
Ordinary forms and their local Galois
representations

Eknath Ghate

Abstract. We describe what is known about the local splitting
behaviour of Galois representations attached to ordinary cuspidal
eigenforms. We relate this to a question of Coleman concerning the
existence of non-CM eigenforms of weight k ≥ 2 in the image of the
(k − 1)-st power of the theta derivation.

1. Introduction

Let p be a prime and let Λ = Zp[[X]]. Consider the following three
kinds of cusp forms:

• mod p cusp forms,
• elliptic modular cusp forms (of weight ≥ 2), and,
• Λ-adic cusp forms.

These are intimately related. For instance a single Λ-adic form spe-
cializes to infinitely many different classical elliptic modular forms, and
these characteristic 0 forms give rise to the same mod p form. In terms
of the lattice of prime ideals in the dimension two local domain (e.g. Λ)
which is the coefficient ring of the Λ-adic form:
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the Λ-adic form corresponds to the minimal prime ideal (0), the elliptic
modular specializations correspond to certain height one prime ideals
Pi, and the underlying mod p form corresponds to the maximal ideal m.

Assume that we have fixed a form of one of the three types above,
and assume it is an eigenform. Then there is a Galois representation

ρ : Gal(Q̄/Q) → GL2(K)

attached to the form (in the case of Λ-adic forms one needs an assump-
tion of ordinariness which we impose shortly). Here K is respectively

• a finite field F of characteristic p,
• a finite extension of Qp,
• a finite extension of the quotient field of Λ.

The representation ρ encapsulates important information about the form
- for instance the Fourier coefficients of the form occur as traces of the
images of Frobenius elements under ρ, at least outside a finite set of
primes.

In recent years the local properties of such modular Galois repre-
sentations have come under intensive study. This paper deals with one
specific aspect of this study - we wish to describe what is known about
the local splitting behaviour of such representations in the ordinary case.
Let us elaborate. Recall that an eigenform as above is said to be ordinary
at p if

• the eigenvalue at p is non-zero,
• the eigenvalue at p is a p-adic unit,
• the eigenvalue at p of every classical specialization of weight at

least 2 is a p-adic unit,

respectively. The notion of ordinariness depends on choices of embed-
dings of Q̄ into Q̄p and C which we assume have been implicitly fixed
once and for all. It is a fundamental fact, due to

• Deligne [6],
• Mazur-Wiles [15] and Wiles [19],
• Hida [11], [12],

respectively, that if the eigenform is ordinary at p then the corresponding
representation ρ is upper-triangular when restricted to a decomposition
group Gp at p. More precisely, there are characters δ : Gp → K× and
ε : Gp → K× and a map u : Gp → K such that the representation ρ|Gp

has the shape

ρ|Gp ∼
(

δ u
0 ε

)
.(1.2)
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Moreover the character ε is known to be unramified and its value on a
Frobenius element at p can be specified completely.

Let us say that the representation ρ splits at p if u is the zero map
(after a possible change of basis). More succinctly, the representation
ρ is said to be split at p if the local representation ρ|Gp is semi-simple.
This paper addresses the following natural question:

Question 1. When is ρ split at p?

Interestingly, we shall see there are now almost complete answers
to this question in the first and third cases. These cases correspond
to the extremities in the diamond in figure (1.1) above. On the other
hand the second case, which corresponds to the points in the center of
the diamond, is still open. It is however possible to get quite a bit of
information in this case by either ‘going up’ or ‘going down’ from the
previous cases.

2. Mod p cusp forms

Let us begin with the case of mod p forms. There is a striking and
almost complete answer to Question 1 in this case due to Gross and
Coleman-Voloch. To recall it, let f =

∑
anqn be a p-ordinary mod p

cuspidal eigenform which has level N , prime to p, Serre weight 2 ≤ k ≤ p,
and nebentypus character ψ.

Definition 2. Say that the mod p eigen cusp form g =
∑

bnqn of
Serre weight p+1−k is a companion form for f if the Fourier coefficients
of f and g are related as follows:

n · an = nk · bn(2.1)

for all n = 1, 2, . . .

In terms of the derivation θ = q ·d/dq, condition (2.1) says that θf =
θkg, whereas in terms of Galois representations it says ρf ∼ ρg ⊗ ωk−1

where ω is the mod p cyclotomic character. The condition of being a
companion form is symmetric in f and g.

Theorem 3 ([10], [4]). Assume either k 6= 2 or k 6= p. Then the
representation

ρf is tamely ramified at p ⇐⇒ f has a companion form.

Coleman-Voloch refer to the case 2 = k = p as the exceptional case.
In order to relate the theorem to Question 1 we need some termi-

nology.

