + 2
\]
Application to Partitions

A partition of a number is the obvious thing. For example:

\[5 = 1 + 1 + 1 + 1 + 1 \]
\[= 1 + 1 + 1 + 2 \]
\[= 1 + 2 + 2 \]
\[= 1 + 1 + 3 \]
Application to Partitions

A partition of a number is the obvious thing. For example:

\[5 = 1 + 1 + 1 + 1 + 1 \]
\[= 1 + 1 + 1 + 2 \]
\[= 1 + 2 + 2 \]
\[= 1 + 1 + 3 \]
\[= 2 + 3 \]
Application to Partitions

A partition of a number is the obvious thing. For example:

\[
\begin{align*}
5 & = 1 + 1 + 1 + 1 + 1 \\
& = 1 + 1 + 1 + 2 \\
& = 1 + 2 + 2 \\
& = 1 + 1 + 3 \\
& = 2 + 3 \\
& = 1 + 4
\end{align*}
\]
Application to Partitions

A partition of a number is the obvious thing. For example:

\[
5 = 1 + 1 + 1 + 1 + 1 \\
= 1 + 1 + 1 + 2 \\
= 1 + 2 + 2 \\
= 1 + 1 + 3 \\
= 2 + 3 \\
= 1 + 4 \\
= 5
\]

Let \(p(n) \) be the number of partitions of \(n \). So \(p(5) = 7 \).

So not a good idea to count partitions by brute force!
Application to Partitions

A partition of a number is the obvious thing. For example:

$$5 = 1 + 1 + 1 + 1 + 1$$
$$= 1 + 1 + 1 + 2$$
$$= 1 + 2 + 2$$
$$= 1 + 1 + 3$$
$$= 2 + 3$$
$$= 1 + 4$$
$$= 5$$

Let $p(n)$ be the number of partitions of n. So $p(5) = 7$.

<table>
<thead>
<tr>
<th>n</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>…</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>$p(n)$</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>7</td>
<td>…</td>
<td>190,569,791</td>
</tr>
</tbody>
</table>
Application to Partitions

A partition of a number is the obvious thing. For example:

\[
\begin{align*}
5 &= 1 + 1 + 1 + 1 + 1 \\
 &= 1 + 1 + 1 + 2 \\
 &= 1 + 2 + 2 \\
 &= 1 + 1 + 3 \\
 &= 2 + 3 \\
 &= 1 + 4 \\
 &= 5
\end{align*}
\]

Let \(p(n) \) be the number of partitions of \(n \). So \(p(5) = 7 \).

<table>
<thead>
<tr>
<th>(n)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>(\ldots)</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>(p(n))</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>7</td>
<td>(\ldots)</td>
<td>190,569,791</td>
</tr>
</tbody>
</table>

So not a good idea to count partitions by brute force!
Use the Euler ϕ-function instead

Let $p(x) = 1 + \sum_{n=1}^{\infty} p(n) x^n = 1 + x + 2x^2 + 3x^3 + 5x^4 + 7x^5 + \cdots$

Then it can be easily shown that $\phi(p(x)) = 1$.

So can use pentagonal numbers to compute partitions:

$p(n) = p(n-1) + p(n-2) - p(n-5) - p(n-7) + p(n-12) + p(n-15) + \cdots$

For example if $n = 5$:

$p(5) = p(4) + p(3) - p(0) = 5 + 3 - 1 = 7$.
Use the Euler ϕ-function instead

Let

$$p(x) = 1 + \sum_{n=1}^{\infty} p(n)x^n$$
Use the Euler ϕ-function instead

Let

$$p(x) = 1 + \sum_{n=1}^{\infty} p(n)x^n = 1 + x + 2x^2 + 3x^3 + 5x^4 + 7x^5 + \cdots$$
Use the Euler ϕ-function instead

Let

$$p(x) = 1 + \sum_{n=1}^{\infty} p(n)x^n = 1 + x + 2x^2 + 3x^3 + 5x^4 + 7x^5 + \cdots$$

Then it can be easily shown that

$$\phi(x)p(x) = 1.$$
Use the Euler ϕ-function instead

Let

$$p(x) = 1 + \sum_{n=1}^{\infty} p(n)x^n = 1 + x + 2x^2 + 3x^3 + 5x^4 + 7x^5 + \cdots$$

Then it can be easily shown that

$$\phi(x)p(x) = 1.$$

So can use pentagonal numbers to compute partitions:

$$p(n) = p(n - 1) + p(n - 2) - p(n - 5) - p(n - 7) + p(n - 12) + p(n - 15) \cdots$$
Use the Euler ϕ-function instead

Let

$$p(x) = 1 + \sum_{n=1}^{\infty} p(n)x^n = 1 + x + 2x^2 + 3x^3 + 5x^4 + 7x^5 + \cdots$$

Then it can be easily shown that

$$\phi(x)p(x) = 1.$$

So can use pentagonal numbers to compute partitions:

$$p(n) = p(n - 1) + p(n - 2) - p(n - 5) - p(n - 7) + p(n - 12) + p(n - 15) \cdots$$

For example if $n = 5$:

$$p(5) = p(4) + p(3) - p(0)$$
Use the Euler ϕ-function instead

Let

$$p(x) = 1 + \sum_{n=1}^{\infty} p(n)x^n = 1 + x + 2x^2 + 3x^3 + 5x^4 + 7x^5 + \cdots$$

Then it can be easily shown that

$$\phi(x)p(x) = 1.$$

So can use pentagonal numbers to compute partitions:

$$p(n) = p(n - 1) + p(n - 2) - p(n - 5) - p(n - 7) + p(n - 12) + p(n - 15) \cdots$$

For example if $n = 5$:

$$p(5) = p(4) + p(3) - p(0) = 5 + 3 - 1 = 7.$$
The next character in our story is Gauss.

