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1. Algebraic Numbers. Early Greeks - quadratic irrationals, their existence, their
nature:

√
2,
√

3,
√

5, . . . appear in Theatetus (one of Plato’s Socretic dialogues) - before
Plato simple surds, after Plato more elaborate theory. Found in the later books of Eu-
clid’s elements, the 10th and 12th. Combinations of simple surds, such as a

√
2 + b

√
3, a

and b rational. Proof of linear independence, thus first signs of Galois theory. Also the
appearance of such irrationalities as lengths in regular polygons and regular polyhedra.

Renaissance Period (14th − 15th centuries) - algebraic mysteries of cubic and quartic
irrationalities - solution by extraction of roots.

18th Century - Lagrange and Vandermonde. Equations of general degree, symmetric
functions of the roots, functions of the roots perhaps leading to solution by extraction of
roots. Thus a kind of inchoate Galois theory.

Gauss Elementary construction of regular heptadecagon - 17 sides. Really an analysis of
the resolution of the cyclotomic equation

Xn − 1 = 0

or

Xn−1 + Xn−2 + · · ·+ 1 = 0

Most important case is n a prime. Solve by radicals - rather by extraction of roots of low
degree. It is not always clear what the earlier authors had in mind. It is however absolutely
clear what Gauss is doing: building a sequence of functions of the roots ζ, ζ2, . . . , ζn−1

that give numbers that can be obtained by a successive extraction of roots of the lowest
possible degree.

n = 5 ζ, ζ2, ζ3, ζ4 : ζ + ζ4, ζ2 + ζ3

are quadratic surds and

ζ + ζ2 + ζ3 + ζ4 = −1, (ζ + ζ4)2 = ζ2 + 2 + ζ3 = 1 − ζ − ζ4

⇒ z = ζ + ζ4 satisfies z2 + z − 1 = 0, z = −1
2 ±

√
5

2 ⇒ z = −1
2 +

√
5

2 .
ζ itself is then found by the extraction of a further square root.

ζ2 − zζ + 1 = 0.
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General theory of is that of periods. First step is always extraction of a square. If a is a
primitive root modulo n, then

ζ + ζa2

+ ζa4

+ . . . + ζan−3

and ζa + ζa3

+ . . . + ζan−2

are the two roots of a quadratic equation.

This is all found in Gauss’s Treatise Disquisitiones
18th century again. Legendre’s introduction of the law of quadratic reciprocity as a
conjecture that he was unable to prove.

p quad. res. / not quad. res. modulo q.

↔ q quad. res. / not quad. res. modulo p.

Gauss again proved the conjecture in Disq. by an elementary method, but the problem
is implicit in the theory of the cyclotomic equation. I use modern concepts for brevity
x2 − p has a root modulo g3 say a2 ≡ p (mod g). Then q factors in the field of

√
p

(a −√
p)(a +

√
p) = a2 − p

divisible by q. But we have seen that quadratic fields are contained in the cyclotomic fields
Q(ζ). When does q factor in Q(ζ)? If

Xn − 1 = 0

has a root modulo q. Take n = p. It has a root if p|(q − 1) because of Fermat’s theorem
aq−1 ≡ 1 (mod p) if (q, p) = 1. Thus factorization depends on q modulo p. ap − 1 ≡ 0
(mod q) ⇒

g|(a − ζ)(a − ζ2) . . . (a − ζp−1)

Quadratic Forms: in the same complex of ideas it is natural to treat the theory of repre-
sentations by quadratic forms initiated by Fermat, Euler, Legendre. The representability
of q by a quadratic form with given discriminant is related to the equation

g = qq

in the field Q(
√

p).

Conclusion: Galois theory, reciprocity laws, quadratic forms, thus orthogonal groups
belong to same complex of ideas and these ideas have given concrete expression in Gauss’s
magnificent treatise which has been translated into several languages and is of immediate
access even to those with limited mathematical experience.

Gauss’s successors in nineteenth and early twentieth century
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Kummer - 1810 - 1893
Galois - 1811 - 1832

Kummer - arithmetic of cyclotomic fields, of extensions of these fields. Field is Q(ζ), ζ

satisfies Xℓ = 1, ℓ a prime. Extensions of Q(ζ) obtained by adjoining a root of Y ℓ =
α. Kummer analyzed these fields in the spirit described above and, again in the spirit
described above, proved reciprocity laws for higher powers.

Kummer followed by general theory of number fields, Dirichlet. Dedekind and then by
theory of abelian fields, Kronecker, Weber, Hilbert, Takagi, Artin. This theory which
establishes a decisive connection between abelian extensions of number fields on one hand
and their ideal class groups on the other hand is known as class-field theory and should be
regarded as arising by the evolution I have described from the simpler, but nevertheless
deep, theory to be found in Euclid.