Definition 4. Say that f is p-distinguished if the characters δ and
ε are distinct.
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More concretely, let λ(x) denote the unramified character of Gp which
takes the arithmetic Frobenius, Frobp, to x ∈ F×. Then ε = λ(ap) and
δ = ωk−1 · λ(ψ(p)/ap). Thus f is p-distinguished if and only if k < p or
a2

p 6= ψ(p).

Lemma 5. Let f be a mod p form as above.
(1) If ρf splits at p then ρf is tamely ramified at p.
(2) Assume f is p-distinguished. Then the converse is also true.

Proof. Let Iw denote the wild inertia group. Any character Gp →
F× has to be trivial on Iw since Iw is a pro-p group whereas F× has
order prime to p. Hence if ρf splits at p then ρf is tamely ramified.

For the converse, assume that f is p-distinguished. By the inflation-
restriction sequence, the restriction map

H1(Gp,F(δε−1)) → H1(Ip,F(δε−1))

has kernel H1(Gp/Ip,F(δε−1)Ip). We claim that this group vanishes so
that the above map is injective. Indeed if k < p then F(δε−1)Ip =
F(ωk−1)Ip = 0. If k = p then F(δε−1)Ip = F and we must prove that
H1(Gp/Ip,F(χ)) vanishes, for χ = δε−1. However, the condition δ 6= ε

(i.e. a2
p 6= ψ(p)) implies χ 6= 1. Using the fact that Gp/Ip = Ẑ is

topologically cyclic, we see that this group does indeed vanish.
We now further restrict to Iw. We claim that the restriction map

H1(Ip,F(χ)) → H1(Iw,F(χ))

is also injective. By the inflation-restriction sequence again the kernel
of this map is H1(Ip/Iw,F(χ)Iw). This group vanishes since the tame
inertia group is Ip/Iw

∼−→ ∏
6̀=p Z` whereas F has exponent p.

Composing the two restriction maps above, we obtain an injective
map

H1(Gp,F(χ)) ↪→ H1(Iw,F(χ)).(2.2)

Let c ∈ Z1(Gp,F(χ)) be the 1-cocycle defined by c = ε−1 · u. Recall
ρf splits at p if and only if the cohomology class [c] ∈ H1(Gp,F(χ))
vanishes. Now assume ρf (Iw) = 1. Then the restriction of [c] to Iw

vanishes. By the injectivity of (2.2) we see that [c] itself vanishes and
ρf splits at p. ¤

It follows from the theorem and the lemma above that if f is p-
distinguished then ρf splits at p if and only if f has a companion form,
giving a complete answer to Question 1 in this case.

Note that if f is not p-distinguished (i.e. δ = ε on Gp) then it is
in principle possible to have ρf tamely ramified at p but ρf not split
at p. Indeed any non-zero class [c] in the kernel of the map (2.2) will
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define a representation ρf |Gp ∼
(

δ u
0 δ

)
which is not split by assumption,

but which splits on Iw, and hence is trivial on Iw. As Coleman-Voloch
have remarked there does not yet appear to be any criterion to predict
whether ρf is split at p if f is not p-distinguished (and not exceptional).
Finally, in the exceptional case, nothing appears to be known.

Let ∆ =
∑

τ(n)qn be the unique normalized cusp form of weight
12 and level 1. It is known that ∆ is ordinary for all primes p < 106,
except p = 2, 3, 5, 7 and 2411. Atkin and Elkies have checked (see the
end of Gross’ paper [10]) that the mod p form associated to ∆ does not
have a companion form for p < 3, 500 except p = 23 and p = 691. In the
former case ∆ is its own mod p companion form (note τ(n) ≡ n11τ(n)
mod 23 for all n coprime to 23), and in the latter case ρ̄∆ is (globally)
completely reducible. It follows that ρ̄∆ does not split at p for all primes
p < 3, 500 except for p = 23 and 691 where it does split.

Further examples of companion forms due to Atkin and Elkies may
be found at the end of Gross’ paper [10]. For instance the mod p form
attached to the unique cusp form ∆16 of weight 16 and level 1 has a
companion form for p = 397 so ρ̄∆16 is split at p in this case.

3. Going up: consequences for elliptic modular forms

Let f be a primitive p-ordinary cusp form of weight at least 2. It is
well known that ρf splits at p if f is of CM type. Some fairly general
statements in the converse direction are available for forms of weight 2
thanks to ideas of Serre and Tate (see [17] and [8]).

Here we show that it is sometimes possible to lift the mod p results
described in the previous section, to obtain some information for forms
f of characteristic 0 of arbitrary weight k ≥ 2. In particular if f is not
of CM type, it is sometimes possible to deduce that ρf is not split at p
by studying the mod p reduction ρ̄f of ρf .

