Homework problems given by Prof. J. Tate in a course on Algebra 250(a) at Harvard in the Fall of 1985.

October 22, 1985

(1) Suppose $f(X)$ is irreducible and G_f is abelian. Prove that the order of G_f is the degree of f.

(2) Suppose K/F is a finite Galois extension. Let $G = \text{Gal}(K/F)$.
 (a) Suppose G acts transitively on a set I. Show that there exists a family $(\alpha_i)_{i \in I}$ of elements of K such that $\sigma(\alpha_i) = \alpha_{\sigma i}$ for all $\sigma \in G$.
 (b) Let n be an integer ≥ 0 and suppose $h : G \hookrightarrow S_n$ is an injective group homomorphism. Show that if F has at least n elements, then there is a polynomial $f(X) \in F[X]$ with distinct roots such that K is a splitting field for f over F and such that $G_f = h(G) \subset S_n$.

(3) Let $\alpha_1, \alpha_2, \ldots, \alpha_n$ be “variables” and

\[f(X) = \prod_{i=1}^{n}(X - \alpha_i) = X^n - a_1X^{n-1} + \ldots \]

Put:

\[\beta = \sum_{\pi \in A_n} \alpha_{\pi(2)}\alpha_{\pi(3)}^2 \cdots \alpha_{\pi(n)}^{n-1} \text{ and } \gamma = \sum_{\pi \in S_n \setminus A_n} \alpha_{\pi(2)}\alpha_{\pi(3)}^2 \cdots \alpha_{\pi(n)}^{n-1}. \]

(a) Show that $(\beta - \gamma)^2 = df$ (the discriminant of f).
(b) Let $b = \beta + \gamma$ and $c = \beta\gamma$. How do you know b and c are in $\mathbb{Z}[a_1, a_2, \ldots]$.
(c) For $n = 2$ and 3, give b and c explicitly as elements of $\mathbb{Z}[a_1, a_2]$, and of $\mathbb{Z}[a_1, a_2, a_3]$ (Recall : $f(X) = X^n - a_1X^{n-1} + a_2X^{n-2} - \ldots$).
(d) Now drop the assumption that the α_i are “variables”. Let F be a field, $a_i \in F$, $1 \leq i \leq n$, and suppose $df \neq 0$. Let K be a splitting field for f over F, i.e., $K = F(\alpha_1, \ldots, \alpha_n)$ and $G = \text{Gal}(K/F)$. Show that the fixed field of $G_f \cap A_n$ is the splitting field of the quadratic polynomial $X^2 - bX + c$, regardless of the characteristic.
(e) Let $F = \mathbb{F}_2(t)$, t transcendental. Find G_f in the following cases:
\begin{enumerate}
 \item $f(X) = X^3 + tX + 1$;
 \item $f(X) = X^3 + t^3X + t^2$;
 \item $f(X) = X^3 + t^2X + (t+1)$;
\end{enumerate}
(f) Show that if the $a_i \in \mathbb{Z}$, then $df \equiv 0$ or $1 \pmod{4}$ (just express df in terms of b and c).

(4) Let

\[f(X) = X^4 - a_1X^3 + a_2X^2 - a_3X + a_4 = \prod_{i=1}^{4}(X - \alpha_i) \]
with \(a_i \in F \), \(F \) a field, \(\alpha_i \in K = F(\alpha_1, \ldots, \alpha_4) \), the splitting field. Put
\[
\beta_1 = \alpha_1\alpha_2 + \alpha_3\alpha_4, \quad \beta_2 = \alpha_1\alpha_3 + \alpha_2\alpha_4, \quad \beta_3 = \alpha_1\alpha_4 + \alpha_2\alpha_3,
\]
and let:
\[
g(X) = (X - \beta_1)(X - \beta_2)(X - \beta_3) = X^3 - a_2X^2 + (a_1a_3 - 4a_4)X + (a_1^2a_4 + a_3^2 - 4a_2a_4)
\]
be the “cubic resolvent” of \(f \). Prove that \(d_f = d_g \) (discriminants). Suppose \(d_f \neq 0 \), and \(\text{char} F \neq 2 \) when necessary. Assume also that \(f(X) \) has no root in \(F \).

(a) Show that \(f \) has a quadratic factor in \(F[X] \) if and only if, for some \(i \),
\[
\beta_i \in F \quad \text{and both} \quad a_1^2 - 4a_2 + 4\beta_i \quad \text{and} \quad \beta_i^2 - 4a_4 \quad \text{are squares in} \quad F.
\]
(b) \(G_f = S_4 \iff g \) has no root in \(F \) and \(d_f \) not a square in \(F \); \(G_f = A_4 \iff g \) has no root in \(F \) and \(d_f \) is a square in \(F \).