Class-field theory classifies and constructs all abelian extensions of number fields. So
problem arose after the completion of the theory to classify and construct (in some sense)
all finite extensions. In 1956 at the bicentennial conference of Princeton University, Artin
suggested that perhaps all we could know and all we needed to know in general was implicit
in our knowledge of abelian extensions, so that there was in fact little left to do, although
it was not clear what it might be.

Another development with origins in Gauss and therefore Legendre

Quadratic forms → arithmetic theory of algebraic groups

Gauss → Eisenstein → Dirichlet → Hermite, H. J. S Smith, Minkowski and later analytic
theory of Hardy-Littlewood.

All of this subsumed and developed by Siegel in work extending over a life-time. To him we
owe I believe more than to any other mathematician the present overwhelming importance
of algebraic groups in number theory - but of course not to him alone.

Other analytic developments:

Euler products and analytic continuation of L-functions

Riemann (perhaps along with rather than after Gauss the second major mathematician/
philosopher of the nineteenth century). Analytic theory developed by Hecke and then
Maaß. An isolated development: Ramanujan/Mordell. I briefly recall the contributions of
Hecke and Maaß that are pertinent here.
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Holomorphic modular form f : holomorphic in upper half-plane

f

(

az + b

cz + d

)

= (cz + d)kf(z) Weight = k

(

a b

c d

)

=

(

1 0
0 1

)

( mod N)

f(z) =
∑∞

n=0
a(n)e2π in z

=
∑∞

n=1
a(n)e2π in z

Cuspform

f → ζf (s) =
∑∞

n=1

a(n)

ns

Analytic continuation, functional equation:

ζf (k − s) = γ(s)ζf(s)

γ(s) expressible in terms of Γ-functions.

Also if f is an eigenfunction of Hecke algebra then ζf (s) has an Euler product

ζf (s) ∼ Πp

1
(

1 − αp

ps

)(

1 − βp

ps

)

αpβp = pk−1

Nonholomorphic Forms f infinitely differentiable in upper half-plane, f=f(x,y). Eigen-
function of Laplacian

y2

{

d2f

dx2
+

d2f

dy2

}

= λf

Same theory but with different Γ-factors. This is contribution of Maaß

Note Ramanujan τ -function is defined by a holomorphic modular form of weight 12 and
level 1.

g(x) = x{(1 + x)(1 − x2) . . .}24

=
∑

n=1

τ(n)xn
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Ramanujan conjectured that if n and n′ are relatively prime then τ(nn′) = τ(n)τ(n′).
This is a consequence of Hecke’s formula but was in fact proved by Mordell some years
before Hecke’s work appeared and by methods that anticipated those of Hecke.

This was roughly the state in the late 50’s of the subject I am describing, except that I
have omitted the contributions of Selberg. I shall return to them but only after recalling
my own circumstances at the time.

I took a BA from the University of British Columbia in 1957, an MA in 1958, and then
moved onto Yale, where I had at first planned to work on partial differential equations, but
I also was captivated by Hille and Phillips book on analytic semigroups, so that without
paying much attention to the matter, I had a thesis largely in parabolic equations and
analytic semigroups before the first year was up. So my second and last year at Yale was
entirely free.

Indeed my first year was also pretty free and I spent most of my time in the library or
with a few books of my own. I describe some I remember studying.

a) Burnside on finite groups - although I remember idly dreaming of solving the
problem on simple groups of odd order solved indeed a short time thereafter by
Feit-Thompson, I don’t think I ever mastered much of Burnside.

b) The 1st edition of Zygmund on Fourier series - I knew the book inside and out at
the time.

c) Stone’s work on the spectral decomposition of self-adjoint operators in Hilbert
space. Although I never understood this material really well, it did later stand me
in good stead.

d) I did come also, for some reason or other, to understand not only the basis of
function theory - from Knopp’s books - but also something about holomorphic
functions of several complex variables that I was very quickly able to exploit.

S. Gal and Selberg. Fortunately for me something else happened during my last year
at Yale. S. Gal, a Hungarian, had fled Hungary after the failed revolution of 1956, and
sponsored by Selberg, whose wife was Hungarian, had spent a year at the IAS before
coming to Yale. He was fascinated by the ideas developed by Selberg in the first of his
TIFR papers.

As you may know, A. Selberg published two papers in the proceedings of two different
TIFR conferences. The first, strongly influenced by Maaß was on the spectral problems
arising from Maaß’s construction. The second, strongly influenced by Siegel, was on the
rigidity of discrete subgroups of Lie groups of large rank. They were both highly original
and very influential papers. It was the first that Gal was trying to understand and he
began with Hecke’s ideas!
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I, of course, while attending Gal’s lecture also looked at Selberg’s papers on my own
and combining what was there with some things about holomorphic functions of several
variables was able to prove some theorems about the analytic construction of what are
now called Eisenstein series. I confess that I was rather more interested in learning new
things than in proving them and did not attach much significance to these results.