As in the mod p case, let us say that f is p-distinguished if the mod
p reductions of δ and ε are distinct.

Proposition 6. Assume that
(1) f is p-distinguished,
(2) ρ̄f is absolutely irreducible on Gal(Q̄/Q).

If ρ̄f does not split at p then ρf does not split at p.

Proof. We first recall why it makes sense to speak of whether ρ̄f

is split or not split at p. The representation ρf takes values in GL2(K),
where K is a p-adic field, with ring of integers, say O, and uniformizing
element, say π. Let V

∼= K2 be a model for ρf . Let L
∼=O2 ⊂ V be a

Galois stable lattice. Consider the reduced representation of Gal(Q̄/Q)
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on L/πL. In general this representation depends on the choice of L.
However, under condition (2), it is an easy exercise to check that any
two Galois stable lattices are homothetic, so that the representation
L/πL does not depend on L. In particular if the action of Gp on L/πL
is diagonal for one lattice L then it is diagonal for any lattice L.

We now claim that there is a Galois stable lattice L ⊂ V and an
O-basis v1, v2 of L in which ρf |Gp has the usual upper-triangular form(

δ u
0 ε

)
. To see this, note that by the ordinariness assumption there is a

K-basis w1, w2 of V in which ρf |Gp is upper-triangular. Consider the
lattice L0 spanned by w1 and w2. Note δ and ε take values in O× and by
replacing u by a scalar multiple of itself (i.e. modifying w2 by a scalar)
we may assume that u is O-valued as well. Thus we may assume that L0

is stable under Gp. Of course L0 need not be stable under the action of
the full group G = Gal(Q̄/Q). But we may choose a lattice L containing
L0 which is Galois stable. This can be done as follows. Say that L0 is
obtained from the standard lattice in V via an element x ∈ GL2(K).
Then L0 is stabilized by the compact open subgroup K = xGL2(O)x−1.
Now ρf (G)∩K is an open subgroup of the compact group ρf (G), and so
must have finite index in it. Choosing a set of coset representatives gi,
we see that the lattice L =

∑
giL0 is stable under ρf (G). Now choose

n ≥ 0 such that w1/πn ∈ L, but w1/πn+1 6∈ L. Set v1 = w1/πn and
choose v2 such that v1, v2 is an O-basis for L. Then L is a Galois stable
lattice, and the basis v1, v2 has the desired upper-triangular property.

Now set χ = δε−1. Then there is a natural map

H1(Gp,O(χ)) → H1(Gp,K(χ))(3.1)

whose kernel is H0(Gp,K/O(χ)). By condition (1) we have χ̄ 6= 1. An
easy check shows that this is equivalent to H0(Gp,K/O(χ)) = 0. So the
map (3.1) is injective. Now use the lattice L above to define the usual
cohomology class [c]. Assume ρf splits at p. Then [c] vanishes as an
element of the second cohomology group in (3.1) above. Since the map
(3.1) is injective [c] vanishes integrally as well. In particular, L has a
basis in which the action of Gp is diagonal. Thus we may assume u = 0
and g · v1 = δ(g)v1 and g · v2 = ε(g)v2 for all g ∈ Gp. Going mod π we
have g · v̄1 = δ̄(g)v̄1 and g · v̄2 = ε̄(g)v̄2 for all such g. Since δ̄ 6= ε̄, we see
v̄1 and v̄2 are linearly independent, so ρ̄f also splits at p. This proves
the proposition. ¤

The p-distinguished assumption (1) is necessary in order to ensure
the validity of the conclusion of the proposition. The following toy
example, shown to us by K. Buzzard, illustrates what may go wrong.
Start with a faithful representation ρ : SL2(F5) ↪→ GL2(O) where O
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is the ring of integers of a 5-adic field K. This representation may
be constructed as follows. Take a faithful representation of SL2(F5) in
GL2(C) (recall that PSL2(F5)

∼= A5). The image may be taken to lie in
a number field, and by completing at a prime lying above 5, we may
assume that the image is in a 5-adic field K. Finally, after conjugation,
we may assume that the image lies in GL2(O). Consider the reduction
of ρ to GL2(F) where F is the residue field of O. Then the reduced
representation ρ̄ must be the inclusion SL2(F5) ↪→ GL2(F). In particular
it is absolutely irreducible. Now the subgroup ( 1 ∗

0 1 ) of SL2(F5) lifts to a
subgroup of GL2(K) of order 5, and so is certainly diagonalizable, but
it is not diagonalizable itself.

