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Abstract. We solve an elementary number theory problem on
sums of fractional parts. We apply our result to deduce the finite-
ness of the image of certain monodromy representations.

1. Introduction

In this paper, we are concerned with an elementary number theoretic
question on a sum of certain fractional parts. The simplest instance of
this is when there are only three fractional parts involved. The classifi-
cation of the three fractions satisfying the underlying number theoretic
condition is known to be equivalent to Schwarz’s classification of alge-
braic Euler-Gauss hypergeometric functions. We give a different proof
of the Schwarz classification using elementary considerations. We then
use the Schwarz classification to show that the number theoretic condi-
tion holds only sporadically when the number of fractional parts is four
or five and does not hold at all when the number of fractional parts is
more than six (see Theorem 1).

It turns out that the number theoretic condition is closely connected
to the finiteness of certain monodromy groups. As a consequence of
our main result on fractional parts, we classify when the image of cer-
tain specializations of the so called Gassner representation is finite. By
linking these specializations with the monodromy representations asso-
ciated to certain families of cyclic coverings of the projective line of the
type considered by Deligne and Mostow (see [Del-Mos]), we recover
results of Cohen and Wolfart [Coh-Wol] on finiteness of monodromy
groups (see Theorem 8). Another corollary of the main result on frac-
tional parts is the algebraicity of certain Lauricella FD-type functions,
also proved in [Coh-Wol] (see also [Ssk] and [Bod]).

We note that the methods used in previous works are different from
those used in this paper. For instance, one of the proofs in [Coh-Wol]
uses the more difficult classification of Deligne and Mostow [Del-Mos] of
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those monodromy groups which are arithmetic subgroups of U(n−1, 1).
This classification is also described by Looijenga [Loo] (see also the ta-
ble at the end of [Thu]). However, we do not use this classification,
and directly classify the finite monodromy groups starting essentially
from Schwarz’s list.

We now go into some detail. First, we introduce some notation.

Notation. Let d ≥ 2 and n ≥ 2 be integers. Fix n + 1 integers
1 ≤ ki ≤ d − 1 such that the g.c.d. of d, k1, · · · , kn+1 is 1. Given
s in the multiplicative group (Z/dZ)∗ of units of Z/dZ, consider the
numbers µi(s) (denoted µi = {ki

d
} when s = 1) defined by

µi(s) =

{
kis

d

}
,

where 0 ≤ {x} < 1 denotes the fractional part of a real number x. We
may write kis = qid+ li, where 1 ≤ li ≤ d− 1 and qi is an integer; thus
the remainder li has the property that {kis

d
} = li

d
. If we denote by [x]

the integral part of x, then x = [x] + {x}. The number µi(s) = {kis
d
}

depends only on the fraction ki
d

= µi.

Definition 1. We say that the rational numbers µ1, · · · , µn+1 satisfy
condition (1) if,

(1)

∀s ∈ (Z/dZ)∗,

either
n+1∑
i=1

{
kis

d

}
< 1 or

n+1∑
i=1

{
−kis
d

}
< 1.

In terms of the remainders li above, this means that either
∑
li < d

or else
∑

(d − li) < d. We remark that a similar condition appears in
[Loo, Thm. 4.3] (see also [Del-Mos, Prop. 12.7]).

The following theorem says that condition (1) on n, d, ki is very strin-
gent and holds in a very limited number of cases. Let us say that the
tuple (k1

d
, · · · , kn+1

d
) is equivalent to the tuple ( l1

d
, · · · , ln+1

d
), if there ex-

ists t ∈ (Z/dZ)∗ such that, for all i, we have { li
d
} = {kit

d
}, up to a

permutation of the indices. The validity of condition (1) depends only

on the equivalence class of the tuple (k1
d
, · · · , kn+1

d
).

Theorem 1. Suppose n, d, ki are as in the foregoing and satisfy con-
dition (1). Then

n ≤ 4.



FINITENESS OF MONODROMY 3

Moreover, up to equivalence, the numbers µ1, · · · , µn+1 satisfy the
conditions given below.

(i) If n = 4, then µi = 1
6
, for all i ≤ n+ 1 = 5.

(ii) If n = 3, then there are only two cases: µi = 1
6
, for all i ≤

n+ 1 = 4, or µ1 = µ2 = µ3 = 1
6

and µ4 = 2
6
.

(iii) If n = 2, then either we may write µi = ki
d

with d = 2m, for
m ≥ 1, and k1 = k2 = p, k3 = m − p, with 1 ≤ p ≤ m − 1
coprime to m, or else, the µi = ki

d
lie in a finite list with d ≤ 60.

Remark. Note that condition (1) is a purely number theoretic condition;
the proof of the theorem, however, will depend on an analysis of certain
finite subgroups of unitary groups generated by reflections.

The proof of Theorem 1 proceeds as follows. In Section 2, we prove
the theorem for n = 2. We link condition (1) in the case n = 2 to
the finiteness of a certain subgroup of the unitary group of an explicit
skew-Hermitian form (implicitly, this is the monodromy group of the
Gauss hypergeometric function, but we do not use this). Then in Sec-
tion 3, we use a bootstrapping argument to show that condition (1)
holds in very few cases when n = 3 and 4. Using this it is finally shown
that condition (1) cannot hold for n ≥ 5.

In Section 5, we show that a slightly modified version of condition (1),
namely condition (6) in the text, is equivalent to the total anisotropy of
an explicit skew-Hermitian form in n variables over the cyclotomic field
E = Q(e2πi 1

d ). Conditions (1) and (6) coincide for n = 2, and we show
that they are equivalent for general n. We deduce that the image of
the Gassner representation at d-th roots of unity is finite if and only if
condition (1) holds, providing us with the algebraicity results on mon-
odromy groups mentioned above (see Theorem 8 in Section 4 below).
As is (more or less) known, the finiteness of the image of the Gassner
representation is equivalent to the algebraicity of the associated Lau-
ricella FD-functions and we list some of these results as corollaries in
Section 6.
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2. The case n = 2.