Suppose from now on, that \(f \) is irreducible in \(F[X] \) and \(g \) has a root, say \(\beta_1 \), in \(F \).

(c) Show that \(G_f \) is a group of order a power of 2, so is contained in a 2-Sylow subgroup of \(S_4 \).
(d) Show \(G_f = V \overset{\text{defn}}{=} \{(1), (12)(34), (13)(24), (14)(23)\} \) if and only if \(g \) has three roots in \(f \), if and only if \(d_f \) is a square in \(F \).

(e) Suppose \(G_f \) has exactly one root in \(F \). Show that \(G_f \) is cyclic of order 4, or is dihedral of order 8, and give a criterion to decide which.

(f) Find \(G_f \)'s for the following five quartic \(f \)'s:
\[
\begin{align*}
\text{ (i) } & \quad x^4 + x^3 + x^2 + x + 1; \\
\text{ (ii) } & \quad x^4 + x + 1; \\
\text{ (iii) } & \quad x^4 + 2; \\
\text{ (iv) } & \quad x^4 + 8x + 12; \\
\text{ (v) } & \quad x^4 - 2x^2 + 9.
\end{align*}
\]
October 29, 1985

(1) Let \(f(X) \in \mathbb{Z}[X] \) be an irreducible quintic. We have seen in class that its group, \(G_f \), has order 120, 60, 20, 10 or 5, being isomorphic to \(S_5 \), \(A_5 \), or to the group of permutations of \(\mathbb{F}_5 \) of the form \(x \mapsto ax + b \) for \(a \in \mathbb{F}_5^\times \), or \(a = \pm 1 \), or \(a = 1 \). For \(i = 0, 1, 2, 3, 5 \), let \(\mathcal{P}_i \) denote the set of prime numbers \(p \) such that the congruence \(f(X) \equiv 0 \mod p \) has exactly \(i \) incongruent solutions mod \(p \). Assuming the Tschebotaroff density theorem, make a table giving, for each of the five possible \(G_f \)'s, the density of \(\mathcal{P}_i \) in that case. For example, the density of \(\mathcal{P}_5 \) is \(\frac{1}{120} \), \(\frac{1}{60} \), \(\frac{1}{20} \), \(\frac{1}{10} \), or \(\frac{1}{5} \), i.e., is \(|G_f|^{-1} \) in each case.

(2) Consider the polynomials

\[
\begin{align*}
A(X) & = X^5 - X^3 - 2X^2 - 2X - 1, \\
B(X) & = X^5 - X + 3, \\
C(X) & = X^5 + X^4 - 4X^3 - 3X^2 + 3X + 1, \\
D(X) & = X^5 - 5, \\
E(X) & = X^5 + 10X^3 - 10X^2 + 35X - 18.
\end{align*}
\]

Each of these five is irreducible. Their discriminants are:

\[
\begin{align*}
d_A & = 47^2, \\
d_B & = 252869 \text{ (prime)}, \\
d_C & = 11^4, \\
d_D & = 5^9, \\
d_E & = 2^6 5^8 11^{12}.
\end{align*}
\]

The following is a table, produced in about 25 hours of running time by my Macintosh, giving for each polynomial the number of primes in \(\mathcal{P}_i \) among the first 360 primes. (Thus, the sum of each row is 360).

<table>
<thead>
<tr>
<th></th>
<th>0 roots</th>
<th>1 root</th>
<th>2 roots</th>
<th>3 roots</th>
<th>5 roots</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A)</td>
<td>147</td>
<td>180</td>
<td>0</td>
<td>1</td>
<td>32</td>
</tr>
<tr>
<td>(B)</td>
<td>143</td>
<td>131</td>
<td>58</td>
<td>27</td>
<td>1</td>
</tr>
<tr>
<td>(C)</td>
<td>288</td>
<td>1 ((p = 11))</td>
<td>0</td>
<td>0</td>
<td>71</td>
</tr>
<tr>
<td>(D)</td>
<td>78</td>
<td>272</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(E)</td>
<td>142</td>
<td>88</td>
<td>128</td>
<td>0</td>
<td>2</td>
</tr>
</tbody>
</table>