In 1960 because E. Nelson liked my work on analytic semigroups, partly perhaps because
it was related to some work he himself has done on analytic vectors, I was appointed an
instructor at Princeton University.

At Princeton several things quickly happened that would be important for my mathemat-
ical development but exactly when and in what order I can no longer say. I list them.

a) Invited to speak in a seminar and having nothing better to report, I discussed the
results on some simple Eisenstein series. Bochner who was present and who was
a great fan of Dirichlet series was very excited, and from then on did everything
possible to promote my career.

b) I had, during a general conversation at Yale, heard one of the professors speak
of class-field theory as a subject too arcane to be of any interest to mathemati-
cians at large. My curiosity was piqued. Fortunately for me, although Artin had
left Princeton to return to Hamburg, A. Brumer and M. Rosen, who had come to
Princeton to study with him, decided to have a seminar on class-field theory. When
I saw this announced I immediately decided to take part. In addition to Brumer,
Rosen, and me there was only one other participant, perhaps J. d’Arti. Brumer,
who did most of the lecturing, and Rosen were experienced. I was not. I had
certainly studied Northcott’s book on ideal theory before leaving Vancouver, per-
haps even persuaded myself that I understood it. Perhaps I had also, as I believe,
already gone through Weyl’s book on algebraic number theory, getting something
out of it, but probably not a great deal. Anyhow, I plagued poor Brumer with silly
questions often taxing his patience beyong its limits. Rosen was more tolerant of
my impertinence.

c) Bochner pointed out my existence to Selberg and he invited me over to speak with
him at the Institute. I have known Selberg for more than 40 years. We are on
cordial terms and our offices have been essentially adjacent for more than 20 years.
This is nevertheless the only mathematical conversation I ever had with him. It
was a revelation. I had never talked in detail about mathematics with Bochner.
So Selberg was the first powerful analyst I had seen up close.

I recall that one of the results announced in the first Tata paper was a general
proof of the analytical continuation of the Eisenstein series for discrete subgroups
of SL(2, R) with quotient of finite volume. Maaß and Roelcke had searched in vain
for such a proof. The ideas involved are just those of spectral theory for 2nd-order
self-adjoint equations on a 1

2
-line, but I had never really seen these before and

certainly not in the hands of a master. It was a defining experience. I went away
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with a reprint of his paper and began to study it carefully, especially the trace
formula.

d) Sometime in those first months or years in Princeton, I acquired and began to read
the various Paris seminars of Cartan, Godement and others inspired by the work
of Siegel, Hecke, Selberg and the work of the pioneers of representation theory
Gelfand and coauthors, Bargmann and Harish-Chandra.

e) Bochner urged me to give a graduate course in class-field theory. Although I still
knew almost nothing about the subject, had only two weeks to prepare, was very
young, and scared stiff, I had no choice but to yield. I owe eternal gratitude to the
two students who stayed to the end, D. Reich and R. Fuller. I don’t suppose that
any of us really understood the subject, even at the end, but it was enormously
useful to me to go through the motions.

f) D. Lowdenslager, who died prematurely not long afterward, observed to me when
I told him that I was trying to use the trace formula of Selberg to compute the
dimension of the space of holomorphic automorphic forms for higher dimensional
groups that it was generally felt that the work of Harish-Chandra was pertinent.
So I began to study Harish-Chandra’s work and, as you know, it is not possible
to study one of his papers without studying all. Anyhow, on studying his papers
I came to understand that the integrals from the trace formula were given by
characters of the discrete series and could calculate the dimension.

g) I read Gelfand’s address to the ICM in Stockholm, finally understood correctly the
notion of a cusp form in general. Since, as I observed, I had some passive experience
with the spectral theory of self-adjoint operators and with holomorphic forms of
several variables, several months with my nose to the grindstone and a refusal to
be discouraged by temporary setbacks - for the proof presented a good number of
unexpected obstacles - gave me in the spring of 1964 a complete proof of analytic
continuation. I was exhausted and, moreover, quite dissatisfied with the account
of the proof but with no energy and no desire to revise the exposition. If Harish-
Chandra had not taken time from his own researches to work through and present
at least a part of my paper - that pertaining to Eisenstein series associated to cusp
forms - no-one may have taken me seriously. To Bochner and Harish-Chandra I
owe an enormous amount.