Let us now show how the proposition can be used to study the
splitting question in characteristic 0. Consider the ∆ function. Then
condition (1) is automatically satisfied. Condition (2) holds for all ordi-
nary primes except p = 691 (cf. Serre’s 1971/72 Bourbaki talk). By the
work of Atkin and Elkies mentioned above, there is no mod p companion
form in the range p < 3, 500, p 6= 691 except for p = 23. It follows that
ρ∆|Gp is not split for all ordinary primes p < 3, 500 with p 6= 691, except
possibly for p = 23. The argument used here can’t be used in the case
p = 23 since ρ̄∆|G23 splits. However, Vatsal has shown that, even so,
ρ∆|G23 does not split (see [18]).

4. Λ-adic cusp forms

We now turn to the case of Λ-adic forms.
Let F be a p-ordinary primitive Λ-adic eigen cusp form and let ρF

be the associated Galois representation. As in the elliptic modular case
F may or may not be of CM type. Recall here that a Λ-adic form F
is said to be of CM type if F has at least one classical specialization
of weight k ≥ 2 which is of CM type. In turns out that if there is one
such specialization then every classical specialization of weight k ≥ 2 is
of CM type.

As in the elliptic modular case, it is not difficult to show that if F is
of CM type then ρF splits at p. Interestingly, the converse was recently
shown to hold in the Λ-adic setting in joint work with V. Vatsal, under
some technical conditions. To state the precise result let us introduce
the following notation. Assume in this section that p is an odd prime
and let M = Q(

√
(−1)(p−1)/2p) be the associated quadratic field. As

usual we shall say that the form F is p-distinguished if δ̄ 6= ε̄. Write ρ̄F

for the mod p representation attached to ρF . Then we have:

Theorem 7 ([9]). Say p > 2. Assume that
(1) F is p-distinguished, and,
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(2) ρ̄F is absolutely irreducible when restricted to Gal(Q̄/M).
Then ρF splits at p if and only if F has CM.

The theorem completely answers Question 1 when p is odd, under
the hypotheses (1) and (2) above. The proof is, somewhat surprisingly,
based on a study of the weight one specializations of F . In particular
it turns out that a form F as above is of CM type if and only if F
has infinitely many weight 1 specializations which are classical (and not
just p-adic) cusp forms. This is proved using recent work of Buzzard [?]
which gives conditions under which a p-adic Galois representation arises
from a classical weight 1 form.

5. Going down: consequences for elliptic modular forms

As already mentioned, for ordinary elliptic modular eigenforms f of
CM type, the associated Galois representation ρf splits at p. Much less
is known about the converse except for some results in weight 2.

However, it is possible to obtain some information about elliptic
modular forms of higher weight, by descent, from Theorem 7. We have:

Theorem 8 ([9]). Let p be an odd prime. Let S be the set of
p-ordinary elliptic modular forms of weight k ≥ 2 such that

• f is p-distinguished,
• ρ̄f is absolutely irreducible when restricted to Gal(Q̄/M),

and such that the f ∈ S are specializations of the same primitive p-
ordinary Λ-adic form F . Then, for all but finitely many f ∈ S, the
representation

ρf splits at p if and only if f is of CM type.

It is a result of Hida that every (p-stabilized) p-ordinary cusp form
f of weight at least 2 is the specialization of some primitive p-ordinary
Λ-adic form F (for the CM case see below). In view of this and the
theorem above, we see for odd p, the naive guess to Question 1, namely
ρf splits at p exactly when f is of CM type, holds generically, at least
for forms f satisfying the condition (1) and (2) above.

Let us give an example to show how the theorem gives new informa-
tion. Let p = 397 and let ∆16 denote the unique p-ordinary cusp form
of level 1 and weight 16, discussed at the end of section 2. Consider
the Λ-adic form F which contains ∆16. As mentioned at the end of
section 2, ∆16 has a mod p companion form and ρ̄∆16 splits at p. So
one cannot hope to ‘go up’ and obtain some information about the local
splitting behaviour of ρ∆16 , or for that matter, any of the characteristic
0 Galois representations attached to the members in S. However the
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theorem above shows that, even so, for all but finitely many specializa-
tions f ∈ S, ρf does not split at p, as is to be expected of the members
of the non-CM family F . Incidentally, note that the members f ∈ S
automatically satisfy condition (1) in the theorem. Condition (2) holds
since ρ̄∆16 has image containing SL2(Fp). (We did not consider the first
example at the end of section 2 here, namely f = ∆ and p = 23, since
ρ̄∆ is reducible on Gal(Q̄/M)).

Though it is slightly tangential to our exposition here, for the conve-
nience of the reader we recall the explicit construction of the CM form
F which contains a given CM form f . Our exposition is based on [11,
Theorem 7.1] and [13, pages 235-6].

