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Abstract. These are the notes for some lectures given by this author at Harish-

Chandra Research Institute, Allahabad in March 2014 for a workshop on Schur

multipliers. The lectures aimed at giving an overview of the subject with emphasis

on groups of Lie type over finite, real and p-adic fields. The author thanks Prof.

Pooja Singla for the first draft of these notes and Shiv Prakash Patel for the second

draft of these notes.

1. Introduction

Definition 1. Let G be a group and A an abelian group. A group E is called a central

extension of G by A if there is a short exact sequence of groups,

1→ A
i−→ E

p−→ G→ 1 (1)

such that image of i is contained in the center of E.

Isomorphism classes of central extensions of G by A are parametrized by H2(G,A),

where A is considered to be a trivial G-module. Indeed, if s : G → E is a section

of p then β : G × G → A given by β(g1, g2) := s(g1)s(g2)s(g1g2)
−1 defines a 2-

cocycle on G with values in A. On the other hand, if β : G × G → A is a 2-

cocycle on G with values in A, then the binary operation on E = G × A defined

by (g1, a1)(g2, a2) := (g1g2, a1a2β(g1, g2)) makes E into a group, which is a central

extension of G by A.

A closely related group which comes up in the study of central extensions is the

Schur multiplier of a group G defined to be H2(G,Z). Since Q/Z is an injective

abelian group Ext1(H1(G,Z),Q/Z) = 0, hence by the universal coefficient theorem

recalled below, H2(G,Q/Z) ∼= Hom(H2(G,Z),Q/Z), i.e. Pontryagin dual of H2(G,Z)

classifies central extensions of G by Q/Z.

Theorem 2 (Universal Coefficient theorem). Let G be a group and A an abelian

group, considered as a trivial G-module. Then we have a short exact sequence of
1
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abelian groups as follows:

0 //Ext1(H1(G,Z), A) //H2(G,A) //Hom(H2(G,Z), A) //0.

This sequence is split (though not in a natural way).

Let us consider the following two extreme cases of G.

(1) Gab := G/[G,G] = H1(G,Z) = 1.

(2) G = Gab.

Let us consider the first case, i.e. Gab = 1, in which case H1(G,Z) = 1. In this case,

the universal coefficient theorem reduces to,

H2(G,A) ∼= Hom(H2(G,Z), A). (2)

In particular, there exists a central extension G̃ of G by A = H2(G,Z) corresponding

to the identity, Id ∈ Hom(H2(G,Z), H2(G,Z)):

1→ H2(G,Z)→ G̃→ G→ 1. (3)

This central extension G̃ of G by H2(G,Z) is universal in the sense that any central

extension E of G by A is given by a push-out diagram for a group homomorphism

ϕ : H2(G,Z)→ A as follows:

0 // H2(G,Z) //

ϕ

��

G̃ //

��

G //

��

0

0 // A // E // G // 0,

where E = [G̃× A]/∆H2(G,Z).

In the second extreme case, we have G = Gab, i.e. G is abelian. For an abelian

group G, we have

H2(G,Z) ∼= Λ2G :=
G⊗G

{g ⊗ g : g ∈ G}
. (4)

The universal coefficient theorem for an abelian group G gives a split exact sequence

as follows:

0 //Ext1(G,A) //H2(G,A) //Hom(Λ2G,A) //0. (*)

This exact sequence can be nicely interpreted in terms of extensions. Recall that

H2(G,A) classifies central extensions E of G by A. Among these central extensions

E, those which are abelian correspond to the subgroup Ext1(G,A) of H2(G,A). The
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map from H2(G,A) to Hom(Λ2G,A) is given by taking arbitrary lifts g1, g2 elements

of G to E, and taking their commutator in E which is an element of A. This clearly

gives a homomorphism from Λ2G to A. In particular, if A is a divisible abelian group

such as A = Q/Z, then since Ext1(G,A) = 0 (for G abelian),

H2(G,A) ∼= Hom(Λ2G,A).