Berkeley - In the fall of 1964, I went to Berkeley for a year. Although, as I appreciate
in retrospect, it was not an entirely unsuccessful year - there were general results on the
volumes of fundamental domains and a conjecture on the geometrical realization of discrete
series that bore some fruit later - I did not have the feeling that things were working out.
The Einsenstein series in hand, I tried to develop the general trace formula, but did not
succeed. I ran a seminar together with P. Griffiths on abelian varieties, but in the end he
did much more with the material than I.

I grew discouraged and 1965-66 when I was back in Princeton was at first even worse. I
had several projects - more or less vague - with which I was trying to do something.

(i) Trace formula
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(ii) Extension of the Hecke theory to groups other then GL(2).
(iii) A nonabelian class field theory.

(ii) and (iii) are of course related, yet different. All three projects were coming to nothing.
I began to think of throwing it all up.

There were in th 1960’s still residues of the romantic notions of British imperialism, em-
bodied in figures like Gertrude Bell or T. E Lawrence. So one could dream, even with a
wife and four small children, of escaping into the life and language of some exotic land
and beginning anew. I did; my wife, more generous than wise, did not discourage me and
we made plans to spend a year, at first several years, but the department in Ankara only
agreed to a provisional 1-term appointment. The specific choice of Turkey was the result
of accidental factors.

The decision had been taken by the summer of 1966 and all ambitious projects dropped.
I took up again the study of Russian abandoned for many years, and continued I suppose
to teach mathematics, perhaps even to learn it, but with no urgency.

As far as I recall, I began idly, simply to fill the time, to calculate the constant turn of the
Eisenstein series associated to maximal parabolics of split groups. I had no goal in mind,
just nothing better to do.

Then I noticed that the constant turns were Euler products and that they had a uniform
expression in terms of representations of the group defined by the dual Cartan matrix.
That was probably an insight that came slowly. It was certainly there at the time of
the Yale lectures. Indeed, before posting my letter to Weil on Casselman’s UBC site, I
verified some dates with the help of external evidence. The Yale lectures were given in
April 1967, and the letter to Weil with the functoriality conjectures in their original form
was sent in January, 1967. The idea itself must have come during the vacation period of
Christmas/New Year 1966-67. So I was apparently, quite reticent during the Yale lectures.

I finish, by recalling the main idea of functionality.

If I replace s by s + k − 1 in the Hecke form then

αp → α̃p =
αp

pk−1
, βp → β̃p =

βp

pk−1
, α̃pβ̃p = 1,

and functional equation is between s and 1 − s.
(

α̃p

p̃p

)

= γp

may be treated as a conjugacy class in GL(2, C) and the Hecke form may be written as
∏

p

1

det(1 − γp

p3 )
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More generally, although Hecke did not do so, we may replace γp by ρ(γp) where ρ is any
finite-dimensional representation of GL(2, C)

L(s, π, p) =
∏ 1

det(1 − p(γp)
ps )

Here γp = γp(f) = γp(π) where the automorphic form, an eigenform of the Hecke operators,
is replaced in the notation by the representation it determines. For any reductive group
G/F and any automorphic representation of G(AF ), the theory of spherical functions allows
us to define γp(Π) = γ(Πp) as a conjugacy class in a finite-dimensional complex group,
the L-group, for almost all p. The calculations on Eisenstein series I described give Euler
products that can all be expressed as

∏ 1

det(1 − ρ(γp)
ps )

They suggest that this function can be analytically continued and has a functional equation
of the usual kind. This question posed, a way to answer it suggests itself. Tamugawa had on
some occasion that could not have been too long before December 1966, but I am not sure,
delivered a lecture in the auditorium of the old Fine Hall in which he discussed the standard
L-function associated to automorphic representation or forms on the multiplicative group
of a division algebra. I had no trouble believing that his method would also work for GL(n),
as indeed it does, as later shown by Godement-Jacquet. Then, in analogy with the Artin
reciprocity law, all we would need to do to show the analytic continuation of L(s, π, p) is
to establish the existence of an automorphic representation of GL(n), n = dim ρ,

s.t.
{p(γp(Π)} = {γp(Π)}

for almost all p. It is a small step - at least conceptually - from this possibility to the
possibility of functoriality in general.

Since the meeting with Weil that gave rise to the letter took place early in January and, ac-
cording to my recollection, took place shortly after I began to appreciate these possibilities,
the idea probably came to me, as I said, during the Christmas vacation.

Although the date the idea came is forgotten, I still have a vivid recollection of the place.
In the old Fine Hall at Princeton University, there was a small seminar room on the ground
floor directly to the east of the entrance. The building itself, I recall, was in Gothic style
with leaded casement windows. I was looking through them into the ivy and the pines and
across to the fence surrounding the gardens of the President’s residence when I realized
that the conjecture I was in the course of formulating implied on taking G = {1} the Artin
conjecture. It was certainly one of the major moments in my mathematical career.
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