So assume that p is an odd prime, and that N0 is an integer prime to
p. Let ψ be a character mod N0p. For a primitive pr0−1-th root of unity
ζ0, with r0 ≥ 1, let χζ0 denote the wild character of (Z/pr0)× obtained
by mapping 1+p to ζ0. Assume f is a p-stabilized p-ordinary cusp form
of weight k ≥ 2, level N = N0p

r0 and character χ = ψω−kχζ0 . Note
that ψ and the root of unity ζ0 are uniquely determined by χ.

Assume f is of CM type. Let K be the associated imaginary qua-
dratic field. An easy check, using the p-ordinariness of f , shows that p
must split in K. Thus if p is a prime of K lying over p then p = pp̄
where p̄ is the complex conjugate of p.

Assume f is p-new. Since f has CM, there is a primitive Hecke
character φ of K of infinity type (k − 1, 0) such that

f =
∑

φ(a)qN(a)(5.1)

where a varies over all integral ideals of K and N(a) is the norm from
K to Q of a. Let c denote the conductor of φ. An easy check shows that
exactly one of p or p̄ divides c. Assume that p divides c and p̄ 6 ∣∣ c, so
φ(p) = 0 and φ(p̄) = a(p, f) is a p-adic unit.

Now assume f is p-old. Then f is in fact the p-stabilization of a
series similar to that occurring in the right hand side of (5.1) for some
primitive Hecke character φ0 of prime-to-p conductor c0. However if φ is
defined by φ(q) = φ0(q) for all primes q different from p and φ(p) = 0,
then (5.1) continues to hold for f and φ. In this case we set c = c0p. In
either case the prime-to-p part c0 of c satisfies N(c0)|D| = N0 where D
is the discriminant of K. As for the p-part of c, note p|c but p̄ - c.

We now construct the CM form F containing f as follows. Fix any
C×-valued Hecke character λ of K of infinity type (1, 0) and conductor p.
Let Q(λ) be the number field generated by the values of λ. Let E be the
completion of Q(λ) at the prime determined by the embedding Q̄ ↪→ Q̄p

which has been implicitly fixed throughout this paper. Write OE for the
ring of integers of E. Decompose O×E = µE ×WE where µE is a finite
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abelian group and WE is Zp-free. Write the projection of x ∈ O×E onto
WE as 〈x〉. Let WK denote the subgroup of WE topologically generated
by the 〈λ(a)〉 as a varies through the integral ideals of K; it is isomorphic
to Zp. Moreover it naturally contains W = 1+pZp. Let γ ≥ 0 be defined
by [WK : W ] = pγ . Fix a generator w of WK so that wpγ

= 1+p. Define
the character s by

s(a) =
log 〈λ(a)〉

log w
∈ Zp.

Let O be the ring of integers in E(φ, ζ0). Recall that Λ = Zp[[X]].
Consider the extension L = O[[Y ]] of Λ defined by

ζ0(1 + Y )pγ
= (1 + X).(5.2)

Define the formal q-expansion F in L[[q]] by

F =
∑
a

φ(a) 〈λ(a)〉−k (1 + Y )s(a) qN(a).

This q-expansion does not depend on the choice of λ since any two Hecke
characters λ and λ′ of infinity type (1, 0) and conductor p differ by a
finite order character, so 〈λ〉 = 〈λ′〉.

In view of (5.2) every arithmetic point of L is given by Y = ζwl − 1
where l ≥ 2 and ζ is a pr−1-th root of 1, for r ≥ 1. This point extends
the evaluation X = ζ0ζ

pγ
(1 + p)l − 1 of Λ. Set δζ(a) = ζs(a) and set

φl,ζ(a) = φ(a) 〈λ(a)〉l−k δζ(a).

Then δζ is a finite order character and φl,ζ is a Hecke character of infinity
type (l−1, 0). Specializing at the point Y = ζwl−1 we get (1+Y )s(a) =
δζ(a) · 〈λ(a)〉l. So F specializes to the q-expansion

fl,ζ =
∑
a

φl,ζ(a)qNa

which is clearly a CM cusp form of weight l. For a Hecke character
θ of infinity type (t, 0) write θ|Q for the induced finite order Dirichlet
character defined by m 7→ θ((m))/mt. Then 〈λ〉 |Q = ω−1 and δζ |Q =
χζpγ . By the standard formula for the nebentypus of the CM form f we
have χ = φ|Q · χK/Q = ψω−kχζ0 where χK/Q is the quadratic character
corresponding to K. Hence the character of fl,ζ is given by

φl,ζ |Q · χK/Q = φ|Q · χK/Q · 〈λ〉 |l−k
Q · δζ |Q = ψω−lχζ0ζpγ .