The primes among the first 360 which are in \(\mathcal{P}_5 \), i.e., for which \(f(X) \) splits in \(\mathbb{F}_p \), are in each case as follows:

\[
\begin{align*}
A & : p = 83, 191, 197, 269, 439, 487, 523, 619, 761, 823, 907, 947, \\
& \quad 977, 1193, 1277, 1319, 1447, 1481, 1499, 1579, 1693, 1709, 1741, \\
& \quad 1811, 1861, 1867, 2053, 2213, 2221, 2273, 2339, 2351. \\
B & : \text{ just } p = 1609. \\
C & : \text{ all primes } p \equiv \pm 1 \pmod{11}, \text{ i.e., } p = 23, 43, 67, 89, \ldots, \\
& \quad 2287, 2309, 2311, 2333, 2377, 2399. \\
D & : p = 31, 191, 251, 271, 601, 641, 761, 1091, 1861, 2381. \\
E & : \text{ just } p = 2063 \text{ and } 2213.
\end{align*}
\]

Armed with all this information (you don’t really need much of it), and using the simple form of \(D(X) \), determine the groups \(G_B, G_E \) and \(G_D \). What are the only possibilities for \(G_A \) and \(G_C \)? Which of these possibilities do you guess is the correct one?
(3) Guess what the splitting field of G_C is. Try to prove your guess by guessing the element α in that field whose minimal polynomial is $C(X)$.

(4) To prove your guess for G_A is not so easy without a clue. To show it by brute force, let α be a root of $A(X)$ and check that in $\mathbb{Z}[\alpha][X]$, we have:

$$A(X) = (X - \alpha)(X^2 - c_1X + c_2)(X^2 - d_1X + d_2),$$

where

$$c_1 = 2\alpha^4 - \alpha^3 - 2\alpha^2 - 3\alpha - 2, d_1 = -2\alpha^4 + \alpha^3 + 2\alpha^2 + 2\alpha + 2,$$

$$c_2 = -\alpha^4 + \alpha^3 + \alpha^2 + \alpha, d_2 = -\alpha^4 + \alpha^3 + 2\alpha + 1.$$

Please don’t hand in your verification of this. But answer the following: What is the quadratic field contained in the splitting field of $A(X)$?
November 5, 1985

(1) Let $F \subset K$ be finite fields. Prove that $N_{K/F} : K^\times \to F^\times$ is surjective.

(2) Let F be the fraction field of an integral domain A. Prove that A is integrally closed (in F) $\iff A$ has the following property : if $f(X)$ and $g(X) \in F[X]$ are monic and $f(X) \cdot g(X) \in A[X]$, then $f(X)$ and $g(X) \in A[X]$.

(3) Let $F = \mathbb{Q}(i)$ and $K = F(2^{\frac{1}{4}},i^{\frac{1}{4}})$, where $2^{\frac{1}{4}}$ is the positive fourth root of 2 and $i^{\frac{1}{4}} = e^{\frac{2\pi i}{16}}$. Determine $\text{Gal}(K/F)$. Is K/\mathbb{Q} Galois, and if so, what is its Galois group?

(4) (a) A ring of the form $\mathbb{Z}[\alpha]$ has at most two homomorphisms into \mathbb{F}_2. Why?
 (b) Let A be the integral closure of \mathbb{Z} in the field $\mathbb{Q}((\sqrt{-7}, \sqrt{17})$. Find a \mathbb{Z}-basis for A (cf. class discussion on October 31).
 (c) Show that A has four distinct homomorphisms into \mathbb{F}_2 (and consequently there does not exist $\alpha \in A$ such that $A = \mathbb{Z}[\alpha]$).

(5) Find three integers a, b, c such that $\mathbb{Q}(e^{\frac{2\pi i}{4}}) = \mathbb{Q}(\sqrt{a}, \sqrt{b}, \sqrt{c})$.

(6) (a) Prove that \mathbb{R} has no non-trivial automorphism (hint : show that an automorphism of \mathbb{R} is order-preserving automatically).
 (b) Show that the only automorphisms of \mathbb{C} which commute with complex conjugation are the identity and complex conjugation.

(7) Let $\alpha = (2 + \sqrt{2})(3 + \sqrt{3}) = -\sqrt{6}(1 + \sqrt{2})(1 + \sqrt{3})$ and let $\theta = \sqrt{-\alpha} = i\sqrt{\alpha}$. Show $\mathbb{Q}(\theta)/\mathbb{Q}$ is Galois of degree 8. Determine the structure of $G = \text{Gal}(\mathbb{Q}(\theta)/\mathbb{Q})$, and explain why $\mathbb{Q}(\theta)$ is not the splitting field of any polynomial of degree < 8.