1777-1855
A child prodigy

Teacher: Add 1 + 2 + \cdots + 100, and tell me the answer.

Gauss: (almost instantly) 5,050.

Idea:
Write the second 50 numbers backwards, under the first 50:

\[1 + 2 + 3 + \cdots + 49 + 50\]
\[100 + 99 + 98 \cdots + 52 + 51\]

Each column adds up to 101, and there are 50 columns, so the answer is \(50 \times 101 = 5,050!\)
A child prodigy

Teacher: Add $1 + 2 + \cdots + 100$, and tell me the answer.
A child prodigy

Teacher: Add $1 + 2 + \cdots + 100$, and tell me the answer.
Gauss: (almost instantly)
A child prodigy

Teacher: Add $1 + 2 + \cdots + 100$, and tell me the answer.
Gauss: (almost instantly) $5,050$.

Idea: Write the second 50 numbers backwards, under the first 50:

\[
\begin{align*}
1 + 2 + 3 + \cdots + 49 + 50 \\
100 + 99 + 98 + \cdots + 52 + 51
\end{align*}
\]

Each column adds up to 101, and there are 50 columns, so the answer is $50 \times 101 = 50,050$.

A child prodigy

Teacher: Add $1 + 2 + \cdots + 100$, and tell me the answer.
Gauss: (almost instantly) 5,050.

Idea:

Write the second 50 numbers backwards, under the first 50:
A child prodigy

Teacher: Add $1 + 2 + \cdots + 100$, and tell me the answer.
Gauss: (almost instantly) 5,050.

Idea:

Write the second 50 numbers backwards, under the first 50:

\[
1 + 2 + 3 + \cdots + 49 + 50
\]
A child prodigy

Teacher: Add $1 + 2 + \cdots + 100$, and tell me the answer. Gauss: (almost instantly) 5,050.

Idea:

Write the second 50 numbers backwards, under the first 50:

\[
\begin{align*}
1 & + 2 + 3 + \cdots + 49 + 50 \\
100 & + 99 + 98 \cdots + 52 + 51 \\
\end{align*}
\]
A child prodigy

Teacher: Add $1 + 2 + \cdots + 100$, and tell me the answer.
Gauss: (almost instantly) 5,050.

Idea:

Write the second 50 numbers backwards, under the first 50:

\[
egin{align*}
1 + 2 + 3 + \cdots + 49 &+ 50 \\
100 + 99 + 98 &\cdots + 52 + 51
\end{align*}
\]

Each column adds up to 101,
A child prodigy

Teacher: Add $1 + 2 + \cdots + 100$, and tell me the answer.
Gauss: (almost instantly) 5,050.

Idea:

Write the second 50 numbers backwards, under the first 50:

\begin{align*}
1 & \quad 2 \quad 3 \quad \cdots \quad 49 \quad 50 \\
100 & \quad 99 \quad 98 \quad \cdots \quad 52 \quad 51
\end{align*}

Each column adds up to 101, and there are 50 columns,
A child prodigy

Teacher: Add $1 + 2 + \cdots + 100$, and tell me the answer. Gauss: (almost instantly) 5,050.

Idea:

Write the second 50 numbers backwards, under the first 50:

\[
\begin{align*}
1 & + 2 + 3 + \cdots + 49 + 50 \\
100 & + 99 + 98 \cdots + 52 + 51 \\
\end{align*}
\]

Each column adds up to 101, and there are 50 columns, so the answer is

50×101
A child prodigy

Teacher: Add $1 + 2 + \cdots + 100$, and tell me the answer.
Gauss: (almost instantly) $5,050$.

Idea:

Write the second 50 numbers backwards, under the first 50:

\[
egin{align*}
1 + 2 + 3 + \cdots + 49 + 50 \\
100 + 99 + 98 + \cdots + 52 + 51
\end{align*}
\]

Each column adds up to 101, and there are 50 columns, so the answer is

\[50 \times 101 = 5,050!\]
Gauss studied the cube of the Euler ϕ-function:

$$\phi(x)^3 = (1 - x)^3(1 - x^2)^3(1 - x^3)^3(1 - x^4)^3 \ldots$$
Gauss studied the cube of the Euler ϕ-function:

$$\phi(x)^3 = (1 - x)^3(1 - x^2)^3(1 - x^3)^3(1 - x^4)^3 \cdots$$

$$= 1 - 3x + 5x^3 - 7x^6 + 9x^{10} - 11x^{15} \cdots$$
Gauss studied the cube of the Euler ϕ-function:

$$\phi(x)^3 = (1 - x)^3 (1 - x^2)^3 (1 - x^3)^3 (1 - x^4)^3 \cdots$$

$$= 1 - 3x + 5x^3 - 7x^6 + 9x^{10} - 11x^{15} \cdots$$

▷ Get a lot of zeros again
Gauss studied the cube of the Euler ϕ-function:

$$\phi(x)^3 = (1 - x)^3(1 - x^2)^3(1 - x^3)^3(1 - x^4)^3 \cdots$$

$$= 1 - 3x + 5x^3 - 7x^6 + 9x^{10} - 11x^{15} \cdots$$

- Get a lot of zeros again
- This time get odd numbers, with alternating signs
Gauss studied the cube of the Euler ϕ-function:

$$\phi(x)^3 = (1 - x)^3 (1 - x^2)^3 (1 - x^3)^3 (1 - x^4)^3 \cdots$$

$$= 1 - 3x + 5x^3 - 7x^6 + 9x^{10} - 11x^{15} \cdots$$

- Get a lot of zeros again
- This time get odd numbers, with alternating signs
- The powers are the numbers 1, 3, 6, 10, 15, \ldots
Gauss studied the cube of the Euler ϕ-function:

$$\phi(x)^3 = (1 - x)^3(1 - x^2)^3(1 - x^3)^3(1 - x^4)^3 \cdots = 1 - 3x + 5x^3 - 7x^6 + 9x^{10} - 11x^{15} \cdots$$