2.1. Definition. Let d, k1, k2, k3 be positive integers with g.c.d. equal
to 1. We say that these integers satisfy condition (2) if,

(2)

∀s ∈ (Z/dZ)∗,

either Σs
def
=

3∑
j=1

{
kjs

d

}
< 1 or Σ−s =

3∑
j=1

{
−kjs

d

}
< 1.

Remark. [0] Condition (2) is just condition (1) for n = 2.

[1] Condition (2) depends only on the fractional parts νj = {kj
d
} of

kj
d

, for j = 1, 2, 3, and not directly on the numbers (d, k1, k2, k3); for
example, condition (2) holds for (d, k1, k2, k3) if and only if it holds for
(d, k1 + d, k2, k3), etc.

[2] We may also permute the integers k1, k2, k3 without changing con-
dition (2).

[3] If (d, k1, k2, k3) is replaced by (d, k1t, k2t, k3t) for some integer t
coprime to d, then condition (2) is unaltered.

[4] Since {−x} = 1 − {x}, for a real number x, condition (2) is
equivalent to saying that either 0 < Σs < 1 or 2 < Σs < 3, for each
sum Σs. That is, the integral part of each sum Σs is either 0 or 2 (but
not 1).

2.2. Main result for triples. We say that a triple of rational num-
bers (ν1, ν2, ν3) as above is equivalent to another such triple (ν ′1, ν

′
2, ν
′
3)

(for the same denominator d), if there exists t ∈ (Z/dZ)∗ such that,

after a permutation of the indices, we have νj = {kj
d
} and ν ′j = {kjt

d
},

for j = 1, 2, 3. By the remarks in the preceding subsection, if condition
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(2) holds for one triple, then it holds for all equivalent triples.

For d and k1, k2, k3 as above, write

λ = 1−
{
k1

d

}
−
{
k2

d

}
,

µ = 1−
{
k1

d

}
−
{
k3

d

}
,

ν = 1−
{
k2

d

}
−
{
k3

d

}
.

If (k1
d
, k2
d
, k3
d

) satisfy condition (2), we may assume that 0 < λ, µ, ν < 1.

Theorem 2. (The case n = 2) If (d, k1, k2, k3) satisfy condition (2),
then up to the foregoing equivalence, we have either

k1

d
=
k2

d
=

p

2m
, and

k3

d
=
m− p

2m
,

for some m ≥ 1 and some 1 ≤ p < m coprime to m, so that

λ =
m− p
m

, µ = ν =
1

2

(we refer to this as the “dihedral case”), or else

(λ, µ, ν) ∈ the finite list in Table 1 below.

Remark. Again, though the statement of the theorem is purely (ele-
mentary) number theoretic, the proof uses the finiteness of a certain
group Γ in GL2(C). It would be interesting to find a purely number
theoretic proof of the above theorem.

2.3. Relation of Condition (2) with a skew-Hermitian form.

Notation. Let E/F be a totally imaginary quadratic extension of a
totally real number field. Then E = F [t]/(t2 +α) for some totally pos-
itive element α in the real subfield F . E/F is called a CM extension.
Denote by z 7→ z (∀z ∈ E) the action of the non-trivial element of
the Galois group of E/F , induced by complex conjugation (under any
embedding of E into C). Let h : En × En → E, with (x, y) 7→ h(x, y),
be an F -bilinear form which is E-linear in the first variable x and such
that for all x, y ∈ En, h(y, x) = −h(x, y). Then h is called a skew-
Hermitian form on En.

If we replace F by R and E by C, a skew-Hermitian form can still be
defined and it is of the form h(x, y) = iH(x, y) where H is a Hermitian
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form on Cn.

We say that a skew-Hermitian form h on En is anisotropic, if
h(x, x) = 0, for x ∈ En, implies that x = 0. Over C/R, a skew-
Hermitian form h is anisotropic if and only if h = ±iH, where H is Her-
mitian and positive definite. Furthermore, a diagonal skew-Hermitian
form over C/R is anisotropic if and only if the diagonal entries are
λ1, · · · , λn, with λj ∈ iR \ {0} being on the imaginary axis, and such
that the successive ratios λj+1/λj are positive real numbers.

We say that a skew-Hermitian form h defined over E/F is totally
anisotropic if it is anisotropic over C/R, for all embeddings of E into
C, or more precisely for all archimedean places of F into R. Note that
for a skew-Hermitian form h defined over E, anisotropy over C implies
anisotropy over E, but the converse does not hold.

Now let d and k1, k2, k3 be as above. Write xj = e2πi
kj
d , for j = 1, 2, 3.

Let E = Q(e
2πi
d ) be the d-th cyclotomic field, and let F = Q(cos(2π

d
))

be the maximal totally real subfield of E.

The matrix

h =

(
1−x1x2

(1−x1)(1−x2)
− x2

1−x2
− 1

1−x2
1−x2x3

(1−x2)(1−x3)

)
is easily seen to define a skew-Hermitian form over E/F , i.e., th = −h.
The determinant det(h) of h is also easily computed to be

1− x1x2x3

(1− x1)(1− x2)(1− x3)
= −1

4
·

sin(π(k1+k2+k3)
d

)

sin(πk1
d

) sin(πk2
d

) sin(πk3
d

)
∈ F.

Lemma 3. We have:

i) The skew-Hermitian form h is totally anisotropic if and only if
det(h) is a totally negative element of F .

ii) The numbers
kj
d

, for j = 1, 2, 3, satisfy condition (2) if and only
if the skew-Hermitian form h is totally anisotropic.

Proof. Fix an embedding of E into C. The Gram-Schmidt process
says that under this embedding h is equivalent to the skew-Hermitian

form h′ =

(
iλ1 0
0 iλ2

)
for some real numbers λ1, λ2. Moreover, the

principal minors of h and h′ are the same: det(h) = det(h′) and
iλ1 = 1−x1x2

(1−x1)(1−x2)
.
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The form h is anisotropic if and only if the equivalent form h′ is
anisotropic, and the latter holds if and only if the fraction λ2

λ1
is positive.