(8) Suppose $[F : \mathbb{Q}]$ is odd. Prove that -1 is not a sum of squares of elements of F.

(9) Suppose F is a field of characteristic $p > 0$. The map $x \mapsto x^p - x$ is a homomorphism of the additive group of F into itself with kernel \mathbb{F}_p. Suppose $a \in F$ is not in the image, i.e., suppose the polynomial $f(X) = X^p - X - a$ has no root in F. Show that the splitting field of $f(X)$ is cyclic of degree p over F.
November 12, 1985

(1) Let \(e \) be an idempotent \((e^2 = e) \) in a local ring \(A \) (a ring with a unique maximal ideal). Show that \(e = 0 \) or \(1 \).

(2) Suppose \(A \) is integrally closed in its fraction field \(F \). Prove that the same is true for \(A[X] \) (polynomial ring). (Suggestion: \(F[X] \) is integrally closed, being a PID).

(3) (a) Show that an order \(B \) in a quadratic extension of \(\mathbb{Q} \) is of the form \(B = \mathbb{Z}[\alpha] = \mathbb{Z} + \mathbb{Z}\alpha \), where \(\alpha \) is a root of an irreducible monic quadratic polynomial \(f(X) = X^2 + rX + s \in \mathbb{Z}[X] \).

(b) For each such polynomial \(f \), let \(d_f = r^2 - 4s \) and \(B_f = \mathbb{Z}[\alpha] = \mathbb{Z}[\alpha, \beta] \) where \(\alpha \) and \(\beta \) are the complex (or real) roots of \(f \). Let \(g \) be another irreducible monic quadratic polynomial in \(\mathbb{Z}[X] \). Show \(B_g \subset B_f \iff \exists d_f \sqsubset d_g \), where \(a \sqcup b \) means by definition that \(b = m^2a \), for some \(m \in \mathbb{Z} \), and when that is the case, show that the additive group \(B_f/B_g \) is cyclic of order \(m \), where \(d_g = m^2d_f \).

(c) Thus, \(B_g = B_f \iff d_f = d_g \). Show that the integers \(d \) which occur as discriminants of quadratic orders, i.e., the integers \(d \) of the form \(d_f \) for some \(f \) as above, are those \(d \equiv 0 \) or \(1 \) (mod 4) such that \(d \) is not a perfect square.

(d) Show that \(B_f \) is integrally closed if and only if \(d \sqcup d_f, d \equiv 0 \) or \(1 \) mod 4 \(\Rightarrow d = d_f \), and then the other orders in \(\mathbb{Q}(B_f) \) are the \(B_g 's \) such that \(d_f \sqcup d_g \).

(e) Suppose \(f \) and \(g \) are as in (d), say \(d_g = m^2d_f \). Show for each prime number \(p \) such that \(p \mid d_g \) that there is a unique prime ideal \(P \) of \(B_g \) such that \(p \in P \), and that \(B_g = P + \mathbb{Z} \), i.e., \(B_g/P \cong \mathbb{F}_p \). Show \(P^2 = pB_g \) if \(p \nmid m \), \(P^2 = pP \) if \(p \mid m \).
November 19, 1985

(1) Let k be a field, $\mathbb{M}_2(k)$ the ring of 2×2 matrices $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$ with $a, b, c, d \in k$, and let A be the subring of all such matrices with $c = 0$. The maps $\varphi_1 : \begin{bmatrix} a & b \\ c & d \end{bmatrix} \mapsto a$ and $\varphi_2 : \begin{bmatrix} a & b \\ c & d \end{bmatrix} \mapsto d$ are homomorphisms of A onto k. Let $P_j = \text{Ker} \varphi_j$ for $j = 1, 2$.

Since $\dim_k A = 3 < \infty$, A is of finite length as a left A-module.

(a) Show that A/P_1 and A/P_2 are the only simple A-modules (up to isomorphism).

(b) Compute $P_2 P_1, P_1 P_2, P_2 P_1, P_2^2$ and $P_1 \cap P_2$. Are these the only two sided ideals of A (besides (0) and A)? What are the left ideals?

(c) What are the multiplicities of A/P_1 and A/P_2 in the left A-module A?

(d) Show that A is not isomorphic to the direct product of two non-zero rings.