The exact sequence (*) is known to be split. We show by an example that the exact

sequence (*) is not canonically split. For this, take G = V = Z/2+Z/2, and A = Z/2.

It is known that H∗(Z/2,Z/2) is the polynomial algebra on H1(Z/2,Z/2) ∼= Z/2, and

therefore by the Kunneth theorem, H∗(Z/2 + Z/2,Z/2) ∼= Sym∗[V ∨] ∼= Z/2[X, Y ].

In particular, H2(Z/2 + Z/2,Z/2) ∼= Sym2[V ∨]. Further, Ext1(V,Z/2) ∼= V ∨. The

exact sequence:

0 //Ext1(G,A) //H2(G,A) //Hom(Λ2G,A) //0,

becomes,

0 //V ∨ //Sym2[V ∨] //Z/2 //0,

where the map from V ∨ to Sym2[V ∨] is given by v → v ⊗ v. It is known that for

Aut(G) = Aut(V ) = GL2(Z/2), the above is a nonsplit exact sequence of Aut(V )-

modules.

2. The Dual point of view

Recall that a central extension of a group G by an abelian group A is another group

E such that A is contained in the center of E and E/A ∼= G, i.e. we have an exact

sequence of groups

1→ A→ E → G→ 1.

A common theme in categorical mathematics is that many notions in an abstract

category remain meaningful by reversing arrows! Reversing arrows in the above exact

sequence, we get:

1→ G→ E → A→ 1,

i.e., now G sits as a normal subgroup inside a group E with quotient A, which we

don’t necessarily assume to be abelian, and then change notation from A to Q.

We ask the following question from a dual point of view to the central extension.
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Question 3. For a group G and another group Q, what are the way in which G sits

in a group E as a normal subgroup with quotient E/G ∼= Q? In other words, what

are the isomorphism classes of extension of groups E which give rise to a short exact

sequence of groups as follows:

1→ G→ E → Q→ 1.

Note that given a normal subgroup G of a group E with quotient Q, there exists a

natural homomorphism φ : Q → Out(G), where Out(G) is the group of outer auto-

morphism of G which is defined as Aut(G)/Inn(G), where Aut(G) is the group of all

automorphisms of G and Inn(G) is the normal subgroup of the group of inner auto-

morphisms of G. The mapping φ : Q → Out(G) is defined by choosing an arbitrary

lift ã of a ∈ Q in E, and using the automorphism of G given by conjugation by ã,

the automorphism of G considered as an element of Out(G) being independent of the

choice of the lift ã of a.

The group Out(G) is an important invariant of a group G, which has been much

studied in all branches of mathematics where groups play a role.

Let C be the center of G. An element ξ ∈ H2(Q,C) corresponds to a central

extension

0→ C → E → Q→ 0.

This gives rise to a push-out diagram:

0 // C //

��

E //

��

Q //

��

0

0 // G // Ẽ // Q // 0,

where Ẽ := [E ×G]/∆(C). Thus we have a natural map

H2(Q,C)→ Ext1(Q,G). (5)

As described above, 0→ G→ Ẽ
p−→ Q→ 0 gives rise to a natural map,

Ext1(Q,G)→ Hom(Q,Out(G)). (6)

Given a homomorphism ϕ : Q → Out(G), we have a pull-back diagram of the

natural exact sequence

1→ G/C → Aut(G)→ Out(G)→ 1,
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given by

1 // G/C // E = Aut(G)×Out(G) Q //

ϕ

��

Q //

��

1

1 // G/C // Aut(G) // Out(G) // 1.

This gives us a morphism of sets Hom(Q,Out(G))→ Ext1(Q,G/C).

Associated to the short exact sequence

1→ C → G→ G/C → 1,

we have an exact sequence of pointed sets

0 // Ext1(Q,C) // Ext1(Q,G) //

((

Ext1(Q,G/C) // · · ·

H2(Q,C) Hom(Q,Out(G))

OO

giving rise to

0→ H2(Q,C)→ Ext1(Q,G)→ Hom(Q,Out(G)).