This fraction may also be written as

(iλ1)(iλ2)

(iλ1)2
=

det(h)

−λ2
1

.

Thus h is anisotropic if and only if det(h) is negative. This argument
is independent of the embedding of the field E into C and hence h
is totally anisotropic if and only if its determinant is totally negative.
This proves the first part of the lemma.

If t ∈ R \Z, it is easily seen that the sign of sin(πt) is (−1)[t], where
[t] is the integral part of t. Therefore, by the paragraph preceding the
statement of the lemma, the sign of the determinant of h is seen to be

−(−1)[
k1+k2+k3

d
]−[

k1
d

]−[
k2
d

]−[
k3
d

].

Now, for any three real numbers x, y, z, we have

[x+ y + z]− [x]− [y]− [z] = [{x}+ {y}+ {z}].

Therefore, the sign of the determinant of h is −(−1)[Σ1] where Σ1 is the

sum
∑3

j=1{
kj
d
}. By condition (2) (see part [4] of the Remarks following

the definition of (2)), the integral part of Σ1 is either 0 or 2 and hence
the sign of the determinant of h is negative.

The same argument shows that the determinant of hs is also nega-
tive, where hs is the skew-Hermitian form which is obtained from h by

changing xj = e2πi
kj
d to x

(s)
j = e2πi

kjs

d . Here s ∈ (Z/dZ)∗ is viewed as
an element (s) of the Galois group of the cyclotomic extension E/Q.
The determinant of hs is det(h)(s), and is negative, whence det(h) is
totally negative. This proves the “only if” part of the second part of
the Lemma.

The “if” part follows by retracing the proof of the “only if” part
backwards. �

2.4. Relation of the skew-Hermitian form h with a subgroup
of U(h). Let OE, OF be the ring of integers of E and F . Suppose
Γ ⊂ GL2(OE) is the subgroup generated by the matrices

A =

(
x1x2 1− x1

0 1

)
, B =

(
1 0

x2(1− x3) x2x3

)
.
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It can be shown (for example, see [V], Lemmas 14 and 15 and Proposi-
tion 18), that Γ preserves the skew-Hermitian form h of the preceding
subsection and that Γ acts irreducibly on E2 (the irreducibility is im-
plied by the fact that the determinant of h is non-zero, since it is a
nonzero multiple of 1 − x1x2x3. The number 1 − x1x2x3 is nonzero
since the sum

∑ kj
d

is not an integer under the assumption (2)).

Lemma 4. The group Γ is finite if and only if condition (2) holds for

the numbers
kj
d

(j = 1, 2, 3).

Proof. It is enough to show, because of Lemma 3, that Γ is finite if and
only if h is totally anisotropic. This is proved in Lemma 11 below, for
general n ≥ 2. �

2.5. The dihedral case. Suppose that the finite group Γ ⊂ GL2(OF )
of the preceding subsection has the property that it has an abelian
normal subgroup of index two. We then say that Γ is dihedral. Note
that Γ is generated by two elements (namely A,B).

Lemma 5. Γ is dihedral if and only if two of the three elements A,
B, C = AB have trace zero, i.e., if and only if two of the numbers
x1x2, x2x3, x3x1 are equal to −1.

Proof. Suppose Γ is dihedral and N is an abelian normal subgroup of
index two. Since Γ acts irreducibly on C2, it follows that Γ is not
abelian, and hence there is an element g /∈ N in Γ. Now N cannot con-
sist of scalars. For otherwise the group generated by N and g would
be abelian.

Let now g /∈ N be arbitrary. Then g normalises (but does not
centralise) the non-scalar abelian (and hence may be assumed to be
diagonal) subgroup N . Therefore, g acts on N by the map switching
the two diagonal entries of an element a ∈ N . Hence g is of the form

tw where w =

(
0 1
1 0

)
and t is a diagonal matrix; hence the element

g /∈ N has trace zero.

Since Γ is generated by any two of the three matrices A,B,C =
AB, it follows that two of these elements cannot lie in N ; therefore,
two of the elements, say A and B have zero trace; this means that
x1x2 +1 = 0, x2x3 +1 = 0 (a small computation shows that trace(C) =
(1 + x1x3)x2; hence trace C being zero implies that x1x3 = −1. Thus
a similar statement holds if A,C do not lie in the subgroup N : x1x2 =
x1x3 = −1). This proves the lemma. �
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The lemma means that the numbers k1+k3
d

= 1
2

and k2+k3
d

= 1
2

(say);

suppose k1+k2
d

= p
m

, for some p coprime to m. Then it follows that
k1
d

= k2
d

= p
2m

and that k3
d

= m−p
2m

. This is the first part of Theorem 2.

2.6. Finite non-dihedral subgroups Γ. It is well known that any
irreducible non-dihedral finite subgroup of PGL2(C) is the group of
symmetries of one of the platonic solids (see, e.g., [Wey, App. A]). The
following proposition is an immediate corollary, but can also be proved
directly, for instance, by adapting the argument in [LT, Chap. 5, Sec.
4].

Proposition 6. Suppose Γ ⊂ GL2(C) is a finite non-dihedral irre-
ducible subgroup with Z the centre of Γ. Then the order m of any
element of the quotient Γ/Z does not exceed 5, i.e., m = 1, 2, 3, 4, 5.

We now return to the situation of Lemma 4. Consider xj = e2πi
kj
d

(j = 1, 2, 3). The irreducible finite subgroup Γ is generated by A =(
x1x2 1− x1

0 1

)
and B =

(
1 0

x2(1− x3) x2x3

)
. The image of Γ in

PGL2(C) contains the images A′ and B′ of A and B respectively;
clearly the orders of A′ and B′ are respectively the orders of the roots

of unity x1x2 = e2πi
k1+k2
d and x2x3 = e2πi

k2+k3
d .

A computation shows that the matrix

C = AB =

(
x2(1− x3 + x1x3) x2x3(1− x1)

x2(1− x3) x2x3

)
has eigenvalues x2 and x1x2x3; clearly the order of the image of C in

PGL2(C) is the ratio of these eigenvalues x1x2x3
x2

= x3x1 = e2πi
k3+k1
d .