(2) Consider the cubic polynomials:

<table>
<thead>
<tr>
<th>$f_1(X) = X^3 + X^2 + 7X - 8$</th>
<th>$f_2(X) = X^3 - 8X + 15$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\equiv (X - 6)(X + 5)(X + 2)$ (mod 13)</td>
<td>$\equiv (X + 4)(X + 6)(X + 7)$ (mod 17)</td>
</tr>
<tr>
<td>and is irreducible mod 17, 19 and 29</td>
<td>irreducible mod 13, 29, 29</td>
</tr>
<tr>
<td>$f_3(X) = X^3 + X^2 - 7X + 12$</td>
<td>$f_4(X) = X^3 + 10X + 1$</td>
</tr>
<tr>
<td>$\equiv (X - 8)(X + 8)(X + 1)$ (mod 19)</td>
<td>$\equiv (X - 2)(X - 3)(X - 5)$ (mod 29)</td>
</tr>
<tr>
<td>irreducible mod 13, 17, 29</td>
<td>irreducible mod 13, 17, 19</td>
</tr>
</tbody>
</table>

Each of the four polynomials has discriminant -4027, a prime. Nevertheless, the fields $\mathbb{Q}(\alpha_i)$, α_i a root of $f_i(X)$, are pairwise non-isomorphic. Why?

(3) Suppose $f(X)$ is a monic cubic with coefficients in a finite field k, and suppose the discriminant of f is not a square in k. Prove that $f(X)$ is the product of a linear polynomial and an irreducible quadratic polynomial in $k[X]$. Now explain why we didn’t give congruences mod $p = 2, 3, 5, 7, 11$ and 23 in problem 2 (there is an arrow to the ‘Why?’ question of problem 2).

(4) Let k be a field (\mathbb{C} or \mathbb{R} if you wish) and let $f(X,Y)$ be an irreducible polynomial in two variables over k, i.e., a prime element in the U. F. D. $k[X,Y]$. Let $A = k[X,Y]/(f)$. Then A is Noetherian (Tate writes ‘noetherian’), and the nonzero prime ideals of A are maximal. Can you show this? Anyway, taking that for granted, let $(x_0, y_0) \in k \times k$ be a point on the curve $f(X,Y) = 0$, i.e., be such that $f(x_0, y_0) = 0$, and let P be the corresponding maximal ideal of A, consisting of the polynomials $p(X,Y)$ such that $p(x_0, y_0) = 0$, modulo (f). Prove that P is an invertible ideal in A if and only if the point (x_0, y_0) is a “non-singular” point of the curve, in the sense that not both partial derivatives $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ vanish at (x_0, y_0). (Suggestion : Note that the translation $(X,Y) \mapsto (X - x_0, Y - y_0)$, which
is an automorphism of $k[X, Y]$, allows you to assume $(x_0, y_0) = (0, 0)$ without loss of generality).

(5) Let a and b be positive integers such that ab is square free > 1, and let $E = \mathbb{Q}(\sqrt[3]{ab^2})$. Let $\alpha = \sqrt[3]{ab^2}$, and $\beta = \sqrt[3]{a^2b} = ab/\alpha$. Show that if $a^2 \not\equiv b^2 \pmod{9}$, then the integral closure of \mathbb{Z} in E is $\mathbb{Z} + \mathbb{Z} \alpha + \mathbb{Z} \beta$, and the discriminant of the field E is $-27a^2b^2$. What if $a^2 \equiv b^2 \pmod{9}$?
(I) Suppose \(f(X) \in \mathbb{Z}[X] \) is monic irreducible of degree 7, has a square discriminant, and has exactly three real roots. Prove that \(G_f \) is isomorphic either to \(A_7 \) or to the group \(G_{168} = \text{GL}(3, \mathbb{F}_2) \approx \text{PSL}(2, \mathbb{F}_7) \). Note that \(G_{168} \) is isomorphic to a subgroup of \(S_7 \), in fact of \(A_7 \), via the action of \(G_{168} = \text{GL}(3, \mathbb{F}_2) \) on the 7 non-zero vectors in \(\mathbb{F}_2^3 \).

(By considering Sylow subgroups, especially the ones for 7, this can be done from scratch without too much trouble. But it is even easier if you know that the only non-abelian simple groups of order < 1000 are \(A_5 \) of order 60 = \(2^2 \cdot 3 \cdot 5 \), \(G_{168} \) of order \(2^3 \cdot 3 \cdot 7 \), \(A_6 \) of order 360 = \(2^3 \cdot 3^2 \cdot 5 \), \(\text{PSL}(2, \mathbb{F}_8) \) of order 504 = \(2^3 \cdot 3^2 \cdot 7 \), \(\text{PSL}(2, \mathbb{F}_{11}) \) of order 660 = \(2^2 \cdot 3 \cdot 5 \cdot 11 \)).