The following theorem summarizes the above discussion.

Theorem 4. Let C be the center of a group G. Then for any group Q, we have an

exact sequence of pointed sets:

0→ H2(Q,C)→ Ext1(Q,G)→ Hom(Q,Out(G)).

making Ext1(Q,G) into a principal homogeneous space with fibres abelian groups

H2(Q,C) and base which is the subset of Hom(Q,Out(G)) consisting of those ho-

momorphisms from Q to Out(G) which is realized by an extension of Q by G.

If the center of G is trivial, then

Ext1(Q,G) ∼= Hom(Q,Out(G)).

Proof. We only make some remarks on the last assertion in the theorem. If C =

{e}, then the morphism of sets Hom(Q,Out(G)) → Ext1(Q,G/C), gives rise to a

morphism of sets

Hom(Q,Out(G))→ Ext1(Q,G).

This can be easily seen to be inverse of the morphism of sets in (6) and therefore if

C = {e}, we have an isomorphism of sets

Ext1(Q,G) ∼= Hom(Q,Out(G)).
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Example. As an example, we consider possible extensions of Z/2Z by GLn(C)

1→ GLn(C)→ E → {±1} → 1,

such that −1 acts on GLn(C) via the outer automorphism given by g 7→t g−1. We

note that the outer automorphism group of GLn(C) is isomorphic to Z/2 gener-

ated by g 7→t g−1. By the above theorem, the number of extensions correspond-

ing to this outer automorphism of GLn(C) is exactly the number of elements in

H2({±1}, Z(GLn(C))) = H2({±1},C×), where {±1} acts on C× by x 7→ x−1. Since

the cohomology of a finite cyclic group is periodic with period 2, the 2nd cohomology

reduces to the 0th (Tate) cohomology, which is easily seen to be Z/2 in this case.

This means that there are exactly two extensions of Z/2 by GLn(C), one of which is

the trivial one, i.e., a semi-direct product, and the other one given by generators and

relations as {GLn(C); j} with j2 = −1, jgj−1 = jt0g
−1j−10 with j0 the anti-diagonal

matrix with entries (1,−1, 1,−1, · · · ).

3. Examples

Examples (Examples of central extensions of certain abelian groups:).

(1) Central extensions of Z/2Z by Z/2Z: There are two extensions in this case.

One of them is the trivial extension, i.e., the direct product, and the other

one is the non-trivial extension,

0→ Z/2Z→ Z/4Z→ Z/2Z→ 0.

(2) Let Fq be the finite field with q = pn-elements. There is a non-trivial central

extension H(F2n
q ) of F2n

q by Fq for all positive integer n, called the Heisenberg

group, i.e.

0→ Fq → H(F2n
q )→ F2n

q → 0.

The simplest realization of H(F2n
q ) is the group of (n + 1) × (n + 1) upper

triangular unipotent matrices with only non-diagonal nonzero entries (from

Fq) in the first row and last column.

Example (Central extension of {±1}n−1). Let On(R) be defined as isometry group of

the quadratic form given by q(x) = x21 + · · ·+ x2n, and let SOn(R) = On(R)∩ SLn(R).

Consider the {±1}n ↪→ On(R) as the group of diagonal matrices with entries +1 or

−1. Identify {±1}n−1 to be the subgroup of {±1}n consisting of those elements of

{±1}n with even number of −1’s. Define Fn−1 to be the 2-fold cover of {±1}n−1
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which is obtained from the pull back of {±1}n−1 ↪→ SOn(R) through the spin cover

Spinn(R)→ SOn(R), i.e.

Fn−1 //

��

Spinn(R)

��
{±1}n−1 // SOn(R).

Then Fn−1 is a non-trivial 2-fold cover of {±1}n−1. Let us describe the group Fn−1
more explicitly (via the usual Clifford algebra construction which we hide).