Finally one may check that fl,ζ has level N0p
r′ where pr′−1 is the exact

order of ζ0ζ
pγ

.
It follows that F is a Λ-adic form of CM type. Furthermore, F is

clearly an eigenform of level N0. It is even a newform of level N0, since
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the conductor of φl,ζ is divisible by c0, so the level of the primitive form
attached to each fl,ζ is divisible by N0 = N(c0)|D|. Moreover, F is p-
ordinary since a(p, fl,ζ) = φl,ζ(p̄) has the same p-adic valuation as φ(p̄).
In sum F is a primitive Λ-adic form of level N0.

Finally when l = k and ζ = 1, then φl,ζ = φ and fk,1 = f . Thus F
contains f as a specialization.

6. Λ-adic companion forms and a question of Coleman

We wish to end this note by explaining how Question 1 is related
to a question of Coleman on the image of a power of the θ derivation
acting on p-adic modular forms, and to the work of Buzzard-Taylor on
Λ-adic companion forms.

Let p be a prime and let N0 be an integer prime to p. Let Sk(N0)
denote the space of overconvergent p-adic modular cusp forms of tame
level N0 and weight k ∈ Z. Recall that Sk(N0) is an infinite dimensional
p-adic Banach space. Classical primitive cusp forms f of weight k ≥ 2
and level N0p

r, for r ≥ 0, may be thought of as overconvergent p-adic
modular forms of tame level N0. In the case r = 0 this may be done in
two ways.

Let θ = q · d/dq be the usual derivation which takes p-adic modular
cusp forms of weight k ∈ Z and tame level N0 to such forms of weight
k + 2. While in general the operator θ destroys overconvergence, it is a
result of Coleman [5, thm. 2] that for k ≥ 2 the operator θk−1 induces
a linear map

θk−1 : S2−k(N0) → Sk(N0).

Proposition 9 ([3], prop. 7.1). Every classical CM eigenform of
weight k ≥ 2 and slope k − 1 is in the image of θk−1.

Note that the images of eigenforms under θk−1 have slope at least
k − 1. This is because eigenforms of any weight have slope at least 0
and θk−1 knocks the slope up by k−1. Coleman has asked the following
question ([3], rem. 2, pg. 232):

Question 10. Are there any classical non-CM forms f of weight
k ≥ 2 in the image of θk−1?

As one might expect from the results about mod p cusp forms dis-
cussed in section 2, Question 10 is closely connected to Question 1. Let
us explain this in more detail.

Say f =
∑

anqn is a classical primitive p-ordinary form of weight
k ≥ 2 and level N0p

r, for r ≥ 0. We will define a form f ′ of slope k − 1
and show that if the answer to Coleman’s question for the form f ′ is
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‘yes’, then ρf splits at p. Conversely, we show (under some technical
conditions) that if ρf is split at p then f ′ is in the image of θk−1. To
define f ′ we consider two cases.

Case r = 0. Let χ be the character of f and let α and β be the roots
of the polynomial

x2 − apx + pk−1χ(p)

with p-adic valuations 0 and k− 1 respectively. Let fα = f(z)− βf(pz)
and fβ = f(z)−αf(pz) be the corresponding p-stabilized forms of level
N = N0p with Up-eigenvalue α and β respectively. Both fα and fβ may
be considered as overconvergent eigenforms of tame level N0, of slopes
0 and k − 1 respectively. Moreover the p-adic Galois representations
associated to fα and fβ coincide with ρf . We set f ′ := fβ.

Case r > 0. In this case f is p-new. By our assumption of ordinar-
iness we have ap 6= 0 so that the local factor at p of the automorphic
representation corresponding to f is either

• in the ramified principal series, or,
• a twist of the Steinberg representation.

By ordinariness again, the latter case occurs only if k = 2. It is known
by work of Ribet that in this case ρf does not split at p and that f is
not of CM type (see, for instance, [8]). For this reason we will disregard
such forms in the discussion below. So assume we are in the first case.
Then apāp = pk−1 by [16, thm. 4.6.17(1)]. Now let χ = χ0χp be the
factorization of χ into its N0 and pr components. Let ηp be the matrix
defined in equation (4.6.21) of [16] (it is called ηq there). Then, by [16,
thm. 4.6.16(4)], we see that f |ηp is, up to a constant, equal to a primitive
form with the same weight and level as f , but with character equal to
χ0χ̄p. We take f ′ to be this primitive form. One deduces from [16, thm.
4.6.16(4)] that

am(f ′) =

{
χ̄p(m)am(f) if m is an integer coprime to p.