(II) Let \(f(X) = X^7 - 7X + 3 \) (shown me by Mr. Elkies). It is easy to check that \(f(X) \) satisfies the conditions of (I). For example, \(d_f = 3^8 \cdot 7^8 \). Moreover, out of the first 360 primes:

\[
p = 2, 3, 5, 7, \ldots, 2423 \ :
\]

- \(f(X) \) has no root (mod \(p \)) for 104 \(p \)'s;
- \(f(X) \) has 1 root (mod \(p \)) for 214 \(p \)'s;
- \(f(X) \) has 3 roots (mod \(p \)) for 41 \(p \)'s;
- \(f(X) \) has 7 roots (mod \(p \)) for 1 \(p \) (namely \(p = 1879 \)).

Is \(G_f = G_{168} \), or \(A_7 \)?
Newton Formulas, Discriminant

\[f(X) = X^n - a_1X^{n-1} + a_2X^{n-2} - \cdots + (-1)^na_n = (X - \alpha_1)(X - \alpha_2) \cdots (X - \alpha_n). \]

Here \(a_\nu = \sum_{i_1 < i_2 < \cdots < i_\nu} \alpha_{i_1}\alpha_{i_2} \cdots \alpha_{i_\nu} \). Put \(S_\nu = \sum_i \alpha_i'^\nu \).

Then:

\[
\begin{align*}
S_1 - a_1 &= 0. \\
S_2 - a_1S_1 + 2a_2 &= 0. \\
S_3 - a_1S_2 + a_2S_1 - 3a_3 &= 0. \\
&\cdots \\
S_n - a_1S_{n-1} + \cdots \pm a_nS_0 &= 0. \\
&\cdots \\
S_m - a_1S_{m-1} + \cdots \pm a_nS_{m-n} &= 0, \quad m \geq n.
\end{align*}
\]

Proof. Write:

\[
\prod_{i=1}^{n} (1 - \alpha_i t) = 1 - a_1 t + a_2 t^2 - \cdots = \sum_{\nu \geq 0} (-1)^\nu a_\nu t^\nu.
\]

Take the logarithmic derivative formally:

\[
\sum_{i} \frac{-\alpha_i}{1 - \alpha_i t} = -\sum_{i, \nu} \alpha_i'^{\nu+1} t^\nu = -\sum_{\nu} S_{\nu+1} t^\nu = \frac{-a_1 + 2a_2 t - 3a_3 t^2 + \cdots}{1 - a_1 t + a_2 t^2 - a_3 t^3 + \cdots},
\]

cross-multiply and compare coefficients of \(t^\nu \). \(\square \)

Solving for \(S_n \) we get for \(n \leq 4 \):

\[
\begin{align*}
S_4 &= a_1^4 - 4a_1^2a_2 + 2a_2^2 + 4a_1a_3 - 4a_4. \\
S_3 &= a_1^3 - 3a_1a_2 + 3a_3. \\
S_2 &= a_1^2 - 2a_2. \\
S_1 &= a_1. \\
S_0 &= n.
\end{align*}
\]
Further, the discriminant d_f of $f(X)$ is

$$d_f = \prod_{i<j} (\alpha_i - \alpha_j)^2 = (-1)^{\frac{n(n-1)}{2}} \prod_{i \neq j} (\alpha_i - \alpha_j) = (-1)^{\frac{n(n-1)}{2}} \prod_j f'(\alpha_j)$$

$$= \det^2 \begin{bmatrix}
1 & \alpha_1 & \alpha_2^2 & \ldots & \alpha_n^{n-1} \\
1 & \alpha_2 & \alpha_2^2 & \ldots & \alpha_n^{n-1} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & \alpha_n & \alpha_n^2 & \ldots & \alpha_n^{n-1}
\end{bmatrix}$$

$$= \det \left(\begin{bmatrix}
1 & 1 & 1 & \ldots & 1 \\
\alpha_1 & \alpha_2 & \alpha_3 & \ldots & \alpha_n \\
\alpha_1^2 & \alpha_2^2 & \alpha_3^2 & \ldots & \alpha_n^2 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
\alpha_1^{n-1} & \alpha_2^{n-1} & \alpha_3^{n-1} & \ldots & \alpha_n^{n-1}
\end{bmatrix} \cdot \begin{bmatrix}
1 & \alpha_1 & \alpha_1^2 & \ldots & \alpha_1^{n-1} \\
1 & \alpha_2 & \alpha_2^2 & \ldots & \alpha_2^{n-1} \\
1 & \alpha_3 & \alpha_3^2 & \ldots & \alpha_3^{n-1} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & \alpha_n & \alpha_n^2 & \ldots & \alpha_n^{n-1}
\end{bmatrix} \right)$$

$$= \det \begin{bmatrix}
S_0 & S_1 & S_2 & \ldots & S_{n-1} \\
S_1 & S_2 & S_3 & \ldots & S_n \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
S_{n-1} & S_n & S_{n+1} & \ldots & S_{2n-2}
\end{bmatrix}$$

This last can also be written:

$$d_f = (-1)^{\frac{n(n-1)}{2}} R(f, f'),$$

where R is the resultant; cf. Lang page 211 (Ch V, §10).