- Get a lot of zeros again
- This time get odd numbers, with alternating signs
- The powers are the numbers 1, 3, 6, 10, 15, \ldots

Again, what are these last numbers?
Triangular numbers

1, 3, 6, 10, ...

are exactly the triangular numbers $n^2 + \frac{n(n-1)}{2}$ for $n = 1, 2, 3, ...$.
Triangular numbers

1, 3, 6, 10, ... are exactly the triangular numbers

\[\frac{n^2 + n}{2} \]

for \(n = 1, 2, 3, \ldots \).
Triangular number identity

Theorem (Gauss)

\[\prod_{n=1}^{\infty} (1 - x^n)^3 = \sum_{n=0}^{\infty} (-1)^n (2n + 1) x^{\frac{n^2+n}{2}}. \]
Triangular number identity

Theorem (Gauss)

\[
\prod_{n=1}^{\infty} (1 - x^n)^3 = \sum_{n=0}^{\infty} (-1)^n (2n + 1) x^{\frac{n^2 + n}{2}}.
\]

The infinite product cubed gives the triangular numbers!
Other powers (and some general culture)

Are there formulas for other powers $\phi(x)^d = \cdots$ of the ϕ-function?

If there are lots of zeros, then there probably is a formula!

Let's count the number of zeros in the first 500 powers of x:

<table>
<thead>
<tr>
<th>d</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16-25</th>
<th>26</th>
<th>27-35</th>
<th>36</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td>464</td>
<td>243</td>
<td>469</td>
<td>158</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td>151</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Dyson and MacDonald proved formulas for the powers $d = 3, 8, 10, 14, 15, 21, 24, 26, 28, 35, 36, \ldots$

These come from the theory of Lie algebras, giving a connection to a new field of mathematics and to physics.
Are there formulas for other powers

$$\phi(x)^d = \cdots$$

of the ϕ-function?
Other powers (and some general culture)

Are there formulas for other powers

\[\phi(x)^d = \cdots \]

of the \(\phi \)-function?

If there are lots of zeros, then there probably is a formula!
Other powers (and some general culture)

Are there formulas for other powers

\[\phi(x)^d = \cdots \]

of the \(\phi \)-function?

If there are lots of zeros, then there probably is a formula!

Let’s count the number of zeros in the first 500 powers of \(x \):
Other powers (and some general culture)

Are there formulas for other powers

$$\phi(x)^d = \cdots$$

of the ϕ-function?

If there are lots of zeros, then there probably is a formula!

Let’s count the number of zeros in the first 500 powers of x:

<table>
<thead>
<tr>
<th>d</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>zeros</td>
<td>464</td>
<td>243</td>
<td>469</td>
<td>158</td>
<td>0</td>
<td>212</td>
<td>0</td>
<td>250</td>
<td>0</td>
</tr>
</tbody>
</table>
Other powers (and some general culture)

Are there formulas for other powers

$$\phi(x)^d = \cdots$$

of the ϕ-function?

If there are lots of zeros, then there probably is a formula!

Let’s count the number of zeros in the first 500 powers of x:

<table>
<thead>
<tr>
<th>d</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>zeros</td>
<td>464</td>
<td>243</td>
<td>469</td>
<td>158</td>
<td>0</td>
<td>212</td>
<td>0</td>
<td>250</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>d</th>
<th>10</th>
<th>11,12,13</th>
<th>14</th>
<th>15</th>
<th>16-25</th>
<th>26</th>
<th>27-35</th>
</tr>
</thead>
<tbody>
<tr>
<td>zeros</td>
<td>151</td>
<td>0</td>
<td>172</td>
<td>2</td>
<td>0</td>
<td>80</td>
<td>0</td>
</tr>
</tbody>
</table>
Other powers (and some general culture)

Are there formulas for other powers

$$\phi(x)^d = \cdots$$

of the \(\phi\)-function?

If there are lots of zeros, then there probably is a formula!
Let’s count the number of zeros in the first 500 powers of \(x\):

<table>
<thead>
<tr>
<th>(d)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>zeros</td>
<td>464</td>
<td>243</td>
<td>469</td>
<td>158</td>
<td>0</td>
<td>212</td>
<td>0</td>
<td>250</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(d)</th>
<th>10</th>
<th>11,12,13</th>
<th>14</th>
<th>15</th>
<th>16-25</th>
<th>26</th>
<th>27-35</th>
</tr>
</thead>
<tbody>
<tr>
<td>zeros</td>
<td>151</td>
<td>0</td>
<td>172</td>
<td>2</td>
<td>0</td>
<td>80</td>
<td>0</td>
</tr>
</tbody>
</table>

Dyson and MacDonald proved formulas for the powers

$$d = 3, 8, 10, 14, 15, 21, 24, 26, 28, 35, 36, \ldots$$
Other powers (and some general culture)

Are there formulas for other powers

$$\phi(x)^d = \cdots$$

of the ϕ-function?