χ0(m)ām(f) if m = p.

Thus the form f ′ is close to (but not exactly the same as) the forms
f ⊗ χ̄p and f̄ ⊗χ0 where f̄ =

∑
ānqn is the form obtained by taking the

complex conjugates of the Fourier coefficients of f .
Note that in both the r = 0 case and the r > 0 case f ′ has slope

k − 1 and is an eigenvector for Up.
The following proposition is the first step towards our goal. The case

r = 0 was proved by Emerton [7, prop. 1.2]. The idea of the proof is
essentially the same as that used in the original mod p setting [10], [4]
and in the Λ-adic setting [2].
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Proposition 11. If f ′ is in the image of θk−1 then ρf splits at p.

Proof. By the inflation-restriction sequence the restriction map

H1(Gp,K(δε−1)) → H1(Ip,K(δε−1))

is injective. It therefore suffices to show that ρf splits on the inertia
subgroup Ip. Let ν denote the p-adic cyclotomic character. We show
that on Ip the representation ρf is simultaneously both an extension of
1 by χp · νk−1, as well as an extension of χp · νk−1 by 1, where χp is the
p-part of the nebentypus χ (and so is trivial in the case r = 0). Since
k ≥ 2, we have νk−1 6= 1 and it follows that ρf must split on Ip.

The first extension follows immediately from the ordinariness of f
and (1.2), and the fact that det ρf = χνk−1. To get the second extension
we use the hypothesis that f ′ is in the image of θk−1 along with some
results of Kisin [14] (see especially the arguments surrounding the proof
of his Theorem 6.6(2)). Indeed, suppose that f ′ = θk−1(g) where g
is an overconvergent p-adic modular form of tame level N0 and weight
2− k and slope 0. Then by Kisin [14, thm. 6.3] applied to the cuspidal
overconvergent eigenform g there is a non-zero Gp-equivariant map

Vg,E → (B+
cris⊗̂Qp

E)φ=ap(g)

where E is a finite extension of Qp over which g is defined and φ is the
crystalline Frobenius. Since the p-adic valuation of ap(g) is 0, the right
hand side of the above map is of the form α ·E where α ∈ (Q̂un

p ⊗Qp
E)×

and φ(α) = ap(g)α. On the other hand since the kernel of the above
map has all its [E : Qp] Hodge-Tate weights equal to 1− k it must be a
twist of Qp(1 − k) by a character ψ0 which has finite image on inertia.
So Vg,E is an extension of an unramified character by ν1−k · ψ0. Noting
that ρf ⊗ χ̄p ∼ ρf ′ ∼ ρg ⊗ νk−1 we see that on inertia ψ0 = χ̄p, and that
ρf is an extension of χp · ν1−k by 1. This finishes the proof.

Alternatively one may note, following Kisin, that since ρg is poten-
tially semi-stable on Gp (being a twist of the potentially semi-stable
representation ρf ) the extension Vg,E must split on Gp. So ρf also splits
on Gp. ¤

Here is a partial converse to the above result.

Proposition 12. Assume that
(1) p ≥ 5,
(2) aq = 0 for all q|N0,
(3) f is p-distinguished, and,
(4) ρ̄f is absolutely irreducible on Gal(Q̄/M).

If ρf splits at p then f ′ is in the image of the θk−1.
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Proof. The form f (or its p-stabilization fα, in the case r = 0)
lives in a Λ-adic family F which by condition (2) has the property that
UqF = 0 for all primes q|N0. By hypothesis ρf splits at p. By [2, theorem
2] (for which we need the other conditions (1), (3) and (4) above) we
see that F has a Λ-adic companion form G. Assume that r = 0. Then
this means that there is a p-ordinary overconvergent eigenform g of tame
level N0 and weight 2− k which satisfies:

• am(g) = am(f)m1−k for all integers m coprime to p, and,
• ap(g) = χ(p)/ap(fα) = χ(p)/α = β/pk−1.

Here we have used the conditions 1 and 2 on page 909 of [2] which
are part of the definition of a Λ-adic companion form. We also remark
that the paper [2] makes the blanket assumption that N0 ≥ 5 but this
is not needed in the first section of that paper where their theorem 2
is proved. In any case, taken together the above formulas show that
mk−1am(g) = am(fβ) for all integers m, since am(f) = am(fβ) for m

coprime to p, and ap(fβ) = β. It follows that the forms θk−1(g) and fβ

have the same q-expansion, so that they are equal.
Now assume that r > 0. This time g is seen to satisfy:
• am(g) = am(f)m1−kχ̄p(m) for all integers m coprime to p, and,
• ap(g) = χ0(p)/ap(f) = χ0(p)āp(f)/pk−1.