We will describe Fn−1 as a subgroup of another group En defined below. As a set En
is

En = {εeA | ε ∈ {±1}, A ⊂ {1, · · · , n}},

where {±1} lies in the center of En and

Fn−1 = {εeA | #(A) = even }.

For A = {ei1 , · · · , eij} with i1 < · · · < ij, we write eA := ei1 · · · eij with convention

that e∅ = 1. The elements ei’s satisfy the relation eiej = −ejei for i 6= j and e2i = 1.

For ε1, ε2 ∈ {±1} and A,B ⊂ {1, · · · , n}, define the multiplication as

(ε1eA)(ε2eB) = ε1ε2ε(A,B)e(A∪B)−(A∩B),

where ε(A,B) is determined by the relations relations among ei’s given above.

Theorem 5.

(a) En and Fn−1 define a non-trivial central extension of {±1}n and {±1}n−1 by

{±1} respectively. Fn−1 is isomorphic to the one obtained from 2-fold cover

Spin(n)→ SO(n).

(b) [En, En] = {±1}.
(c) The center of En is {±1} if n is even, and {±1,±e1 · · · en} if n is odd, whereas

the center of Fn−1 is {±1} if n is odd, and {±1,±e1 · · · en} if n is even.

Remark 6. The group En for n even, and Fn−1 for n odd is what’s called an extra

special 2 group. They have a unique irreducible representation of dimension > 1,

which is equal to 2[n/2] where [n/2] refers to the integral part of n/2.

Example (Central extensions of alternating groups). Let Sn be the symmetric group

on a finite set of n elements. Let An ⊂ Sn be the subgroup of even permutations. It

is known that H2(An,Z) = Z/2Z if n = 5 or n > 7; H2(A6,Z) ∼= H2(A7, Z) ∼= Z/6Z.

In particular, An for n ≥ 5 have a unique 2-fold cover Ãn. We construct Ãn using the

spin cover of SO(n) below.
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Let {e1, · · · , en} be an orthonormal basis of an n-dimensional quadratic space over

R. We identify Sn with the group of matrices, which permute the basis vectors

{e1, · · · , en}. This gives rise to an embedding Sn ↪→ On(R) and hence An ↪→ SOn(R).

Define Ãn to be the 2-fold cover of An which is obtained from the pull-back of the

An → SOn(R) and Spinn(R)→ SOn(R), i.e.

Ãn //

��

Spinn(R)

��
An // SOn(R).

Then Ãn is a non-trivial 2-fold cover of An.

Let us directly describe the 2-fold cover of An, which arises in the above fashion.

We will define a two fold cover of Sn such that the 2-fold cover of An is obtained from

that of restriction to An. The group Sn has a presentation on n − 1 generators, say

t1, · · · , tn−1 with the following relations:

(a) t2i = 1 for 1 ≤ i ≤ n− 1.

(b) ti+1titi+1 = titi+1ti for 1 ≤ i ≤ n− 2.

(c) tjti = titj for |i− j| > 1.

We use these relations to describe a two fold cover S̃n of Sn. The group S̃n has

generators z, t1, · · · , tn with the following relation:

(a) z2 = 1.

(b) titi = z for 1 ≤ i ≤ n− 1.

(c) ti+1titi+1 = titi+1ti for 1 ≤ i ≤ n− 2.

(d) tjti = titj for |i− j| > 1.

Theorem 7. Let Ãn be the 2-fold cover of An which is the restriction of the above

defined cover S̃n of Sn.

(1) The Ãn is a non-trivial 2-fold cover of An if and only if n ≥ 4.

(2) For n ≥ 4, up to an isomorphism, Ãn is the only non-trivial 2-fold cover of

An, which is isomorphic to the 2-fold cover of An obtained from the pull back

of 2-fold cover Spinn(R)→ SOn(R).

4. Real groups

For G a semisimple real group, we randomly pick a few examples.
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(1) SU(n) is simply connected.