If there are lots of zeros, then there probably is a formula!
Let's count the number of zeros in the first 500 powers of x:

<table>
<thead>
<tr>
<th>d</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>zeros</td>
<td>464</td>
<td>243</td>
<td>469</td>
<td>158</td>
<td>0</td>
<td>212</td>
<td>0</td>
<td>250</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>d</th>
<th>10</th>
<th>11,12,13</th>
<th>14</th>
<th>15</th>
<th>16-25</th>
<th>26</th>
<th>27-35</th>
</tr>
</thead>
<tbody>
<tr>
<td>zeros</td>
<td>151</td>
<td>0</td>
<td>172</td>
<td>2</td>
<td>0</td>
<td>80</td>
<td>0</td>
</tr>
</tbody>
</table>

Dyson and MacDonald proved formulas for the powers

$$d = 3, 8, 10, 14, 15, 21, 24, 26, 28, 35, 36, \ldots$$

These come from the theory of Lie algebras, giving a connection to a new field of mathematics and to physics.
When $d = 24$

We get the tau-function!
When $d = 24$

\[\phi(x) = 1 - 24x + 252x^2 - 1472x^3 + 4830x^4 - 6048x^5 + \cdots \]

We get the tau-function!
When \(d = 24 \)

We get the tau-function!

\[
\phi(x)^{24} = 1 - 24x + 252x^2 - 1472x^3 + 4830x^4 - 6048x^5 + \cdots
\]

\[
= \sum_{n=1}^{\infty} \tau(n)x^{n-1}.
\]
When \(d = 24 \)

\[
\phi(x)^{24} = 1 - 24x + 252x^2 - 1472x^3 + 4830x^4 - 6048x^5 + \cdots
\]

\[
= \sum_{n=1}^{\infty} \tau(n)x^{n-1}.
\]

So

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>…</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\tau(n))</td>
<td>1</td>
<td>-24</td>
<td>252</td>
<td>-1472</td>
<td>4830</td>
<td>-6048</td>
<td>-16744</td>
<td>…</td>
</tr>
</tbody>
</table>
Tau never vanishes

Here is an open problem about $\tau(n)$, right off the bat.
Tau never vanishes

Here is an open problem about $\tau(n)$, right off the bat.

Conjecture (Lehmer)

The numbers $\tau(n)$ for $n = 1, 2, 3, \ldots$ are never equal to 0.
Here is an open problem about $\tau(n)$, right off the bat.

Conjecture (Lehmer)

The numbers $\tau(n)$ for $n = 1, 2, 3, \ldots$ are never equal to 0.

Lehmer checked $\tau(n) \neq 0$ for all $n < 214,928,639,999$ in 1949.
Here is an open problem about $\tau(n)$, right off the bat.

Conjecture (Lehmer)

The numbers $\tau(n)$ for $n = 1, 2, 3, \ldots$ are never equal to 0.

Lehmer checked $\tau(n) \neq 0$ for all $n < 214,928,639,999$ in 1949. Others have pushed this to $n < 10^{20}$.
Here is an open problem about $\tau(n)$, right off the bat.

Conjecture (Lehmer)

The numbers $\tau(n)$ for $n = 1, 2, 3, \ldots$ are never equal to 0.

Lehmer checked $\tau(n) \neq 0$ for all $n < 214,928,639,999$ in 1949. Others have pushed this to $n < 10^{20}$.

But these computations do not constitute a proof, and the problem is still open!
Ramanujan

Ramanujan extensively studied the τ-function.
Ramanujan

Ramanujan extensively studied the τ-function.

1887-1920
The Legend of Ramanujan

Hardy (visiting Ramanujan in hospital):
1729, what a boring taxi number...

Ramanujan: Not at all!
It is the smallest number to be written as the sum of two cubes in two different ways.

$1^3 + 12^3 = 9^3 + 10^3$.
The Legend of Ramanujan

Hardy (visiting Ramanujan in hospital):
The Legend of Ramanujan

Hardy (visiting Ramanujan in hospital): 1729, what a boring taxi number...
The Legend of Ramanujan

Hardy (visiting Ramanujan in hospital): 1729, what a boring taxi number...

Ramanujan: Not at all!

1,729 = 9^3 + 10^3 = 1^3 + 12^3.
The Legend of Ramanujan

Hardy (visiting Ramanujan in hospital): 1729, what a boring taxi number...

Ramanujan: Not at all! It is the smallest number to be written as the sum of two cubes in two different ways.

\[1729 = 1^3 + 12^3 = 9^3 + 10^3. \]
The Legend of Ramanujan

Hardy (visiting Ramanujan in hospital): 1729, what a boring taxi number...

Ramanujan: Not at all! It is the smallest number to be written as the sum of two cubes in two different ways.

\[1^3 + 12^3 = 9^3 + 10^3 = 1729. \]
The Legend of Ramanujan

Hardy (visiting Ramanujan in hospital): 1729, what a boring taxi number...

Ramanujan: Not at all! It is the smallest number to be written as the sum of two cubes in two different ways.

\[1,729 = 9^3 + 10^3 = \]
The Legend of Ramanujan

Hardy (visiting Ramanujan in hospital): 1729, what a boring taxi number...