Example: For $f(X) = X^n + pX + q$, we have $(-1)^{\frac{n(n-1)}{2}} d_f = n^n q^{n-1} + (1 - n)^{n-1} p^n$, as can be seen by writing $-\alpha_j f'(\alpha_j) = nq - (1 - n)p\alpha_j$ and multiplying over j.
Examples of prime ideals

(1) Let \(A \) be a u.f.d. (unique factorization domain, e.g., \(A = \mathbb{Z}[x_1, \ldots, x_n] \) or \(A = K[x_1, \ldots, x_n], \) \(K \) a field) and let \(\pi \) be a prime element in \(A \). Show:
(a) The principal ideal \(\pi A \) is a prime ideal.
(b) Every nonzero prime ideal contains one of the form \(\pi A \).
(c) The ideals of the form \(\pi A \) are the minimal elements in the set of nonzero prime ideals, ordered by inclusion, and they are the only nonzero principal prime ideals.

(2) Let \(A \) be a p.i.d. (principal ideal domain, e.g., \(A = \mathbb{Z} \) or \(A = K[X], \) \(K \) a field). Then the ideals of the form \(\pi A \) are maximal, and are the only non-zero prime ideals of \(A \).

(3) Let \(B \) be an integral domain with field of fractions \(K \). Let \(A = B[X] \) and let \(P \) be a prime ideal of \(A \); then \(P \cap B \) is a prime ideal in \(B \).

\[
A = B[X] \xrightarrow{\sim} K[X] \\
B \xrightarrow{\sim} K
\]

(a) If \(P \cap B = (0) \), show:
 (i) \(PK = P(K[X]) \) is a prime ideal in \(AK = K[X] \).
 (ii) \(P = PK \cap A \).
 (iii) If \(B \) is a u.f.d., then either \(P = (0) \), or \(P = f(X)A \), where \(f(X) \) is a polynomial with coefficients in \(B \), these coefficients having “no” common divisor (i.e., none except units in \(B \)), and \(f(X) \) being irreducible in \(K[X] \).
 Moreover \(f \) is determined by \(P \) up to a unit (invertible element) of \(B \).

(b) If \(P \cap B = M \), a maximal ideal of \(B \), then, making the identification \(A/MA = B[X]/MB[X] \approx (B/M)[X] = k[X] \), where \(k = B/M \), we see that \(P/MA \) is a prime ideal in \(k[X] \). Hence show: either \(P = MA \), or \(P = MA + g(x)A \), where \(g(X) \) is a polynomial with coefficients in \(B \) such that the polynomial \(\overline{g}(X) \) which we obtain by reducing the coefficients of \(g \) (mod \(M \)) is an irreducible polynomial in \(k[X] \). Moreover \(g \) is determined by \(P \) up to multiplication by an element of \(B \) not in \(M \) and addition of a polynomial whose coefficients are in \(M \).

(4) Apply (3) to the case where \(B \) is a p.i.d., and show that the prime ideals \(P \) of \(A \) are of the following distinct types:
 (I) \(P = (0) \).
 (II) \(P = f(X)A \), where \(f \) is as in 3.a.iii.
 (III) \(P = \pi A, \) \(\pi \) a prime element of \(B \).
 (IV) \(P = \pi^*A + g(X), \) \(\pi^* \) a prime element of \(B \), and \(g \) as in 3b, with \(M = \pi B \).

The ideals of type IV are maximal and are not principal. The ideals of type IV which contain a given \(\pi A \) of type III are those for which \(\pi^* \sim \pi \), i.e., \(\pi^*B = \pi B \).
The ideals of type IV which contain a given $f(X)A$ of type II are those for which \(\overline{g}(X) \) divides \(\overline{f}(X) \) in \(k[X] \), where \(k = B/\pi^*B \) and where \(\overline{g} \) and \(\overline{f} \) denote the polynomials obtained from \(g \) and \(f \) by reducing their coefficients (mod \(\pi^* \)); hence no ideal of type II is maximal unless \(B \) has only a finite number of maximal ideals, say \(\pi_1B, \pi_2B, \ldots, \pi_mB \), in which case, the ideals of type II generated by \(f(X) \) of the form \(\overline{f}(X) = 1 + \pi_1\pi_2\ldots\pi_mXh(X) \), with \(h(X) \in B(X) \) are maximal (because for every \(\pi_i \) we have \(\overline{f} = f(mod \pi_i) - 1! \)).