From the proposition follows the

Corollary 1. If condition (2) holds, and k1
d
, k2
d
, k3
d

is not in the dihedral

case, then the fractions µ1 = k2+k3
d

, µ2 = k3+k1
d

, µ3 = k1+k2
d

are in the
finite set S of fractions of the form t

u
with t < u and u = 1, 2, 3, 4, 5.

2.7. A finite list. Since the set S in Corollary 1 is finite, clearly the
set of fractions k1

d
, k2
d
, k3
d

obtained from the set of µ1, µ2, µ3 in S is also
finite. Working up to permutation and up to the equivalence defined
before, we may check that if k1

d
, k2
d
, k3
d

further satisfy condition (2),
then the corresponding (λ, µ, ν) lie in the finite list in Table 1 below
(we discard the dihedral cases with 1 ≤ p < m ≤ 5). This implies
Theorem 2. �
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Table 1: (Non-dihedral) Schwarz’s List

d µ1 µ2 µ3 k1/d k2/d k3/d λ µ ν Wiki-row

12 2/3 2/3 1/2 1/4 1/4 5/12 1/2 1/3 1/3 2
6 2/3 2/3 1/3 1/6 1/6 1/2 2/3 1/3 1/3 3
30 2/3 2/3 3/5 3/10 3/10 11/30 2/5 1/3 1/3 7
60 2/3 3/5 1/2 13/60 17/60 23/60 1/2 2/5 1/3 14
30 2/3 3/5 2/5 1/6 7/30 13/30 3/5 2/5 1/3 15
24 3/4 2/3 1/2 5/24 7/24 11/24 1/2 1/3 1/4 4
12 3/4 3/4 1/3 1/6 1/6 7/12 2/3 1/4 1/4 5
10 3/5 3/5 3/5 3/10 3/10 3/10 2/5 2/5 2/5 11
60 4/5 2/3 1/2 11/60 19/60 29/60 1/2 1/3 1/5 6
30 4/5 2/3 1/3 1/10 7/30 17/30 2/3 1/3 1/5 12
15 4/5 2/3 2/5 2/15 4/15 8/15 3/5 1/3 1/5 10
20 4/5 3/5 1/2 3/20 7/20 9/20 1/2 2/5 1/5 9
30 4/5 4/5 1/3 1/6 1/6 19/30 2/3 1/5 1/5 8
10 4/5 4/5 1/5 1/10 1/10 7/10 4/5 1/5 1/5 13

All but the last column of Table 1 was generated using Pari-gp. The
table is (the non-dihedral part of) Schwarz’s well-known 1873 list [Sch],
see Wikipedia: https://en.wikipedia.org/wiki/Schwarz’s list.
The last column of Table 1 contains the row number of the corre-
sponding entry in the Wikipedia table. Each of the 15 rows in that
table is hit (the 1st row being the dihedral case).

Schwarz’s list is known to classify the classical hypergeometric func-
tions 2F1 that are algebraic. A classification of the higher algebraic hy-
pergeometric functions (of Clausen-Thomae type) was given by Beukers
and Heckman [Beu-Hec].

3. The case n ≥ 3

We now use a bootstrapping argument to prove the remaining parts
of Theorem 1. We start with the following obvious lemma.

Lemma 7. Let n ≥ 3. Assume that the g.c.d. of d, k1, k2, · · · , kn+1

is equal to 1. If these integers satisfy condition (1), then so do the
integers d, l1, l2, · · · , lm+1, for all subsets {li} of cardinality m + 1 of
the {kj}, for 2 ≤ m ≤ n.

We remark that however the g.c.d. of d, l1, l2, · · · , lm+1 may no longer
necessarily be equal to 1.
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3.1. n = 3. We use the lemma to treat the case n = 3 using the result
for n = 2 proved in Theorem 2. A complete list of (non-dihedral)
tuples (d, l1, l2, l3) with the g.c.d. of d, l1, l2, l3 equal to 1 and satisfying
condition (2) (let us call the corresponding triplet (l1, l2, l3) primitive)
is easily generated from Table 1, and is provided in Table 2 below.

Table 2: Primitive (non-dihedral) Schwarz triplets

d (l1, l2, l3) with l1 ≤ l2 ≤ l3

6 (1, 1, 1), (5, 5, 5)

(1, 1, 3), (3, 5, 5)

10 (1, 1, 1), (3, 3, 3), (7, 7, 7), (9, 9, 9)

(1, 3, 3), (3, 9, 9), (1, 1, 7), (7, 7, 9)

12 (1, 3, 5), (7, 9, 11) (each with multiplicity 2)

(1, 2, 7), (5, 10, 11) (each with multiplicity 2)

(1, 2, 2), (5, 10, 10), (2, 2, 7), (10, 10, 11)

(1, 3, 3), (3, 3, 5), (7, 9, 9), (9, 9, 11)

15 (1, 2, 4), (2, 4, 8), (1, 4, 8), (7, 13, 14), (1, 2, 8), (7, 11, 14), (7, 11, 13), (11, 13, 14)

20 (1, 3, 7), (1, 3, 9), (1, 7, 9), (3, 7, 9), (11, 13, 17), (11, 13, 19), (11, 17, 19), (13, 17, 19)

24 (1, 5, 7), (1, 5, 11), (1, 7, 11), (5, 7, 11), (13, 17, 19), (13, 17, 23), (13, 19, 23), (17, 19, 23)

30 (1, 5, 5), (5, 5, 7), (11, 25, 25), (5, 5, 13), (17, 25, 25), (5, 5, 19), (23, 25, 25), (25, 25, 29)

(3, 7, 17), (19, 21, 29), (1, 9, 11), (13, 23, 27) (each with multiplicity 2)

(1, 9, 9), (3, 3, 7), (9, 9, 11), (13, 27, 27), (3, 3, 17), (19, 21, 21), (23, 27, 27), (21, 21, 29)

(5, 7, 13), (1, 5, 19), (17, 23, 25), (11, 25, 29) (each with multiplicity 2)

60 (1, 11, 19), (7, 13, 17), (1, 11, 29), (7, 13, 23), (7, 17, 23), (1, 19, 29), (13, 17, 23), (11, 19, 29),

(31, 41, 49), (37, 43, 47), (31, 41, 59), (37, 43, 53), (37, 47, 53), (31, 49, 59), (43, 47, 53), (41, 49, 59)

We remark that each line in Table 2 represents one (Z/dZ)∗-orbit,
and so has cardinality ϕ(d), though for d = 12, 30 some triplets occur
with multiplicity 2, and for d = 60 both lines form one orbit.