Ramanujan: Not at all! It is the smallest number to be written as the sum of two cubes in two different ways.

\[1,729 = 9^3 + 10^3 = 1^3 + 12^3.\]
Tau is multiplicative

Let’s now focus on some patterns that Ramanujan found in studying the τ-function.

\[
\tau(6) = \tau(2) \times \tau(3) \\
-6048 = -24 \times 252.
\]
Tau is multiplicative

Let’s now focus on some patterns that Ramanujan found in studying the τ-function.

\[
\tau(6) = \tau(2) \times \tau(3) \\
-6048 = -24 \times 252.
\]

1. If m and n are any two number which have no common factors, then:
Tau is multiplicative

Let’s now focus on some patterns that Ramanujan found in studying the \(\tau \)-function.

\[
\tau(6) = \tau(2) \times \tau(3) \\
-6048 = -24 \times 252.
\]

1. If \(m \) and \(n \) are any two number which have no common factors, then:

\[
\tau(mn) = \tau(m) \times \tau(n).
\]
Tau is multiplicative

Let’s now focus on some patterns that Ramanujan found in studying the τ-function.

$$\tau(6) = \tau(2) \times \tau(3)$$
$$-6048 = -24 \times 252.$$

1. If m and n are any two number which have no common factors, then:

$$\tau(mn) = \tau(m) \times \tau(n).$$

2. Also, for powers of a prime p:

$$\tau(p^n) = \tau(p)\tau(p^{n-1}) - p^{11}\tau(p^{n-2}).$$
Tau is multiplicative

Let’s now focus on some patterns that Ramanujan found in studying the τ-function.

\[
\tau(6) = \tau(2) \times \tau(3) \\
-6048 = -24 \times 252.
\]

1. If m and n are any two number which have no common factors, then:

\[
\tau(mn) = \tau(m) \times \tau(n).
\]

2. Also, for powers of a prime p:

\[
\tau(p^n) = \tau(p)\tau(p^{n-1}) - p^{11}\tau(p^{n-2}).
\]

E.g.: $\tau(2^2) = -1472$
Tau is multiplicative

Let’s now focus on some patterns that Ramanujan found in studying the τ-function.

\[
\tau(6) \quad = \quad \tau(2) \times \tau(3) \\
-6048 \quad = \quad -24 \times 252.
\]

1. If m and n are any two number which have no common factors, then:

\[
\tau(mn) = \tau(m) \times \tau(n).
\]

2. Also, for powers of a prime p:

\[
\tau(p^n) = \tau(p)\tau(p^{n-1}) - p^{11}\tau(p^{n-2}).
\]

E.g.: $\tau(2^2) = -1472 = \tau(2)\tau(2) - 2^{11} = (-24)^2 - 2^{11}$.
These two properties of $\tau(n)$ were proved by Mordell in 1917. Later Hecke showed that these properties follow from a much more general theory of MODULAR FORMS.

In any case: Since every number is a product of primes $12 = 4 \times 3 = 2 \times 3$, knowing $\tau(p)$ for all primes p, is the same as knowing $\tau(n)$ for all n, e.g.,

$$\tau(12) = \tau(4) \times \tau(3) = (\tau(2)^2 - 2^{11}) \times \tau(3) = -1472 \times 252 = -370,944.$$
Tau and Modular forms

These two properties of $\tau(n)$ were proved by Mordell in 1917.

Later Hecke showed that these properties follows from a much more general theory of MODULAR FORMS. In any case:

Since every number is a product of primes \(12 = 4 \times 3 = 2 \times 2 \times 3\), knowing $\tau(p)$ for all primes p, is the same as knowing $\tau(n)$ for all n, e.g.,

\[
\tau(12) = \tau(4) \times \tau(3) = \left(\tau(2)^2 - \tau(11)^2\right) \times \tau(3) = -1472 \times 252 = -370,944.
\]
Tau and Modular forms

These two properties of $\tau(n)$ were proved by Mordell in 1917.
Later Hecke showed that these properties follows from a much more general theory of MODULAR FORMS.
These two properties of $\tau(n)$ were proved by Mordell in 1917. Later Hecke showed that these properties follows from a much more general theory of MODULAR FORMS.

In any case:
Since every number is a product of primes

$$12 = 4 \times 3 = 2 \times 2 \times 3,$$
Tau and Modular forms

These two properties of \(\tau(n) \) were proved by Mordell in 1917.

Later Hecke showed that these properties follows from a much more general theory of MODULAR FORMS.

In any case:
Since every number is a product of primes

\[
12 = 4 \times 3 = 2 \times 2 \times 3,
\]

knowing \(\tau(p) \) for all primes \(p \), is the same as knowing \(\tau(n) \) for all \(n \),
Tau and Modular forms

These two properties of \(\tau(n) \) were proved by Mordell in 1917.
Later Hecke showed that these properties follows from a much more general theory of MODULAR FORMS.

In any case:
Since every number is a product of primes

\[
12 = 4 \times 3 = 2 \times 2 \times 3,
\]

knowing \(\tau(p) \) for all primes \(p \), is the same as knowing \(\tau(n) \) for all \(n \), e.g.,

\[
\tau(12) = \tau(4) \times \tau(3) = (\tau(2)^2 - 2^{11}) \times \tau(3) = -1472 \times 252
= -370,944.
\]
The Magic of 23

It turns out that for half the primes p, $\tau(p)$ is divisible by 23.