It follows that θk−1(g) and f ′ have the same q-expansion, and are hence
equal. We note in passing that under condition (2) in the statement of
the proposition the form f ′ is actually equal to the form f̄⊗χ0. This can
be seen by noting that am(f) = ām(f)χ(m) for all integers m coprime to
p. In fact this relation usually holds for all m coprime to N0p, but under
(2) it also holds if (m,N0) 6= 1 since both am(f) and ām(f) vanish.

We have shown that θk−1(g) = f ′ in both cases and the proposition
follows. ¤

The above propositions show that

f ′ = θk−1(g) ⇐⇒ the representation ρf |Gp splits,(6.1)

at least under some technical conditions. Let us now show how (6.1)
may be used to

(a) recover some of our earlier examples of non-CM forms f with
non-split local Galois representations, and,

(b) give some information towards Coleman’s question.
We start with (a). We will assume N0 = 1 and consider f = ∆.

Recall that ∆ has Fourier coefficients an = τ(n) ∈ Z and that ∆ is
ordinary for all primes < 106 except for 2, 3, 5, 7 and 2411. So we may
assume that p ≥ 11. The first three conditions in proposition 12 are



240 EKNATH GHATE

then automatically satisfied. As for the last condition, we will need to
assume p 6= 23 or 691.

Now, suppose towards a contradiction, that ρ∆ is split at p. Then
by (6.1) we see that ∆β = θ11g for some g of weight −10. Let

∆k ∈ Sk(p, ω12−k)

for k ∈ Z be the members of the p-ordinary family containing ∆. (So
∆12 = ∆α in the notation introduced above.) Similarly let gl for l ∈ Z
be the members of the family containing g. Comparing Galois represen-
tations we see that ∆ and g−10 must have the same nebentypus, from
which it follows that

gl ∈ Sl(p, ω−10−l).

Now specialize to weight 2. Then ∆2 ∈ S2(p, ω10) and g2 ∈ S2(p, ω−12).
Let us now discuss the first few cases:

• p = 11: One sees that S2(11, ω−12) = 0 so there is no g2, a
contradiction!

• p = 13: Again S2(13) = 0 and we get a contradiction.
• p = 17: Again S2(17, ω4) = 0.
• p = 19: Again S2(19, ω6) = 0.

In all the above cases there is no form g2. We conclude that ρ∆ is
non-split at p for the first few ordinary primes 11 ≤ p ≤ 19. Of course
this is compatible with what we obtained earlier, and could have been
deduced directly, since for such p there is no mod p companion form.

The next case is p = 23 which we skip since the absolute irreducibility
condition fails. In any case mod 23 there is a companion form and
S2(23, ω−12) has dimension one, so there is a potential candidate for g2,
namely ∆2 itself. However, as mentioned at the end of section 3, it is
shown in [18] that ρ∆ does not split at p = 23.

The remaining ordinary primes p > 23 with p 6= 691 can be similarly
treated, at least in principle. The dimension of the space in which
g2 =

∑
bnqn lies starts to grow. However, whenever one shows that the

congruence τ(n) ≡ n11bn mod p fails for each candidate g2 =
∑

bnqn

for some small value of n (coprime to p), we may conclude that ρ∆ is
not split at p!

The above algorithm extends to give information about the other
members ∆k of the p-ordinary family containing ∆. Suppose that ∆k is
split at p for some k ≥ 2. We have ∆′

k = θk−1g2−k. Again one checks
that g2 =

∑
bnqn ∈ S2(p, ω−12). Now, for example, if 11 ≤ p ≤ 19,

one sees as before that g2 = 0 since S2(p, ω−12) = 0. This contradiction
shows that each of the members ∆k of the p-adic family containing
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∆ have locally non-split Galois representation. Again, we could have
deduced this directly, since there is no mod p companion form.

Let us now turn to (b). Again let us assume N0 = 1. The fol-
lowing partial answer towards Coleman’s question (Question 10) is an
immediate consequence of Theorem 7 and (6.1).

Corollary 13. Let p ≥ 5 and let F be a primitive p-ordinary
Λ-adic form F of tame level N0 = 1. Assume

(1) F is p-distinguished,
(2) ρ̄F is absolutely irreducible when restricted to Gal(Q̄/M), and,
(3) F is not of CM type.

Let S be the set of ordinary (slope = 0) classical specializations f of F
of weight k ≥ 2, and let f ′ be the associated forms of slope k−1 defined
above. Then, for all but finitely many f ∈ S, the forms

f ′ are not in the image of θk−1.

We remind the reader that since F does not have CM, the forms f ′
are not of CM type.
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