Now suppose that (d, k1, k2, k3, k4) satisfy condition (1). Assume
that this tuple is primitive, i.e., the g.c.d. of d, k1, k2, k3, k4 is equal
to 1. Then, by the lemma, every sub-tuple (d, l′1, l

′
2, l
′
3), where the l′i

are obtained by discarding one kj, also satisfies condition (2). Note
that the g.c.d. of d, l′1, l

′
2, l
′
3 does not have to be 1. By Theorem 2, we

see that (d, l′1, l
′
2, l
′
3) is a positive integral multiple of some (d1, l1, l2, l3)

occurring in Table 2 (or is dihedral), up to permutation.
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Ignoring (momentarily) the tuples containing multiples of a dihedral
Schwarz triplet, we see that d must be bounded by 120. Indeed, if say,

(d, k1, k2, k3) = a · (d1, l1, l2, l3)

(d, k1, k2, k4) = b · (d2,m1,m2,m4),
(3)

for some tuples (d1, l1, l2, l3) and (d2,m1,m2,m4) in Table 2 (up to
permutation), and for some positive integers a, b, then by primitivity,
the g.c.d. of a, b has to be equal to 1, but d = ad1 = bd2, so a|d2, so
d|d1d2, so d divides the l.c.m. of all d occurring in Table 2, which is 120.

This reduces the problem of checking which primitive quadruples
(d, k1, k2, k3, k4) satisfy condition (1) (for n = 3) to a finite check.
Table 3 lists all such primitive tuples which satisfy the property that
every sub-tuple obtained by dropping exactly one of the kj arises from
Table 2, by possibly scaling up from a smaller denominator. (The fact
that, for instance, the g.c.d. of a, b is 1 greatly reduces the number of
smaller denominators that one has to consider.)

Table 3: Possible (non-dihedral) Schwarz 4-tuplets

d (k1, k2, k3, k4) with k1 ≤ k2 ≤ k3 ≤ k4

6 (1, 1, 1, 1), (5, 5, 5, 5)

(1, 1, 1, 3), (3, 5, 5, 5)

10 (1, 1, 1, 1), (3, 3, 3, 3), (7, 7, 7, 7), (9, 9, 9, 9)

(1, 3, 3, 3), (3, 9, 9, 9), (1, 1, 1, 7), (7, 7, 7, 9)

12 (1, 2, 2, 7), (5, 10, 10, 11) (each with multiplicity 2)

(1, 3, 3, 5), (7, 9, 9, 11) (each with multiplicity 2)

(1, 2, 2, 2), (5, 10, 10, 10), (2, 2, 2, 7), (10, 10, 10, 11)

15 (1, 2, 4, 8), (7, 11, 13, 14) (each with multiplicity 4)

20 (1, 3, 7, 9), (11, 13, 17, 19) (each with multiplicity 4)

24 (1, 5, 7, 11), (13, 17, 19, 23) (each with multiplicity 4)

30 (1, 5, 5, 5), (5, 5, 5, 7), (11, 25, 25, 25), (5, 5, 5, 13), (17, 25, 25, 25), (5, 5, 5, 19), (23, 25, 25, 25), (25, 25, 25, 29)

(1, 9, 9, 11), (3, 3, 7, 17), (19, 21, 21, 29), (13, 23, 27, 27) (each with multiplicity 2)

(1, 9, 9, 9), (3, 3, 3, 7), (9, 9, 9, 11), (13, 27, 27, 27), (3, 3, 3, 17), (19, 21, 21, 21), (23, 27, 27, 27), (21, 21, 21, 29)

(1, 5, 5, 19), (5, 5, 7, 13), (11, 25, 25, 29), (17, 23, 25, 25) (each with multiplicity 2)

60 (1, 11, 19, 29), (7, 13, 17, 23), (31, 41, 49, 59), (37, 43, 47, 53) (each with multiplicity 4)

120 No tuplets

It is now straightforward to check that of these tuples, exactly two,
namely (1, 1, 1, 1) and (5, 5, 5, 5), both for d = 6, satisfy condition (1).
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Since these tuples are equivalent, we have proved one half of Theorem 1
(ii) (for n = 3).

To treat the other half, we now assume that at least one of the
sub-tuples of (d, k1, k2, k3, k4) is a multiple of a dihedral triplet. By
rearranging the ki, we may assume that the first sub-tuple in (3), is
dihedral of the form:

(d, k1, k2, k3) = a · (d1, l1, l2, l3) = a · (2m, p, p,m− p),
for some 1 ≤ p < m, with the g.c.d. of p,m equal to 1. Clearly the
second tuple in (3) cannot be dihedral, for if

(d, k1, k2, k4) = b · (d2,m1,m2,m4) = b · (2l, q, q, l − q),
for 1 ≤ q < l, with the g.c.d. of q, l equal to 1, then k1 + k3 =
d/2 = k1 + k4 so that k4 = k3 = a(m − p). Then k2/d + k3/d =
(ap/2ma) + a(m− p)/2ma = 1/2, and similarly k1/d + k4/d = 1/2 so
that condition (1) fails. (A similar argument applies if the second tuple
(d, k1, k2, k4) equals b · (2l, q, l − q, q) instead.)