Examples:

$\tau(5) = 4$, $5 = 23 \times 210$

$\tau(7) = -16$, $744 = 23 \times -728$

$\tau(11) = 534$, $612 = 23 \times 23 \times 244$

This is now well understood (using Galois representations).
The Magic of 23

It turns out that for half the primes p,

$$\tau(p)$$ is divisible by 23.
The Magic of 23

It turns out that for half the primes p,

$$\tau(p) \text{ is divisible by } 23.$$

Examples:

$$\tau(5) = 4,830 = 23 \times 210$$
The Magic of 23

It turns out that for half the primes p,

$$\tau(p)$$ is divisible by 23.

Examples:

$$\tau(5) = 4,830 = 23 \times 210$$
$$\tau(7) = -16,744 = 23 \times -728$$
The Magic of 23

It turns out that for half the primes p,

$$\tau(p)$$ is divisible by 23.

Examples:

$$\tau(5) = 4,830 = 23 \times 210$$
$$\tau(7) = -16,744 = 23 \times -728$$
$$\tau(11) = 534,612 = 23 \times 23,244$$

etc.
The Magic of 23

It turns out that for half the primes \(p \),

\[\tau(p) \text{ is divisible by } 23. \]

Examples:

\[\tau(5) = 4,830 = 23 \times 210 \]
\[\tau(7) = -16,744 = 23 \times -728 \]
\[\tau(11) = 534,612 = 23 \times 23,244 \]

etc.

This is now well understood (using Galois representations).
The divisor function

Ramanujan discovered other divisibilities, which we turn to now.
The divisor function

Ramanujan discovered other divisibilities, which we turn to now.

Let $\sigma_{11}(n)$ be the sum of the 11-th powers of the divisors of n.
The divisor function

Ramanujan discovered other divisibilities, which we turn to now.

Let $\sigma_{11}(n)$ be the sum of the 11-th powers of the divisors of n.

The first few values are:

\[
\begin{align*}
\sigma_{11}(1) &= 1^{11} = 1 \\
\sigma_{11}(2) &= 1^{11} + 2^{11} = 2,049 \\
\sigma_{11}(3) &= 1^{11} + 3^{11} = 177,148 \\
\sigma_{11}(4) &= 1^{11} + 2^{11} + 4^{11} = 4,196,353 \quad \text{etc.}
\end{align*}
\]
The divisor function

Ramanujan discovered other divisibilities, which we turn to now.

Let $\sigma_{11}(n)$ be the sum of the 11-th powers of the divisors of n.

The first few values are:

$$\begin{align*}
\sigma_{11}(1) &= 1^{11} = 1 \\
\sigma_{11}(2) &= 1^{11} + 2^{11} = 2,049 \\
\sigma_{11}(3) &= 1^{11} + 3^{11} = 177,148 \\
\sigma_{11}(4) &= 1^{11} + 2^{11} + 4^{11} = 4,196,353 \text{ etc.}
\end{align*}$$

Compared to $\tau(n)$, the function $\sigma_{11}(n)$ is quite well understood.
Ramanujan discovered an amazing connection between $\tau(n)$, $\sigma_{11}(n)$ and the prime **691**.
Tau and 691

Ramanujan discovered an amazing connection between $\tau(n)$, $\sigma_{11}(n)$ and the prime 691.

Theorem (Ramanujan)

For all numbers $n = 1, 2, 3, \ldots$, the difference between

$$\tau(n) \quad \text{and} \quad \sigma_{11}(n)$$

is always divisible by 691.
Tau and 691

Ramanujan discovered an amazing connection between $\tau(n)$, $\sigma_{11}(n)$ and the prime 691.

Theorem (Ramanujan)

For all numbers $n = 1, 2, 3, \ldots$, the difference between $\tau(n)$ and $\sigma_{11}(n)$ is always divisible by 691.

For example:

$$\sigma_{11}(1) - \tau(1) = 1 - 1 = 0 = 691 \times 0$$
Ramanujan discovered an amazing connection between $\tau(n)$, $\sigma_{11}(n)$ and the prime 691.

Theorem (Ramanujan)

For all numbers $n = 1, 2, 3, \ldots$, the difference between $\tau(n)$ and $\sigma_{11}(n)$ is always divisible by 691.

For example:

$\sigma_{11}(1) - \tau(1) = 1 - 1 = 0 = 691 \times 0$

$\sigma_{11}(2) - \tau(2) = 2,049 + 24 = 2,073 = 691 \times 3$
Ramanujan discovered an amazing connection between $\tau(n)$, $\sigma_{11}(n)$ and the prime 691.

Theorem (Ramanujan)

*For all numbers $n = 1, 2, 3, \ldots$, the difference between $\tau(n)$ and $\sigma_{11}(n)$ is always divisible by 691."

For example:

\[
\begin{align*}
\sigma_{11}(1) - \tau(1) &= 1 - 1 = 0 = 691 \times 0 \\
\sigma_{11}(2) - \tau(2) &= 2,049 + 24 = 2,073 = 691 \times 3 \\
\sigma_{11}(3) - \tau(3) &= 177,148 - 252 = 176,896 = 691 \times 256
\end{align*}
\]
Tau and 691

Ramanujan discovered an amazing connection between $\tau(n)$, $\sigma_{11}(n)$ and the prime 691.

Theorem (Ramanujan)

For all numbers $n = 1, 2, 3, \ldots$, the difference between

$$\tau(n) \quad \text{and} \quad \sigma_{11}(n)$$

is always divisible by 691.