(2) Simply connected cover of SO(n) is Spin(n), which is a 2-fold cover of SO(n),

i.e. we have

0→ Z/2Z→ Spin(n)→ SO(n)→ 1.

(3) π1(SLn(R)) = Z/2 if n > 2, and equals Z for n = 2.

(4) π1(Spin(p, q)) = 1,Z,Z/2 depending on whether min(p, q) ≤ 1, min(p, q) = 2,

min(p, q) > 2.

Remark 8. Information on the (topological) fundamental group of a semi-simple

simply connected real algebraic group G(R) seems not to be clearly spelled out in the

literature. It is known that the only options for π1(G(R)) = π1(K) for K a maximal

compact subgroup of G(R), are 1,Z/2,Z, and the only cases when π1(K) = Z are the

Hermitian symmetric cases. The only cases in which the fundamental group is trivial

is for SU∗(2n), Sp(p, q), Spin(n, 1), the non-split inner form of E6, and the rank 1 form

of F4. It is known that real forms G′ of a group G are in bijective correspondence

with conjugacy classes of involutive automorphisms σ on the compact real form K of

G, such that the maximal compact subgroup of G′ is K ′ = Kσ. Since K ′ has the same

fundamental group as G′, the question on π1(G
′) amounts to a question in algebraic

groups: for an involution on a simple simply connected algebraic group, when is the

fixed points semi-simple, and when it is semi-simple and simply connected.

5. Two questions

We pose two questions here which we are not sure are already answered in existing

literature!

Question 9. Let G be any finite or compact connected Lie group. Is any two fold

cover of G obtained from the pull-back of Spin(n), the two fold spin cover of SO(n),

through a map ϕ : G→ SO(n)?

Question 10. Is H∗(G,Z/2Z) generated as an algebra by ωi(ρ), as ρ : G → O(n)

varies over all orthogonal representations of G and ωi(ρ)’s are Stiefel-Whitney classes

of orthogonal representations ρ?

Remark 11. The question seems analogous to the Hodge conjecture in Algebraic

Geometry which is about generators of certain cohomologies by Chern classes of vector

bundles.
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6. Relation of central extensions to K2

Theorem 12 (Steinberg). If n ≥ 3, then H2(SLn(F ),Z) ∼= K2(F ) provided that we

exclude n = 3 and |F | = 2 or 4, and n = 4 and |F | = 2.

Remark 13. For a, b ∈ F× and n ≥ 3, let

ra =


a

a−1

1
. . .

1

 , τb =


b

1

b−1

. . .

1

 ∈ SLn(F ).

Let 1→ C → E
p−→ SLn(E)→ 1 be a central extension of SLn(F ). Note that [r̃a, τ̃b]

is a well defined element in E, where r̃a and τ̃b are arbitrary element in the inverse

images p−1ra and p−1τb respectively. Since ra and τb commute in SLn(F ), [r̃a, τ̃b] ∈ C.

This defines a map (a, b) 7→ {a, b} := [r̃a, τ̃b] ∈ C from F× × F× → C. Moreover,

{a, b1b2} = [r̃a, τ̃b1b2 ] = [r̃a, τ̃b1 τ̃b2 ] = [r̃a, τ̃b1 ] · [r̃a, τ̃b2 ] · [τ̃b1 , [τ̃b2 , r̃a]]−1 = {a, b1}{a, b2}.

Similarly {a1a2, b} = {a1, b}{a2, b}. Therefore this map is bi-multiplicative in both

the coordinates. An important point to note is that instead of coroots ra, τb we could

have taken any other two distinct coroots with nonzero inner product for defining the

element {a, b}. This follows because the Weyl group operates transitively on the set

of distinct coroots with nonzero inner product. (If the coroots are orthogonal to each

other, then they belong to distinct commuting SL2(F ), and hence their commutator in

any central extension is trivial.) Furthermore, it can be verified that r̃ar̃b = {a, b}r̃ab
which allows one to prove the last two of the following identities (the first being

trivial); for all this —which although is no more than matrix manipulation, is quite

tricky, and due to Steinberg— see the book of Milnor [3].