This means that the second tuple above is a multiple of a non-
dihedral tuple (d2,m1,m2,m4), occurring in the finite list in Table 2,
up to permutation. As before, we have d = 2ma = bd2, and since the
g.c.d. of a, b is 1, we have a|d2 (and so is bounded) and b|2m. Moreover
ap = k1 = bm1 implies that b|p, and since the g.c.d. of p,m is 1, we see
that b = 1, 2. However, the latter case cannot occur: if b = 2 is even,
then a is odd and p is even, so d2 = 2ma/b = ma is odd (else m is
even, so 2 divides the g.c.d. of d, k1, k2, k3, k4, contradicting primitiv-
ity). But then d2 must equal the only odd entry 15 in Table 2, which is
impossible, since k1 = ap = k2, but all triplets for d = 15 have distinct
entries.

Thus b = 1 and (d, k1, k2, k3, k4) has the shape:

(2ma = d2, ap = m1, ap = m2, a(m− p),m4).(4)

Since d2 is bounded, both a and m divide d2/2, and 1 ≤ p < m (with
p is coprime to m), clearly there are only finitely many possibilities for
such tuples. Moreover, since m1 = m2, an inspection of Table 2 shows
that d2 can only be one of 6, 10, 12, 30.

Table 4 below lists all possibilities for tuples having shape (4) above.
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Table 4: Possible tuplets of the form (4)

d (k1, k2, k3, k4)

6 (1, 1, 2, 1)

(1, 1, 2, 3)

10 (1, 1, 4, 1)

(1, 1, 4, 7)

(3, 3, 2, 1)

(3, 3, 2, 3)

12 (2, 2, 4, 1), (2, 2, 4, 7)

(3, 3, 3, 1), (3, 3, 3, 5)

30 (3, 3, 17, 7), (3, 3, 12, 17), (9, 29, 6, 1), (9, 9, 6, 11)

(5, 5, 10, 1), (5, 5, 10, 7), (5, 5, 10, 13), (5, 5, 10, 19)

A quick inspection now shows that of these possibilities only the tuple
(1, 1, 2, 1) for d = 6 satisfies (1), proving the second half of Theorem 1
(ii). This completes the proof of the case n = 3.

3.2. n = 4. This follows easily from Lemma 7 and the just established
case n = 3. Indeed by the lemma, the only possible 5-tuplets of ki
would occur for d = 6 and would be (1, 1, 1, 1, 1) or (1, 1, 1, 1, 2) up to
equivalence. But only the former satisfies condition (1).

3.3. n = 5. The same argument shows that the only possible 6-tuplet
of ki is (1, 1, 1, 1, 1, 1) for d = 6. But one easily checks that this tuple
fails to satisfy condition (1), so there are no 6-tuples satisfying (1).

3.4. n ≥ 6. Finally, Lemma 7 shows that there are no tuplets for n ≥ 6
satisfying the condition (1) since we have just shown there is none for
n = 5. This completes the proof of Theorem 1. �

4. On finiteness of some monodromy

Consider the space S = {(z1, · · · , zn+1) ∈ Cn+1 : zi 6= zj,∀i 6= j}, for
n + 1 ≥ 3. Let d ≥ 2 be an integer; fix integers k1, k2, · · · , kn+1 with
1 ≤ ki ≤ d−1 such that dZ+

∑
kiZ = Z. The space of solutions (x, y)

to the equation

yd = (x− z1)k1(x− z2)k2 · · · (x− zn+1)kn+1

with x 6= z1, z2, . . . , zn+1 and y 6= 0 is the affine part of a smooth pro-
jective curve C = Cd,ki . Write µi = ki

d
; our assumptions imply that

µi ∈ Q \ Z. Write, as in [Del-Mos], [Coh-Wol], µ∞ = 2−
∑n+1

i=1 µi; the
numbers µi and µ∞ record the ramifications at the zi and at ∞; we
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assume that µ∞ is also not integral so that the curve C is ramified at
infinity as well.

The group G = Z/dZ acts on the curve C; the action on the affine
part is given by y 7→ ωy where ω is a d-th root of unity. Consequently,
the group G operates on the first cohomology of the curve C with ra-
tional coefficients; denote by Md the direct sum of the cohomology over
C, on which a fixed generator of the group G operate by some primitive
d-th root of unity.

The fundamental group of the space S acts (by monodromy) on
the space Md. It is well known that this fundamental group is the
same as the pure braid group Pn+1. We classify the integers d, n and
the numbers ki for which the image of the fundamental group (the
monodromy group) in Aut(Md) is finite. This problem of finiteness
has already been resolved by several authors ([Ssk], [Coh-Wol], [Bod],
[Sch]), since this monodromy is the same as the monodromy of certain
Appell-Lauricella hypergeometric functions. However, we believe our
point of view is different: the explicit description of the monodromy
in terms of the Gassner representation makes the proofs completely
algebraic, and is formulated in terms of the definiteness of an explicit
Hermitian form.

Theorem 8. Suppose n, d, ki are as in the preceding. Then the image
of the monodromy representation in Aut(Md) is finite if and only if
condition (1) holds. Thus the monodromy on Md is by a finite group if
and only if

n ≤ 4.

Moreover, up to equivalence, the numbers n, d, ki satisfy the conditions
given below.

(i) If n = 4, then d = 6 and ki = 1, for all i ≤ 5.

(ii) If n = 3, then d = 6 and k1 = k2 = k3 = 1 and k4 = 1 or 2.

(iii) If n = 2, then d = 2m and k1 = k2 = p and k3 = m− p, or else
d, ki lie in a finite list, with d ≤ 60.

Remark. Again, note that condition (1) is a purely number theoretic
condition; the proof of the theorem, however, depends on an analysis
of certain finite subgroups of unitary groups generated by reflections.
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We will prove Theorem 8 after some preliminaries on Hermitian
forms and unitary groups generated by reflections.

5. Skew-Hermitian Forms

Lemma 9. Suppose h is a skew-Hermitian form on Cn. Then h is
anisotropic if and only if the principal minors ui have the property:
uj+1uj−1

u2j
is positive, for all j ≥ 1 (by convention u0 = 1).