For example:

$$\sigma_{11}(1) - \tau(1) = 1 - 1 = 0 = 691 \times 0$$
$$\sigma_{11}(2) - \tau(2) = 2,049 + 24 = 2,073 = 691 \times 3$$
$$\sigma_{11}(3) - \tau(3) = 177,148 - 252 = 176,896 = 691 \times 256$$
$$\sigma_{11}(4) - \tau(4) = 4,196,353 + 1472 = 4,197,825 = 691 \times 6,075$$

etc.
Can \(p \) divide \(\tau(p) \)?
Can \(p \) divide \(\tau(p) \)?

We know that \(\tau(2) = -24 \) is even, so 2 divides \(\tau(2) \).
Can p divide $\tau(p)$?

We know that $\tau(2) = -24$ is even, so 2 divides $\tau(2)$.

Similarly:

3 divides $\tau(3) = 252$
5 divides $\tau(5) = 4,830$
7 divides $\tau(7) = -16,744$, but then, for no prime p up to a million (1,000,000), does p divide $\tau(p)$, except:

2411 divides $\tau(2411)$!

The prime 2411 was found in 1972 by Newman.

Are there any other such 'non-ordinary' primes?
Can \(p \) divide \(\tau(p) \)?

We know that \(\tau(2) = -24 \) is even, so 2 divides \(\tau(2) \).

Similarly:

3 divides \(\tau(3) = 252 \)
5 divides \(\tau(5) = 4,830 \)
7 divides \(\tau(7) = -16,744 \),

but then, for no prime \(p \) up to a million (1,000,000), does \(p \) divide \(\tau(p) \),

The prime 2411 was found in 1972 by Newman.

Are there any other such 'non-ordinary' primes?
Can p divide $\tau(p)$?

We know that $\tau(2) = -24$ is even, so 2 divides $\tau(2)$.

Similarly:

3 divides $\tau(3) = 252$
5 divides $\tau(5) = 4,830$
7 divides $\tau(7) = -16,744$,

but then, for no prime p up to a million (1,000,000), does p divide $\tau(p)$, EXCEPT:

2411 divides $\tau(2411)$!
Can p divide $\tau(p)$?

We know that $\tau(2) = -24$ is even, so 2 divides $\tau(2)$.

Similarly:

- 3 divides $\tau(3) = 252$
- 5 divides $\tau(5) = 4,830$
- 7 divides $\tau(7) = -16,744$,

but then, for no prime p up to a million (1,000,000), does p divide $\tau(p)$, EXCEPT:

- 2411 divides $\tau(2411)$!

The prime 2411 was found in 1972 by Newman.
Can p divide $\tau(p)$?

We know that $\tau(2) = -24$ is even, so 2 divides $\tau(2)$.

Similarly:

3 divides $\tau(3) = 252$
5 divides $\tau(5) = 4,830$
7 divides $\tau(7) = -16,744$,

but then, for no prime p up to a million (1,000,000), does p divide $\tau(p)$, EXCEPT:

2411 divides $\tau(2411)$!

The prime 2411 was found in 1972 by Newman.

Are there any other such ‘non-ordinary’ primes?
There is another!

Amazingly this was found just this year (2010!)

Theorem (Lygeros, Rozier)

The prime 7, 758, 337, 633 divides $\tau(7, 758, 337, 633)$

and this is now the largest known prime with this property.

Are there any more such primes?

There should be infinitely many, but they appear very slowly (log log philosophy!)
There is another!

Amazingly this was found just this year (2010!)
There is another!

Amazingly this was found just this year (2010!)

Theorem (Lygeros, Rozier)

The prime

\[7, 758, 337, 633 \text{ divides } \tau(7, 758, 337, 633) \]
There is another!

Amazingly this was found just this year (2010!)

Theorem (Lygeros, Rozier)

The prime

\[7,758,337,633 \text{ divides } \tau(7,758,337,633) \]

and this is now the largest known prime with this property.
There is another!

Amazingly this was found just this year (2010!)

Theorem (Lygeros, Rozier)

The prime

\[7,758,337,633 \text{ divides } \tau(7,758,337,633) \]

and this is now the largest known prime with this property.

Are there any more such primes?
There is another!

Amazingly this was found just this year (2010!)

Theorem (Lygeros, Rozier)

The prime

\[7, 758, 337, 633 \text{ divides } \tau(7, 758, 337, 633) \]

and this is now the largest known prime with this property.

Are there any more such primes?

There should be infinitely many, but they appear very slowly (log log philosophy!)
Recall that τ is determined by its values on the primes!
Recall that τ is determined by its values on the primes!

Ramanujan made the following amazing conjecture:
Tau is not too big

Recall that τ is determined by its values on the primes!

Ramanujan made the following amazing conjecture:

Theorem (Ramanujan, Deligne)

For all primes p,

$$-2 \sqrt{p^{11}} \leq \tau(p) \leq 2 \sqrt{p^{11}}.$$
Recall that τ is determined by its values on the primes!

Ramanujan made the following amazing conjecture:

Theorem (Ramanujan, Deligne)

For all primes p,

$$-2 \sqrt{p^{11}} \leq \tau(p) \leq 2 \sqrt{p^{11}}.$$

This was proved by Deligne, as a consequence of a much more general result, for which he got the Fields Medal in 1978.
Tau as an Error

Every integer is a sum of 4 squares!