(1) {a, b}{b, a} = 1.

(2) {a,−a} = 1.

(3) {a, 1− a} = 1.

Thus the map (a, b) 7→ {a, b} factors through

K2(F ) :=
F× ⊗ F×

{a⊗ (1− a) | a(1− a) 6= 0}
.

Since SLn(F ), n ≥ 3 is easily seen to be a perfect group, SLn(F ) has a universal central

extension with H2(SLn(F ),Z), as the center of the universal central extension. The
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above analysis with the universal central extension of SLn(F ) by H2(SLn(F ),Z) gives

a map K2(F )→ H2(SLn(F ),Z) which by a theorem of Steinberg is an isomorphism.

The following more general theorem is due to Matsumoto.

Theorem 14. Let G be a simple, simply connected split algebraic group over an

infinite field F . Then

H2(G(F ),Z) ∼= K2(F )

except for groups of type Cn, n ≥ 1, when H2(G(F ),Z) has K2(F ) as a quotient,

and in fact K2(F ) is the maximal quotient of H2(G(F ),Z) on which Aut(G)(F ) acts

trivially.

Remark 15. It is easy to see that K2(Fq) = {1} for a finite field Fq. Also, it is also

known that simple simply connected algebraic groups G, G(Fq) have no non-trivial

central extensions except in a small number of cases that we enumerate later. But

the author of these notes has not seen any uniform theorem proving this such as the

very precise theorem 12 above due to Steinberg (the problem is for small fields such

as F2,F3, and F4).

Remark 16. There seems no such precise theorem for quasi-split groups over general

fields. Deodhar has defined in [2] what he calls a Moore group which depends only on

the field of which H2(G(F ),Z) is a quotient of.

Theorem 17. If G is simply connected simple algebraic group defined over Fq, then

(1) Gab = {e}, i.e. G is perfect, except the following:

SL2(F2) ∼= S3, SL2(F3) ∼= Ã4, Sp4(F2), G2(F2), SU3(F2).

(2) If G = Gab, then G is its own universal central extension, except if G is one

of the following:

SL2(F4) ∼= PSL2(F5), SL2(F9), SL3(F2) ∼= PSL2(F7), SL3(F4),

SL4(F2) ∼= A8, Spin7(F2) ∼= Sp6(F2), Sp4(F2) ∼= S6, Spin7(F3), Spin8(F2),

F4(F2), G2(F3), G2(F4), SU4(F2), SU4(F3), SU6(F2),
2E6(F2).

Remark 18. Let Z be the center of a connected algebraic group G defined over Fq
which we assume is a finite (algebraic) group. It is curious to observe that the central

extension

1→ Z(Fq)→ G(Fq)→ G(Fq)/Z(Fq)→ 1
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has a “dual extension”, given by the following part of the long exact sequence asso-

ciated to the exact sequence 1→ Z → G→ G/Z → 1 of algebraic groups:

1→ Z(Fq)→ G(Fq)→ (G/Z)(Fq)→ H1(Gal(Fq/Fq), Z)→ H1(Gal(Fq/Fq), G)→ · · · ,

but H1(Gal(Fq/Fq), G) = {1} by Lang’s theorem. Thus we have

1→ Z(Fq)→ G(Fq)→ (G/Z)(Fq)→ H1(Gal(Fq/Fq), Z)→ 1.

It is well known that for Gal(Fq/Fq) = Ẑ, and for a module A of Ẑ with A∨ =

Hom(A,Q/Z) with natural Ẑ structure, there is a perfect pairing:

H1(Ẑ, A)×H0(Ẑ, A∨)→ H1(Ẑ,Q/Z) = Q/Z,

and hence

H1(Gal(Fq/Fq), Z) ∼= Z(Fq).

Therefore the above part of the long exact can be written as the following short exact

sequence:

1→ G(Fq)/Z(Fq)→ (G/Z)(Fq)→ Z(Fq)→ 1.