Proof. Suppose that h does not represent a zero; hence a11 6= 0, where
(aij) is the matrix of h in the standard basis. By the Gram-Schmidt
process, there exists an upper triangular unipotent matrix u ∈ GLn(C)
such that t(u)hu = h′ is diagonal, with diagonal entries λ1, · · · , λn say.
Now h is anisotropic if and only if the equivalent h′ is anisotropic. The
latter is anisotropic if and only if the successive ratios βj = λj+1/λj
are all positive.

Since u is a unipotent upper triangular matrix, the principal minors
of h and h′ are the same. Therefore, uj+1 = λ1 · · ·λj+1. Consequently,
h′ is anisotropic if and only if for all j,

βj = (uj+1/uj)/(uj/uj−1)

is positive. This is equivalent to βj =
uj+1uj−1

u2j
being positive, for all j.

Hence the lemma. �

Now suppose that E/F is a CM extension of number fields and that
h is a skew-Hermitian form on En. Suppose that h does not represent
a zero. Then the Gram-Schmidt process diagonalises h. Suppose the
diagonal entries are λ1, · · · , λn. Then we have

λ1 · · ·λj = det(hj),

where det(hj) is the principal j × j minor of h. Hence

λj = det(hj)/ det(hj−1).

Write

βj =
det(hj+1) det(hj−1)

det(hj)2
.

From the previous lemma we obtain:

Lemma 10. Suppose F → R is an embedding and E⊗F R = C. Then
the skew-Hermitian form h is anisotropic in this embedding if and only
if

βj > 0, ∀j.
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Lemma 11. Suppose h is a skew-Hermitian form in n variables over
a CM field E/F , and Γ ⊂ U(h)(OF ) a subgroup which acts irreducibly
on Cn. Then Γ is finite if and only if h is totally anisotropic.

Proof. Suppose Γ is finite. Fix any positive definite Hermitian form H
on Cn. Being a sum of positive definite forms, the average H ′(x, y) =∑

γ∈ΓH(γx, γy) is also positive definite and is Γ-invariant. Hence iH ′ is
a Γ-invariant anisotropic skew-Hermitian form on Cn. The irreducibil-
ity of the action of Γ implies, by Schur’s lemma, that the invariant
anisotropic skew-Hermitian form iH ′ is a scalar multiple of the form h,
for any embedding of F into R. Hence h is anisotropic over all embed-
dings of the field F .

Conversely, if h is anisotropic at all real places v of F , then ih is def-
inite, for all v, and hence the group U(h)(Fv) ' U(ih)(Fv) is compact,
for all v. Since U(h)(OF ) is a discrete subgroup of U(h)(F ⊗Q R), it
follows that U(h)(OF ) is finite, hence Γ is also finite. �

Remark. Let G = U(h). A corollary of the proof is that if a finite
subgroup of G(OF ) acts irreducibly on Cn, then G(OF ) is finite.

Notation. Denote byR the Laurent polynomial ring Z[X±1
1 , · · · , X±1

n+1]
in n + 1 variables with Z-coefficients. The map Xi 7→ X−1

i , for all
i, induces an involution of order two on the ring R. Denote by Rn

the standard free R module of rank n with standard basis εi, for
1 ≤ i ≤ n. Define the skew-Hermitian form h = (hij)1≤i,j≤n by the
formulae h(εi, εj) = 0 if | i− j |≥ 2 and

h(εi, εi) =
1−XiXi+1

(1−Xi)(1−Xi+1)
, h(εi, εi+1) = − 1

1−Xi+1

.

Lemma 12. The form h does not represent a zero in Rn. Moreover,
for each j, the principal j × j minor is given by

uj =
1−X1 · · ·Xj+1

(1−X1) · · · (1−Xj+1)
.

Proof. In [V], the determinant of h was computed to be

1−X1X2 · · ·Xn+1

(1−X1) · · · (1−Xn+1)
.

Taking n = j, we get the formula for the determinant of the j × j
principal minor. Take Xj = e2πiθj to be transcendental with θj ∈ R
positive and close to 0. Put Σj−1 = θ1 + · · · + θj (the sum of the first
j terms). Using the equality

1− e2πiθ = eπiθ((−2i) sin(πθ)),(5)
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and that sin(θ) is close to θ, for θ small (and positive), we see that the
numbers

βj =
uj+1uj−1

u2
j

=
sin(πΣj+1) sin(πΣj−1) sin(πθj+1)

sin(πΣj)2 sin(πθj+2)

are positive, for all j. By Lemma 9 it follows that h is anisotropic. �

The map Xi 7→ ti = e2π
√
−1

kis

d maps R onto the ring OE of integers
in the d-th cyclotomic extension E = Q(e2πi/d). Let F = Q(cos(2π

d
)) be

the maximal totally real subfield of E. We then get a skew-Hermitian
form on En induced from h.

Define, for each j ≤ n− 1, the numbers

νj = νj(s) =

{
j∑
i=1

kis

d

}
.

Denote by (6) the conditions satisfied by the numbers n, d, ki:

(6)
εj = εj(s)

def
= (−1)[νj(s)+µj+1(s)+µj+2(s)] = 1,

∀s ∈ (Z/dZ)∗ and ∀j with 1 ≤ j ≤ n− 1.

Lemma 13. The group G(OF ) = U(h)(OF ) is finite if and only if
(n, d, ki) satisfy condition (6).

Proof. Consider the “Gassner representation” G(X) : Pn+1 → U(h,R)
[V] (recall that the ring R is the Laurent polynomial ring in the vari-
ables Xj : 1 ≤ j ≤ n + 1 with integer coefficients). Specializing Xj to

xj = e2πi
kj
d = e2πiµj we obtain a representation ρd of the pure braid

group Pn+1. The image of ρd is contained in the group G(OF ) (e.g.,
p. 26, paragraph before Theorem 16, of [V]). We have assumed that∑n+1

j=1 µj(= 2 − µ∞) is not an integer, so
∏
xj 6= 1. Therefore, by

Proposition 19 of [V], G(OF ) acts irreducibly. By Lemma 11, G(OF )
is finite if and only if h is totally anisotropic. We must then prove that
the condition of the anisotropy of h is equivalent to condition (6).