(5) If \(\mathbb{C} \) is the field of complex numbers (or any algebraically closed field), apply (4) to \(B = \mathbb{C}[Y] \) to show that the prime ideals \(P \) in the ring \(A = \mathbb{C}[X,Y] \) are of three distinct types:

\begin{enumerate}
 \item [(I)] \(P = (0) \).
 \item [(II)] \(P = f(X,Y)A \) where \(f(X,Y) \) is an irreducible polynomial in two variables with complex coefficients, uniquely determined by \(P \) up to a nonzero constant factor.
 \item [(IV)] \(P = (X - x_0)A + (Y - y_0)A \), where \(x_0 \) and \(y_0 \) are complex numbers uniquely determined by \(P \).
\end{enumerate}

The only maximal ideals are those of type IV, and the ideals of type IV containing a given \(f(X,Y)A \) are those for which \(f(x_0,y_0) = 0 \).

(6) Let \(A = \mathbb{C}[X,Y,Z] \). What are the minimal non-zero prime ideals of \(A \)? Try to prove that the only maximal ideals of \(A \) are those of the form \((X - x_0, Y - y_0, Z - z_0) \) (special case of Hilbert’s Nullstellensatz). The prime ideals of \(A \) which are neither maximal nor minimal nonzero are harder to describe. One such is \(P = (X,Y) \). But not all of them can be generated by two elements. For example, let \(\varphi : A \to \mathbb{C}[T] \) be the homomorphism defined by \(\varphi(f(X,Y,Z)) = f(T^3,T^4,T^5) \), and let \(P \) be the kernel of \(\varphi \). Try to show that \(P \) is generated by the three elements \(Y^2 - XZ, X^3 - YZ, Z^2 - X^2Y \), but on the other hand, \(P \) cannot be generated by two elements.

(7) Let \(M \) be a maximal ideal in a ring \(B \) and let \(A = B/M^n \) for some integer \(n > 0 \). Show that the only prime ideal of \(A \) is \(M/M^n \).

Examples: \(A = \mathbb{Z}/1024\mathbb{Z}, A = \mathbb{C}[X]/X^n\mathbb{C}[X] \).

(8) Let \(A \) be the ring of power series \(c_0 + c_1z + c_2z^2 + \ldots \) with complex coefficients \(c_i \) which have a nonzero radius of convergence (ring of germs of analytic functions at the origin \(z = 0 \) in the complex \(z \)-plane). Discuss the prime ideals in \(A \). Do the same for the ring of formal power series \(A = K[[z]] \) in one variable \(z \) over any field.

(9) Let \(E \) be a compact Hausdorff topological space. Let \(A \) be the ring of all continuous real valued functions on \(E \). For each \(x \in E \), let \(M(x) \) be the maximal ideal of \(A \) consisting of the functions \(f \in A \) such that \(f(x) = 0 \) (i.e., \(M(x) = \) Kernel of the homomorphism \(f \mapsto f(x) \)). Prove that the map \(x \mapsto M(x) \) is a homeomorphism of \(E \) onto the maximal ideal spectrum of \(A \). (You may use the well-known lemma which states that, given two disjoint closed subsets of \(E \) (in particular two distinct points of \(E \)), there exists a continuous real valued function on \(E \) taking the value \(0 \) on one of the sets and the value \(1 \) on the other - if you
don’t like too much abstraction, take E to be the closed interval $[0, 1]$ on the real line.) (Hint : the only hard part is to show that every maximal ideal \mathcal{M} of A is of the form $M(x)$ for some $x \in E$. To do this, suppose the contrary. Then for every $x \in E$ there exists a function $f_x \in \mathcal{M}$, but with $f_x(x) \neq 0$. Show that if you replace f_x by $g_x f_x$ with a suitable g_x, you can assume $f_x \in \mathcal{M}$, and $f_x(y) = 1$ for all y in some neighborhood U_x of x. Now these U_x cover E, so already a finite number $U_{x_1}, U_{x_2}, \ldots, U_{x_n}$ cover E etc.).