7. Central extension of Algebraic groups

The following basic theorem is due to C. Moore, Matsumoto, Deodhar, G. Prasad,

Raghunathan, and Rapinchuk.

Theorem 19. Let G be an absolutely simple, simply connected algebraic group which

is isotropic over k, a non-Archimedean local field, with µ(k) the cyclic group of roots

of unity in k, or k = R, and G split but not of type Cn, n ≥ 1. Then there exists a

natural isomorphism H2(G(k),Q/Z) ∼= Hom(µ(k),Q/Z).

Given this theorem, two important questions immediately come to mind (which is

also the way the theorem is proved):

(1) What is the functorial nature of the group H2(G(k),Q/Z) as the field k varies?

(2) What is the functorial nature of the group H2(G(k),Q/Z) as the group G

varies?

The following theorem due to C. Moore, Deodhar, G. Prasad, Raghunathan, and

Rapinchuk is useful to answer such questions.
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Theorem 20. Let G be an absolutely simple, simply connected algebraic group which

is isotropic over k, a local field. Let S be a maximal split torus in G, and α a root of

G with respect to S. Let Gα be the (simply connected semi-simple) group generated

by the root subgroups Uα and U−α. Then if α is a long root in the relative root system

of G with respect to S (which if the root system is not reduced means that α/2 is a

root), the restriction map from H2(G(k),Q/Z) to H2(Gα(k),Q/Z) is injective.

Regarding question 1 above, let E/F be a finite separable extension of non-Archimedean

local fields. Let m be an integer such that the m-th roots of unity are contained in

F×. Let (−,−)Fm denote the Hilbert symbol on F with values in the m-th roots of

unity in F , and similarly, let (−,−)Em denote the Hilbert symbol on E with values in

the m-th roots of unity in E. Then it is known that,

(a, b)Em = (a, b)F dm ,

where a, b ∈ F×, and d is the degree of the field extension E/F . By the way central ex-

tensions of G(E) and G(F ) are constructed using Hilbert symbols, it follows that the

restriction from H2(G(E),Q/Z) to H2(G(F ),Q/Z) lands inside d·H2(G(F ),Q/Z), in

particular any central extension of G(E) by µd ⊂ F× becomes trivial when restricted

to G(F ) whenever the degree of E over F is a multiple of d.

Regarding question 2 above, there is a general recipe due to Deligne. For this

assume that G and H are simple, simply connected, split groups with maximal tori

T and S, and a morphism φ : H → G defined over F taking S to T . Assume that

α∨ : Gm → S ⊂ H is a coroot in H corresponding to a long root α for H which under

φ goes to the coroot φ(α∨) for G. Fix a Weyl group invariant positive definite integral

bilinear form on the cocharacter group of T such that the corresponding quadratic

form QG takes the value 1 on any coroot corresponding to a long root of T in G. Let

d = QG(φ(α∨)). Then the restriction from H2(G(F ),Q/Z) to H2(H(F ),Q/Z) has

its image equal to d ·H2(H(F ),Q/Z).

Remark 21. Although it is not meaningful to talk about central extensions of G(k̄)

for the algebraic closure k̄ of a non-Archimedean local field k, since there are none

which are non-trivial, for each finite Galois extension K of k, there is a rich supply

of central extensions, say E(K) of G(K) which carry the Galois action too; the only

(slight) issue is that the Gal(K/k)-invariants in E(K) is an extension of G(k) is

not necessarily a non-trivial extension—still a perfectly fine context to think about

basechange issues.
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8. Some results about Galois groups of number fields

The notion of Schur multiplier, and the dual notion of constructing extensions of

a group are also studied for Galois groups of number fields and local fields, and have

important implications in the subject. We simply state two most important results

on these.

Theorem 22 (Tate). For any number field F , H2(Gal(F̄ /F ),C×) = {1}.

Theorem 23 (Neukirch). The group of outer automorphism Out(Gal(Q̄/Q)) = {1}.
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