Let det(hj) be the j × j principal minor of the form h obtained by
specializing to the ti, for some fixed s ∈ (Z/dZ)∗. By Lemma 12, the
determinant of hj is

1− t1t2 · · · tj+1

(1− t1) · · · (1− tj+1)
.
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It is easily seen, in view of (5), that this determinant is

det(hj) =
ij

2j
sin(

π(k1+···kj+1)s

d
)∏j+1

i=1 sin(πkis
d

)
.

As in the proof of Lemma 12, we have

βj =
det(hj+1) det(hj−1)

det(hj)2
=

(
sin(

π(k1+···kj+2)s

d
) sin(

π(k1+···kj)s
d

)

sin2(π
(k1+···+kj+1)s

d
)

)
sin(

πkj+1s

d
)

sin(
πkj+2s

d
)
.

If x is not an integer then the sign of sin(πx) is simply the number
(−1)[x]. Therefore, the sign of βj is

(−1)[
(k1+···+kj+2)s

d
]−[

(k1+···+kj)s
d

]−[
kj+1s

d
]−[

kj+2s

d
].

Since, for all x, y, z ∈ R, we have

[x+ y + z]− [x]− [y]− [z] = [{x}+ {y}+ {z}],
it follows that the sign of βj is just the number εj(s). Hence, by Lemma
10, the anisotropy of h is equivalent to the condition that εj(s) = 1,
for all j. This is exactly condition (6). �

Lemma 14. Condition (6) is equivalent to condition (1).

Proof. Assume that condition (6) holds. Applying the condition with
j = 1, we must have {k1s

d
} + {k2s

d
} 6= 1, for all s ∈ (Z/dZ)∗. For each

s in the quotient group (Z/dZ)∗/{±1}, there are two representatives s
and d− s in the group (Z/dZ)∗ of units mapping to s. We consider the

numbers a = as = [{k1s
d
}+{k2s

d
}] and b = bd−s = [{k1(d−s)

d
}+{k2(d−s)

d
}].

Since the fractional part of x does not change if x is replaced by x+m,
for m ∈ Z, it follows that b = [{−k1s

d
} + {−k2s

d
}] = [(1 − {k1s

d
}) + (1 −

{k2s
d
})] = 2 − (a + 1) = 1 − a. Thus one of the numbers a, b is zero

since 0 ≤ a, b ≤ 1. We choose the representative s so that a = as = 0.

We now prove by induction on j ≤ n that, for this choice of s, the

integral part of αj+1
def
= {k1s

d
}+· · ·+{kj+1s

d
} is zero. The case j = 1 was

just treated. Applying this with j = n will then prove that condition
(6) implies condition (1).

We now claim that condition (6) is equivalent to

[αj+1] ≡ [αj−1] mod 2,

for 2 ≤ j ≤ n. Indeed, if m ≤ αj−1 < m + 1, for some integer m ≥ 0,
then νj−1 = αj−1−m. Thus, νj−1+µj+µj+1 lies in (0, 1) or (2, 3) if and
only if αj+1 = αj−1 + µj + µj+1 lies in (m,m+ 1) or (m+ 2,m+ 3), so
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that its integral part is either the same as, or 2 more than, the integral
part m of αj−1.

By induction, we may assume that [αk] = 0 for all k ≤ j; therefore,
by the above congruence, we have [αj+1] ≡ 0 mod 2.

On the other hand, [αj+1] = [αj] + [{αj} + {kj+1s

d
}]. Since by in-

duction, [αj] = 0, it follows that [αj+1] = [{αj} + {kj+1s

d
}]. Being the

integral part of a sum of two numbers in the closed open interval [0, 1),
the latter is at most one and hence (0 ≤) [αj+1] ≤ 1. The conclusion of
the preceding paragraph now implies that [αj+1] = 0, completing the
induction step. Hence condition (1) follows.

Conversely, if condition (1) holds, then all the numbers [αj] are zero,
and hence the numbers εj(s) are all 1. This is condition (6). �

We can now prove Theorem 8.

Proof. Since, by the assumption on µ∞, we have
∑
µj /∈ Z, it follows

by Proposition 19 of [V], that ρd is irreducible; since (again by [V],
Corollary 3) the monodromy representation Md is a quotient of ρd, it
follows that Md is the representation ρd.

The monodromy representation (being the specialised Gassner rep-
resentation ρd) has image in U(h)(OF ) where h is as above (this is in
subsection 4.1 of [V]). By Lemma 11, the image is finite if and only
if U(h)(OF ) is finite. So, by Lemma 13, the image is finite if and
only if condition (6) holds. By the above lemma, this is equivalent to
condition (1). �

6. Algebraic Lauricella Functions

We list some corollaries to Theorem 8. We assume as before, that
µj =

kj
d

and µ∞ are rational and not integral. The corollaries be-
low follow from the finiteness of monodromy and the observation that
the Lauricella FD-functions are the period integrals associated to ho-
mology classes in the curve C whose affine part is given by yd =
(x− z1)k1 · · · (x− zn+1)kn+1 , with x 6= z1, . . . , zn+1 and y 6= 0.

Corollary 2. The Lauricella FD -function

FD(z1, · · · , zn+1) =

∫ zj

zi

dx

y
,
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for i 6= j, is an algebraic function of the variables z1, · · · , zn+1 if and
only if condition (1) holds for the numbers (n, d, ki).

The following corollary is to be read up to equivalence of the µj as
defined in the Introduction.

Corollary 3. If n + 1 ≥ 6, then the function FD(z1, · · · , zn+1) is not
algebraic.

If n+ 1 = 5, then FD is algebraic if and only if d = 6 and all the ki
are equal to 1.

If n+ 1 = 4, then FD is algebraic if and only if d = 6 and all the ki
are equal to 1; or else, all but one of the ki are equal to 1 and one of
the ki = 2.

If n + 1 = 3, and if FD is algebraic, then d = 2m and k1 = k2 = p
and k3 = m− p, or else d, ki lie in a finite list, with d ≤ 60.
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