Let $r_{24}(n)$ be the number of ways to write n as a sum of 24 squares. One knows that, for odd primes p:

$$r_{24}(p) = 16 \cdot 691 \cdot \sigma_{11}(p) + 33 \cdot 152 \cdot 691 \cdot \tau(p).$$

Since $\sigma_{11}(p)$ is close to p^{11} and $\tau(p)$ is bounded by (twice) the square-root of p^{11}, we see that $\tau(p)$ is much smaller than $\sigma_{11}(p)$, and so may be thought of as an ERROR term when computing $r_{24}(p)$.
Tau as an Error

Every integer is a sum of 4 squares!
Tau as an Error

Every integer is a sum of 4 squares! Let

$$r_{24}(n)$$

be the number of ways to write n as a sum of 24 squares.
Tau as an Error

Every integer is a sum of 4 squares! Let

\[r_{24}(n) \]

be the number of ways to write \(n \) as a sum of 24 squares. One knows that, for odd primes \(p \):

\[r_{24}(p) = \frac{16}{691} \cdot \sigma_{11}(p) + \frac{33,152}{691} \cdot \tau(p). \]
Tau as an Error

Every integer is a sum of 4 squares! Let

$$r_{24}(n)$$

be the number of ways to write n as a sum of 24 squares.

One knows that, for odd primes p:

$$r_{24}(p) = \frac{16}{691} \cdot \sigma_{11}(p) + \frac{33,152}{691} \cdot \tau(p).$$

Since $\sigma_{11}(p)$ is close to p^{11}
Tau as an Error

Every integer is a sum of 4 squares! Let

\[r_{24}(n) \]

be the number of ways to write \(n \) as a sum of 24 squares.

One knows that, for odd primes \(p \):

\[r_{24}(p) = \frac{16}{691} \cdot \sigma_{11}(p) + \frac{33,152}{691} \cdot \tau(p). \]

Since \(\sigma_{11}(p) \) is close to \(p^{11} \) and \(\tau(p) \) is bounded by (twice) the SQUARE-ROOT of \(p^{11} \),
Every integer is a sum of 4 squares! Let

\[r_{24}(n) \]

be the number of ways to write \(n \) as a sum of 24 squares.

One knows that, for odd primes \(p \):

\[r_{24}(p) = \frac{16}{691} \cdot \sigma_{11}(p) + \frac{33,152}{691} \cdot \tau(p). \]

Since \(\sigma_{11}(p) \) is close to \(p^{11} \)

and \(\tau(p) \) is bounded by (twice) the SQUARE-ROOT of \(p^{11} \),

we see that \(\tau(p) \) is much smaller than \(\sigma_{11}(p) \),

and so may be thought of as an ERROR term when computing \(r_{24}(p) \)!
Tau as an Error

Every integer is a sum of 4 squares! Let

\[r_{24}(n) \]

be the number of ways to write \(n \) as a sum of 24 squares.

One knows that, for odd primes \(p \):

\[r_{24}(p) = \frac{16}{691} \cdot \sigma_{11}(p) + \frac{33,152}{691} \cdot \tau(p). \]

Since \(\sigma_{11}(p) \) is close to \(p^{11} \)

and \(\tau(p) \) is bounded by (twice) the SQUARE-ROOT of \(p^{11} \),

we see that \(\tau(p) \) is much smaller than \(\sigma_{11}(p) \), and so

may be thought of as an ERROR term when computing \(r_{24}(p) \)!
Distribution of error terms

Ramanujan and Deligne say $-1 \leq \tau(p) \sqrt{p} \leq 1$ for all primes p.

How are these (scaled) error terms distributed?

Numerical data: Probability distribution of (scaled) error terms
Distribution of error terms

Ramanujan and Deligne say

$$-1 \leq \frac{\tau(p)}{2\sqrt{p^{11}}} \leq 1$$

for all primes \(p \).
Distribution of error terms

Ramanujan and Deligne say

\[-1 \leq \frac{\tau(p)}{2\sqrt{p^{11}}} \leq 1\]

for all primes p.

How are these (scaled) error terms distributed?
Distribution of error terms

Ramanujan and Deligne say

\[-1 \leq \frac{\tau(p)}{2\sqrt{p^{11}}} \leq 1\]

for all primes \(p \).

How are these (scaled) error terms distributed?

Numerical data:

![Probability distribution of (scaled) error terms](image)
Sato-Tate distribution

The following theorem, which was conjectured by Sato and Tate, was proved just this year (2010!).
Sato-Tate distribution

The following theorem, which was conjectured by Sato and Tate, was proved just this year (2010!).

Theorem (Barnet-Lamb, Geraghty, Harris, Taylor)

The numbers

\[\frac{\tau(p)}{2\sqrt{p^{11}}} \]

are equidistributed with respect to the measure

\[\frac{2}{\pi} \sqrt{1 - t^2} \, dt. \]
Sato-Tate distribution

The following theorem, which was conjectured by Sato and Tate, was proved just this year (2010!).

Theorem (Barnet-Lamb, Geraghty, Harris, Taylor)

The numbers

\[
\frac{\tau(p)}{2\sqrt{p^{11}}}
\]

are equidistributed with respect to the measure

\[
\frac{2}{\pi} \sqrt{1 - t^2} \, dt.
\]

So the tau-function continues to tantalize us to this day!
Thank you

See you at the next ICM in Hyderabad!
Acknowledgements

1. A. Bhattacharya, S. Kulkarni, R. Rao, *Chai and Why?* team
2. L. Vepstas, cover image of the values of the Delta function, http://linas.org
5. R. Patnaik, Photo of Everest Base Camp, Kala Pattar (1991)
7. Wikipedia, Background on Euler, Gauss, Hardy, Ramanujan
8. Wolfram Mathworld, Lehmer’s Conjecture
12. W. Stein, image of Sato-Tate distribution for Delta